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Diabetes mellitus is a prevalent chronic non-communicable disease, and recent

studies have explored the link between gut microbiota and its development.

Despite some evidence suggesting an association, the influence of gut

microbiota on type 2 diabetes (T2D) remains unclear. A systematic search of

PubMed (January 2016– December 2023) using the keywords “16S” and

“diabetes” or “DM2” or “T2DM” or “T2D” and “gut microbiota” and “diabetes” or

“DM2” or “T2DM” or “T2D”. The studies included compared gut microbiome

diversity between diabetic and non-diabetic adults using 16S rRNA sequencing,

excluding children, interventions, and type 1 diabetes. Alpha diversity indices and

bacterial mean abundance were analyzed, with statistical assessments using a

random-effects model and I2 for heterogeneity. Thirteen studies met the criteria,

with the Shannon index being the most commonly used measure. Results

showed significant heterogeneity (I2 > 75%) and no notable differences

between diabetic and non-diabetic groups. Other indices, such as Chao1 and

phylogenetic whole tree, similarly showed no consistent differences. Taxonomic

analysis also failed to find phyla consistently correlated with T2D, with variability

across studies. The relationship between gut microbiota and diabetes remains

uncertain due to technical and biological factors that are often overlooked. The

inconsistencies across studies highlight the low reproducibility common in

microbiota research.
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1 Introduction

As global populations increasingly adopt urbanized lifestyles, the

prevalence of chronic non-communicable diseases, such as diabetes

mellitus (DM), has become a significant public health concern,

particularly in low- and middle-income countries (World Health

Organization, 2023). Type 2 diabetes (T2D), which constitutes

approximately 90% of all diabetes cases, is estimated to affect over

500 million adults worldwide, representing a substantial and

increasingly significant economic burden (International Diabetes

Federation, 2021; Ong et al., 2023). Beyond its impact on glucose

regulation, T2D is a major risk factor for cardiovascular diseases,

which remain the leading cause of death globally (World Health

Organization, 2024).

T2D is a chronic condition marked by the reduced ability of the

pancreas to produce insulin or the decreased effectiveness of insulin,

leading to persistent hyperglycemia (World Health Organization,

2024). This multifactorial disease is influenced by genetic

predisposition, environmental factors, and, more recently,

alterations in the gut microbiome (Gilbert et al., 2018; Qin

et al., 2012).

Numerous studies have proposed a role for the gut

microbiome in the pathophysiology of T2D, attributed to its

influence on host metabolic homeostasis. The gut microbiota

contributes to maintaining the integrity of the epithelial barrier,

maturing the immune system, and producing a variety of

metabolites that exert systemic effects on the host (Bäckhed

et al., 2012; Rogers and Wesselingh, 2016). Furthermore, reports

have shown that microbial metabolization of dietary nutrients

affects the energetic yield within the host, potentially contributing

to the onset of obesity and pre-diabetes (Takeuchi et al., 2023).

This process suggests a possible involvement of the microbiome in

metabolic disorders by influencing insulin resistance and low-

grade inflammation through the metabolism of dietary

monosaccharides (Zhou et al., 2019).

The relationship between the gut microbiota and T2D, however,

remains contentious, with inconsistent findings across different

populations (He et al., 2018; Zhou et al., 2019). For instance, the

genus Bacteroides has been reported to have both higher and lower

relative abundance in diabetic patients across various studies (He

et al., 2018; Yamaguchi et al., 2016). Some meta-analyses have

highlighted this inconsistency, suggesting that the gut microbiome

may not play a significant role in T2D development (Gurung et al.,

2020; MetaHIT consortium et al., 2015). This has led to the

hypothesis that it is the overall functional repertoire and

metabolic output of the microbial community, rather than

specific taxa, that are critical in the interaction between the

microbiome and T2D Vatanen et al., 2018.

Concerns about the reproducibility of metagenomic studies,

particularly in methodology, have also emerged. Notably, a highly

cited article foundational to many studies was found to have

methodological flaws (Gihawi et al., 2023). In response to these

issues, we conducted a meta-analysis of datasets where gut

microbiota, assessed through 16S rRNA gene sequencing, was

studied in relation to Type 2 Diabetes Mellitus.
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2 Methods

2.1 Study design

This systematic review and meta-analysis aimed to evaluate the

relationship between the gut microbiome and type 2 diabetes mellitus

(T2D) by analyzing 16S rRNA sequencing data. The study was

designed to synthesize available evidence, identify patterns or

discrepancies in the findings, and assess the reproducibility of results

across different studies. Our approach followed the PRISMA (Preferred

Reporting Items for Systematic Reviews andMeta-Analyses) guidelines

to ensure a rigorous and transparent methodology.
2.2 Data search

A comprehensive and systematic search was conducted in

PubMed to identify relevant studies published between January

2016 to December 2023. The search strategy combined Medical

Subject Headings (MeSH) terms and keywords to capture all

pertinent literature. The search string included the following terms:

(“16S” AND “diabetes” OR “DM2” OR “T2DM” OR “T2D”) AND

(“gut microbiota” AND “diabetes” OR “DM2” OR “T2DM” OR

“T2D”). To ensure the quality and relevance of the data, only peer-

reviewed articles published in English were considered. The search

was complemented by manual screening of reference lists from

selected studies to identify any additional relevant publications.
2.3 Study selection

The selection process involved a multi-step approach. Initially,

titles and abstracts were screened to eliminate studies that clearly

did not meet the inclusion criteria. Full-text reviews were then

conducted for studies that appeared potentially eligible. Studies

were included if they met the following criteria: (1) compared gut

microbiome diversity between adult diabetic and non-diabetic

populations; (2) employed 16S rRNA sequencing as the primary

method for microbiome analysis; and (3) were published in English.

Studies were excluded based on the following criteria: (1) studies

involving pediatric populations, due to differences in microbiome

composition; (2) studies relying solely on quantitative PCR (qPCR)

for bacterial abundance, as this method lacks the depth of 16S rRNA

sequencing; (3) studies employing shotgun sequencing, which differ

significantly in methodology and scope from 16S studies; and (4)

studies focusing primarily on inflammatory markers or other non-

microbiome-related associations with diabetes. This rigorous

selection process ensured that the included studies were

comparable and relevant to the research question.
2.4 Data extraction and analysis

Data extraction was conducted meticulously from various

sources within the studies, including text, tables, and figures. Key
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data points extracted included: authors, year of publication, sample

size per group, 16S rRNA primer sequences, DNA extraction kits

used, data availability (e.g., public repositories), country of origin of

the study, inclusion and exclusion criteria, statistical methods

employed, mean values of alpha diversity indices, mean values of

bacterial abundance, and the choice of Operational Taxonomic

Units (OTUs) versus Amplicon Sequence Variants (ASVs) for

sequence classification.

For studies where data were presented in figures, values were

extracted using PlotDigitizer (PlotDigitizer, 2024), an image

processing software that allows accurate digitization of graphical

data. The extracted data were then analyzed using a mean difference

test to compare alpha diversity indices and bacterial abundance

between diabetic and non-diabetic groups. Subgroup analyses were

conducted based on the sequencing method used (OTU vs. ASV) to

explore potential differences in findings related to methodological

variations. A random-effects model was employed for meta-

analysis, as recommended by Review Manager (Higgins and

Green, 2011) version 5.4, to account for variability across studies.

Statistical significance was determined at a p-value threshold of <

0.05. Heterogeneity among studies was assessed using the I2

statistic, with the following classifications: low (0%-40%),

moderate (30%-60%), substantial (50%-90%), and considerable

(75%-100%) (ibid.). All statistical analyses were performed using

RStudio (RStudio Team, 2024), with R version 4.3.0 (R Core Team,

2024) and the ‘meta’ package version 7.0.0 (Schwarzer et al., 2015),

ensuring reproducibility and transparency of the analytical process.
3 Results

3.1 Study characteristics

The initial search identified 7140 articles. After applying the

inclusion criteria and narrowing down the results, 71 articles were

selected for full-text review (Figure 1). Following this thorough

screening process, thirteen studies met the criteria for inclusion in

the final analysis. Of these, nine studies employed Operational

Taxonomic Unit (OTU) sequences, while four utilized Amplicon

Sequence Variants (ASV) for microbiome analysis.

Geographically, the majority of the studies were conducted in

Asia, with eleven originating from this continent (China: 7, Japan: 1,

Pakistan: 2). Two studies were conducted in North America (USA:

2), and one study was from the Middle East (Egypt: 1). Regarding

taxonomic classification, the reference databases most frequently

used were GreenGenes and SILVA, with each being utilized in four

studies. The V3V4 region of the 16S rRNA gene was the most

commonly targeted region for primer production, appearing in

eight studies (Table 1). Across all included studies, a total of 4,066

sequenced samples were analyzed, providing a robust dataset for the

meta-analysis.

The majority of the studies included in this meta-analysis (n =

11) utilized the Shannon index to evaluate alpha diversity between

control and diabetic groups. As illustrated in Figure 2, there is

substantial heterogeneity among the studies (I2 > 75%), suggesting

that multiple factors contribute to the observed variability in alpha
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diversity results. This high heterogeneity indicates that the results

are influenced by differences in study design, population

characteristics, sequencing methods, or data analysis techniques.

Additionally, the results show considerable variation in the

Shannon index across studies, as reflected by the wide confidence

intervals and the non-significant p-value, which suggests no

consistent difference in alpha diversity between diabetic and non-

diabetic groups. When the studies were stratified into subgroups

based on the identification method, it became evident that studies

using the OTU approach exhibited greater heterogeneity compared

to those employing the ASV method. The relatively low variability

among ASV-based studies could be partly due to the smaller

number of studies in this subgroup (only three), which may limit

the generalizability of these findings.

When the Chao1 index data from all included studies were

analyzed using a forest plot, substantial heterogeneity was observed,

with I2 values falling within the range of 50% to 75% (Figure 3). This

suggests that while there is notable variability among studies, it is

not extreme.

In four studies, higher alpha diversity was reported in diabetic

individuals when OTUs were used for analysis. This trend was

similarly observed in the ASV data, where two studies indicated an

increased Chao1 index in diabetes, although the results were

not consistent.

A specific subgroup of three studies that employed the OTU

method exhibited substantial heterogeneity (I2 < 75%) and showed

statistically significant variation (p-value < 0.01). However, despite

this variation, no significant difference was found between the

diabetic and non-diabetic groups within this subgroup.

Five studies included in the analysis utilized the phylogenetic

whole tree index to evaluate alpha diversity (Figure 4). This index

showed substantial variation, with heterogeneity ranging from 50% to

90% (I2), suggesting notable variability across studies. Despite this, the
FIGURE 1

Flowchart representing inclusion and exclusion criteria and resulting
article number after exclusion.
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overall p-value was significant (p < 0.01), indicating that there was no

significant difference in phylogenetic distances between diabetic and

non-diabetic groups. Among these studies, only one employed the

ASV method, while the remaining four used the OTU method. The

studies using the OTU method exhibited higher heterogeneity

compared to the combined analysis of all five studies. Despite these

methodological differences, none of the indices showed a significant

difference in alpha diversity between the diabetic and non-

diabetic groups.
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3.2 Taxonomic composition

The analysis aimed to determine whether diabetic individuals

have a distinct abundance of specific phyla compared to non-diabetic

individuals. However, no clear trend was observed across the studies.

Significant heterogeneity was evident (I2 > 75%), highlighting the

diversity in the collected data. This variability suggests that the

underlying factors contributing to differences in phylum abundance

remain unclear and require further investigation.
FIGURE 2

Forest plot of Shannon index in normoglycemic vs. diabetic subjects. Stratified by OTU and ASV identification methods.
TABLE 1 Study methodological characteristics.

Author Country Method 16S Region Reference Database reference N Size

Ahmad et al. (2019) Paquistão OTU V3V4 Silva GreenGenes 60

Ding et al. (2023) China ASV V3V4 GreenGenes2 101

Du et al. (2022) China OTU V3V4 Not described 60

Guo et al. (2023) China ASV V3V4 HOMD 168

Hashimoto et al. (2020) Japão ASV V3V4 GreenGenes 194

Huang et al. (2023) China OTU V4 GreenGenes 14

Li et al. (2020) China OTU V4V5 GreenGenes 60

Maskarinec et al. (2021) EUA OTU V1V3 SILVA 1702

Salah et al. (2019) Egito OTU V3V4 SILVA 60

Saleem et al. (2022) Paquistão ASV V3V4 SILVA 94

Walker et al. (2021) EUA OTU V4 MetaPhlan2 1402

Wang et al. (2017) China OTU V6 BlastN 40

Wang et al. (2020) China OTU V3V4 RDB 171
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Among the 13 studies analyzed, four phyla were frequently

associated with diabetes, each showing considerable variation (I2 >

75%) and significant p-values (p < 0.05) (Figure 5). This disparity

underscores the need for additional research to better understand

these associations.

Pseudomonadota was the most commonly reported phylum,

appearing in six studies. Despite its frequent mention, there was no

consensus on its relationship with diabetes. The studies showed high

heterogeneity (I2 = 94%), and no significant differences were found

between normoglycemic and diabetic individuals concerning

Pseudomonadota abundance. Furthermore, factors such as dietary

habits and population characteristics, which may influence microbiota

composition, have not been thoroughly investigated in this context.

Bacteroidota was the second most commonly associated

phylum, mentioned in five studies. It was the only phylum with

heterogeneity below 90%. The findings were mixed: Ahmad et al.

(2019) and Du et al. (2022) reported higher Bacteroidota abundance

in diabetic individuals, while Hashimoto et al. (2020) and Walker
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et al. (2021) found lower levels in diabetics. The confidence intervals

and p-values suggest that there is no clear association between

Bacteroidota abundance and diabetes.

Bacillota and Actinomycetota were each associated with

diabetes in four studies. Bacillota exhibited a large confidence

interval, mainly due to the findings in Ahmad et al. (2019) which

indicated a significant difference in abundance between groups.

However, the other three studies did not support this result. As for

Actinomycetota, although slight variations in means were observed,

the p-values and confidence intervals indicate no significant

relationship between its abundance and diabetes.
4 Discussion

The association between complex traits such as Type 2 Diabetes

Mellitus (T2D) and gutmicrobiota has been extensively proposed in the

literature (Larsen et al., 2010; Baothman et al., 2016; Doumatey et al.,
FIGURE 3

Forest plot of Chao1 index in normoglycemic vs. diabetic subjects. Stratified by OTU and ASV identification methods.
FIGURE 4

Forest plot of phylogenetic whole tree index in normoglycemic vs diabetic subjects. Stratified by OTU and ASV identification methods.
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2020). However, our analysis reveals no significant differences in alpha

diversity between normoglycemic and diabetic groups. This outcome is

likely influenced by the substantial heterogeneity observed across the

studies, suggesting that variations in results may be driven by multiple

factors beyond microbial diversity, including methodological

differences, personal eating habits, and population characteristics.

A key methodological factor is the choice between OTU and ASV

approaches, with most studies favoring OTUs (n = 8). The OTU

method, while common, is prone to replication issues due to its reliance

on clustering algorithms, potentially merging different sequences into

the same cluster. On the other hand, the ASV method, particularly

when using the DADA2 workflow, offers more precise sequence

identification through machine-learning algorithms and stricter

merging criteria. Studies have shown that these methodological

differences can lead to varying alpha diversity values even when

analyzing the same dataset (Joos et al., 2020; Chiarello et al., 2022).

Our results suggest that the lack of significant findings may stem from

these methodological disparities, underscoring the need for

standardized approaches in microbiome research.

Another critical factor is the sequencing depth, which can

significantly impact alpha diversity indices. Indices like Shannon and

Simpson’s are relatively robust, but Chao1, which was frequently used
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in these studies, is more sensitive to sequencing depth variations. This

sensitivity might contribute to the observed variability, particularly

when comparing OTU and ASV methods (Chiarello et al., 2022;

Ramakodi, 2021). Additionally, the small sample sizes in most

studies (10 to 40 individuals per group) may not accurately capture

the true microbial diversity, introducing another layer of bias.

When evaluating taxonomic composition, our findings indicate

no consistent differences in gut microbiota between diabetic and

non-diabetic individuals, despite individual studies reporting

differential abundances. The choice of reference databases, such as

the outdated Greengenes (DeSantis et al., 2006; Bolyen et al., 2019)

or the more recent Silva (Quast et al., 2012) can introduce

significant variation in taxonomic identification, leading to

inconsistent results. This lack of standardization highlights a

major challenge in microbiome research, where the diversity of

reference databases and methodological approaches creates noise

and complicates the interpretation of findings.

The reported alterations in specific phyla, such as

Pseudomonadota and Bacteroidota, also exhibit significant

heterogeneity (I2 > 75%), suggesting that these findings are not

reproducible across studies. For example, Proteobacteria, although

frequently associated with diabetes, showed no consistent pattern of
FIGURE 5

Forest plot of abundance of measurements among associated phyla.
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alteration, likely due to methodological differences and unconsidered

confounding factors such as diet and population-specific

characteristics. Similarly, Bacteroidota, despite being the second

most commonly reported phylum, showed conflicting results across

studies, further emphasizing the need for standardized methodologies.

The limited statistical power of alpha diversity indices in

characterizing gut microbiota is another important consideration.

The inherent inter-individual variability in gut microbiome studies

necessitates larger sample sizes to achieve reliable assessments (He

et al., 2018; Kers and Saccenti, 2022; Rothschild et al., 2018). Most

studies analyzed here did not account for this variability adequately,

leading to potential biases. The lack of consistent exclusion criteria,

such as accounting for recent diarrhea or constipation, can further

exacerbate the heterogeneity observed in microbial diversity and

abundance (Vandeputte et al., 2016; Park et al., 2024).

Lifestyle factors, often overlooked in these studies, play a crucial

role in shaping the gut microbiome. Recent evidence suggests that

microbiota variations are more strongly associated with diet and

environmental factors than with disease status alone (He et al., 2018;

Trefflich et al., 2020; Gihawi et al., 2023). This perspective aligns with

our findings, which indicate that diabetes alone is insufficient to

explain the observed microbiota variation. Comprehensive analyses

that consider multiple variables are essential for a more accurate

understanding of microbiome dynamics.

Finally, the application of 16S rRNA sequencing to human

samples presents unique challenges, as even minor environmental

differences can lead to significant microbiome variations (Zuniga-

Chaves et al., 2023). Detailed patient metadata, including dietary

habits, stool consistency, and other health conditions, should be a

standard inclusion in microbiome studies to improve the

reproducibility and interpretability of results. Moreover,

integrating metabolic biomarkers with microbiota data may offer

more insights into diabetes-related variations than microbiota

analysis alone (Yan et al., 2023; Gihawi et al., 2023).

In conclusion, the reproducibility issues observed in gut microbiota

research related to Type 2 diabetes highlight the need for standardized

methodologies, comprehensive biological data, and careful

consideration of confounding factors. Addressing these challenges is

crucial for advancing our understanding of the complex interplay

between gut microbiota and metabolic diseases. Our analysis reveals

that the observed inconsistencies across studies on gut microbiota and

type 2 diabetes (T2D) are likely influenced by methodological

differences, particularly in taxonomic identification and reference

database selection. To enhance reproducibility in future research, it’s

crucial to standardize methodologies and incorporate comprehensive

patient metadata, including dietary habits and stool consistency.

Additionally, applying advanced statistical techniques, such as

bootstrapping, can simulate subpopulations and assess the

consistency of findings across these subgroups, offering a more

robust understanding of the microbiome’s role in T2D. By

addressing these variables and adopting more rigorous statistical

approaches, the field can move toward more reliable and

reproducible results in microbiome research.
Frontiers in Microbiomes 07
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