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Background: Interest in the intestinal microbiota has surged in recent years,

leading to the development of various microbiota tests utilizing stool analysis.

This study aimed to assess the clinical utility of the TestUrGut.

Results: The abundances of different microbial markers analyzed correlated with

various factors and symptoms. While no age differences were observed, an

increase in A. muciniphila abundance was noted in women compared to men.

Body mass index significantly influenced the abundance of A. muciniphila andM.

smithii. Additionally, variations in the abundances of A. muciniphila andM. smithii,

as well as a greater presence of Firmicutes or Bacteroidetes based on stool

patterns, were linked to diarrhea or constipation. The dysbiosis index was

validated, distinguishing between temporary and pathological dysbiosis.

Conclusions: This study revealed significant relationships between the intestinal

microbiota and digestive tract symptoms. Microbial markers have emerged as

robust indicators of the overall state of the intestinal microbiota, demonstrating

that variations are closely associated with patients’ clinical symptoms.
KEYWORDS
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1 Background

The human gut microbiota, a complex ecosystem of trillions of microorganisms, plays a

crucial role in maintaining human health. Emerging evidence has demonstrated the significance

of the relationship between the gut microbiota composition and various aspects of human

health, including immune function, metabolism, mental health, and gastrointestinal disorders.

Dysbiosis, characterized by an imbalance or perturbation in the gut microbial community, has

been associated with various abnormal conditions, such as inflammatory bowel disease (IBD),

irritable bowel syndrome (IBS), obesity, diabetes, and cardiovascular diseases, and is implicated
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in the development and progression of these conditions (Petersen and

Round, 2014; Wei et al., 2021).

Regulating the gut microbiome has emerged as a promising

therapeutic approach for managing chronic diseases that

significantly burden healthcare systems (Chen et al., 2019).

Consequently, there has been a surge of interest in developing

microbial stool tests that can accurately assess gut dysbiosis and

provide insights into its implications for human health.

In recent years, extensive research has been dedicated to

characterizing the diversity and functional capacity of the gut

microbiota, leading to the development of numerous microbial

stool tests for dysbiosis assessment (Eck et al., 2017; Huang and W,

2021). However, the clinical applicability of these tests hinges on

several factors, including the clinical and analytical validity of the

assay, the interpretation of results by clinicians, and the successful

translation of test outcomes into effective treatment strategies

(Chen et al., 2019). The challenges associated with applying

microbial stool tests in regular clinical practice have limited their

widespread use. Factors such as the substantial volume of data

generated from microbiome tests, the considerable interindividual

variation in gut microbial composition, and the lack of disease

condition-specific microbial profiles have hindered the seamless

integration of these tests into routine clinical workflows (Bäckhed

et al., 2012; Oh and Rezaie, 2022).

Efforts are being made to overcome these challenges by

improving the clinical validity of microbial stool tests,

standardizing interpretation guidelines, and establishing disease-

specific microbial signatures. These advancements aim to enhance

the practical applicability of gut microbiome information,

ultimately facilitating its effective utilization in clinical decision-

making and personalized treatment approaches (Tiffany and

Bäumler, 2019; Wei et al., 2021).

Nevertheless, the definition of a “healthy” gut microbiome

remains a challenge, rendering the accurate determination of

dysbiosis even more complex. The gut microbiota composition is

highly individualized and influenced by various factors, including

genetics, diet, lifestyle, and environmental exposures. Considerable

interindividual variation in microbial diversity and abundance

makes it difficult to establish a clear definition of a “normal” or

“healthy” gut microbiome (Bäckhed et al., 2012; Wilkins et al., 2019;

Oh and Rezaie, 2022). Consequently, identifying dysbiosis becomes

subjective since it represents a deviation from an undefined healthy

state (Tiffany and Bäumler, 2019).

A stool microbial test, TestUrGut®, has been developed to

address this challenge. This test consists of qPCR detection of a

comprehensive set of 15 microbial markers that represent key

functions of the gut microbiota, such as immune protection,

mucosal homeostasis, proteolysis, and proinflammatory activity.

These markers were selected based on their association with

dysbiosis-related disorders and their potential as diagnostic

indicators. Additionally, from the analysis of these markers, 2

indices were derived. One is the Bacillota/Bacteroidota index,

which is related to diet characteristics (De Filippo et al., 2010)

and body mass index (Magne et al., 2020). The other is an indicator

of dysbiosis, utilizing the relative abundance of two key microbial
Frontiers in Microbiomes 02
species, Faecalibacterium prausnitzii and Escherichia coli, known to

be associated with dysbiosis (Lopez-Siles et al., 2014).

This study aimed to evaluate the clinical utility and validate the

representativeness of selected microbial markers and the dysbiosis

index. Additionally, this study aimed to distinguish between

pathological and transient dysbiosis, contributing to our

understanding of the underlying basis of symptomatology related

to bowel patterns. Through the evaluation of the clinical utility of

the stool microbial test, we aimed to assess the validity of the

designed panel of markers, the robustness of the tolerance ranges

and the concordance with the dysbiosis index. The results of this

study provide valuable insights into the utility of the test in clinical

practice and its potential contribution to the understanding and

management of specific intestinal disorders.
2 Materials and methods

2.1 Study population

The sample size of the study (N) was 154. The patients who

were recruited previously underwent fecal microbiota tests after

being visited by a gastroenterologist due to the presence of digestive

discomfort at the NEUPSI-Clıńica Bofill Centre in Girona, Spain.

Of these 154 patients, 46 were men (29.87%), and 108 were women

(70.13%). Clinical data from the enrolled subjects at the time of the

examination and their final diagnosis were recorded. The diagnosis

was determined by the doctor following usual clinical guidelines

in practice.

The inclusion criteria were i) being at least 18 years old, ii)

having conducted a TestUrGut® analysis, and iii) having duly

signed informed consent. The exclusion criteria were i) having

received antibiotic treatment in the last month before collecting the

fecal sample, ii) having the feces sampled more than 48 hours before

arriving at laboratory facilities, and iii) being pregnant at the time

of inclusion.
2.2 DNA extraction and qPCR analysis from
stool samples

Total DNA was isolated from the fecal samples using the

NucleoSpin™ Soil DNA Kit (Macherey-Nagel GmbH & Co.,

Düren, Germany) according to the manufacturer’s instructions,

and the DNA was eluted in a 100 mL final volume.

The abundances of 15 microbial markers representing the main

phyla, groups, and genera present in the gut microbiota were

analyzed via real-time quantitative polymerase chain reaction

(qPCR): Akkermansia muciniphila (AKK), Bacteroidota (BAC),

Candida albicans (CAN), Clostridium cluster I (CLO), Escherichia

coli (ECO), Enterococcus sp. (ENT), Faecalibacterium prausnitzii

(FAE), Bacillota (formerly Firmicutes, FIR), Gammaproteobacteria

(GAM), Lactobacillus sp. (LAC), Methanobrevibacter smithii

(MSM), Roseburia sp. (ROS), Ruminococcus spp. (RUM),

Clostridium cluster XIV (XIV), and Eubacteria (EUB).
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The quantification of AKK, BAC, CAN, CLO, ENT, GAM, FIR,

LAC, MSM, ROS, RUM, XIV, and EUB was conducted by

preparing single reactions for each biomarker utilizing the

GoTaq® qPCR Bryt Master Mix (Promega, Madison, USA). FAE

and ECO were quantified in single reactions for each target using

the GoTaq® qPCR Probe Master Mix (Promega, Madison, USA).

Each reaction consisted of a final volume of 10 µl containing the

master mix and between 12 and 20 ng of genomic DNA template.

The 16S and 18S rDNA-targeting primers and probes used in this

study, along with their respective concentrations, are listed in

Table 1. These primers and probes were procured from Macrogen

(Seoul, South Korea). Accuracy was ensured by running samples in

duplicate on the same plate alongside a non-template control

reaction and a standard curve, which were included in each qPCR

run. The mean of duplicate quantifications was used for data

analysis. qPCRs were performed using an AriaDx thermocycler
Frontiers in Microbiomes 03
(Agilent Technologies, Santa Clara, CA, USA) under the quality

standards of ISO13485.

The thermal profiles varied based on the specific biomarker

being analyzed (Table 2). For the probes, a melting curve step was

included at the end of each qPCR to verify the expected amplicon

size and monitor dimer formation.

Once the qPCR results in Ct (threshold cycle) units for each

marker were obtained, the data were transformed into relative and

total abundance values for statistical analysis.

The total abundance values (A, gene copies per gram of stool)

for each marker were calculated using the following equation based

on the standard curve included in each qPCR run:

A =
(
Ve

Vc
) · 10(Ct−b)=m

P · Cɡ
TABLE 1 Forward (F) and reverse (R) primers and probes (PR) used in this work.

Marker acronym Primers/ Probe Sequence 5’→3’ Concentration
(nmol/L)

Reference

AKK F
R

CAGCACGTGAAGGTGGGGAC
CCTTGCGGTTGGCTTCAGAT

250
(Collado et al., 2007)

BAC F
R

CCGGAWTYATTGGGTTTAAAGGG
GGTAAGTTCCTGCGTA

100
(Matsuki et al., 2004)

CAN F
R

CTGATTTATGGGTTCCTGAT
GTTGATCAATTGAAGTAGAATC

200
(Bautista-mun et al., 2003)

CLO F
R

CTCAACTTGGGTGCTGCATTT
ATTGTAGTACGTGTGTAGCCC

300
(Rekha et al., 2006)

ECO F
R
PR

CATGCCGCGTGTATGAAGAA
CGGGTAACGTCAATGAGCAAA

FAM-TATTAACTTTACTCCCTTCCTCCCCGCTGAA-BHQ1

300 (Lopez-Siles et al., 2014)

100

ENT F
R

TACTGACAAACCATTCATGATG
AACTTCGTCACCAACGCGAAC

200
(Ke et al., 1999)

FAE F
R
PR

TGTAAACTCCTGTTGTTGAGGAAGATAA
GCGCTCCCTTTACACCCA

FAM-CAAGGAAGTGACGGCTAACTACGTGCCAG-BHQ1

300 (Lopez-Siles et al., 2014)

250

FIR F
R

GGCAGCAGTRGGGAATCTTC
ACACYTAGYACTCATCGTTT

100
(Mühling et al., 2008)

GAM F
R

TCGTCAGCTCGTGTYGTGA
CGTAAGGGC CATGATG

100
(Mühling et al., 2008)

LAC F
R

AGCAGTAGGGAATCTTCCA
CGCCACTGGTGTTCYTCCATATA

200
(Payne et al., 2012)

MSM F
R

ACGCAGCTTAAACCACAGTC
AAAGACATTGACCCRCGCAT

150
(Ramió-Pujol et al., 2020)

ROS F
R

TACTGCATTGGAAACTGTCG
CGGCACCGAAGAGCAAT

125
(Larsen et al., 2010)

RUM F
R

GGCGGCYTRCTGGGCTTT
CCAGGTGGATWACTTATTGTGTTAA

250
(Ramirez-farias
et al., 2009)

XIV F
R

CGGTACCTGACTAAGAAGC
AGTTTYATTCTTGCGAACG

250
(Ramirez-farias
et al., 2009)

EUB F
R

ACTCCTACGGGAGGCAGCAGT
GTATTACCGCGGCTGCTGGCAC

200
(Lopez-Siles et al., 2014)
All probes were 5’-labelled with FAM (6-carboxyfluorescein) as the reporter dye except for PHGII, in which hexachlorofluorescein (HEX) was used. BHQ1 was used as a quencher dye at the 3’-
end for all probes. The base R can be adenine (A) or guanine (G); W can be A or thymidine (T); and Y can be cytosine (C) or T.
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where:

Ct is the threshold cycle, b is the y-axis intercept on the standard

curve, m is the slope of the standard curve, Ve is the volume of

elution of the DNA extract (ml), Vc is the volume of the DNA

extract loaded in the PCR (ml), P is the weight of the stool analytical

portion (g), and Cg is the number of copies of the 16S or 18S rRNA

gene each indicator contains in its genome (Table 3).

The number of copies of the phyla Bacteroidoita and Bacillota,

as well as the total microbial load (Eubacteria), or markers that

include different species, such as Gammaproteobacteria or

Clostridium, was calculated using an average of the number of

copies of the species that form these groups.

Furthermore, each microbial group’s relative abundance was

calculated by normalizing the data to the total microbial

load (Eubacteria) and subsequently applying a logarithmic

transformation to improve data distribution and model fitting.

Normalization to total Eubacteria was performed to account for

methodological variability related to differences in microbial DNA

yield due to variable water content in fecal samples. Despite using a
Frontiers in Microbiomes 04
fixed sample weight (40 mg), such variability can affect the total

microbial load, and normalization ensures more consistent and

comparable results across samples.
2.3 Definition of tolerance values

To determine the tolerance range values indicative of a healthy

population, as well as those at the borderline and beyond the

accepted norms, we conducted an initial analysis on a cohort of

healthy individuals. This analysis was subsequently validated in a

separate group comprising 24 healthy subjects and 6 patients with

digestive diseases, including ulcerative colitis, Crohn’s disease, and

irritable bowel syndrome.

Within the healthy cohort, 14 samples were from female

subjects, and the age range spanned from 21 to 69 years, with a

mean age of 41 years.

The tolerance values were established by calculating the relative

abundance of each microbial marker using logarithmic

transformations. Specifically, the abundance of each marker was

normalized to the abundance of Eubacteria. The mean and standard

deviation (SD) of these ratios were then calculated, with the SD

either added or subtracted from the mean, depending on the nature

of the microbial marker, as a borderline of the accepted norms.

SD was added to markers considered beneficial or protective —

AKK, BAC, FAE, FIR, LAC, ROS, RUM, and EUB. Conversely, the

SD was subtracted from markers where abundances above

established values could be harmful—CAN, ECO, ENT, GAM,

and MSM. For the markers CLO and XIV, recognizing that

having too little or too much can be detrimental, the SD was both

added and subtracted from the mean, resulting in two tolerance

limit values above and below the average.

The resulting tolerance values demonstrating limits beyond the

accepted norms were obtained by adding or subtracting a unit based

on whether the microbial marker was beneficial to the borderline

limit of the accepted norms.

Additionally, the relationship between the abundance of

Bacillota (FIR) and Bacteroidota (BAC) was calculated by

subtracting the logarithm of the FIR from the BAC. No tolerance

values were assigned to this index, as its results are indicative of the

type of diet rather than dysbiosis.

The dysbiosis index was calculated by logarithmically

subtracting the abundance of Faecalibacterium prausnitzii from
TABLE 3 Number of copies of 16S and 18S (Cg) for each marker.

Markers
acronym

Number of
copies of 16S
and 18S (Cg)

References

CAN 1 (Pendrak and
Roberts, 2011)

MSM 2 (Klappenbach et al., 2001)

AKK 3 (Goux et al., 2018)

ENT 4 (Klappenbach et al., 2001)

BAC, LAC, FIR, ROS,
RUM, EUB

5 (Klappenbach et al., 2001;
Vásquez et al., 2005;

Větrovský and
Baldrian, 2013)

GAM 5.5 (Větrovský and
Baldrian, 2013)

FAE 6 (Klappenbach et al., 2001)

ECO 7 (Větrovský and Baldrian,
2013; Zemb et al., 2020)

CLO, XIV 8 (Větrovský and
Baldrian, 2013)
TABLE 2 qPCR conditions for each microbial marker.

Microbial markers
Total
cycles

Denaturing
Annealing

and extension
Melting curve

Time (min:s) Ta (°C) Time (min:s) Ta (°C) Time (min:s) Ta (°C)

FAE and ECO 40
02:00
10:00

50
95

00:15
01:00

95
60

NA NA

AKK, BAC, CAN, CLO, ENT, FIR, GAM, LAC,
MSM, ROS, RUM, XIV, and EUB

40 10:00 95
00:15
01:00

95
60

01:00
00:30
00:30

95
55
95
fron
NA, not of application.
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the abundance of Escherichia coli, following the approach proposed

by Lopez-Siles et al. (Lopez-Siles et al., 2014). This index was

originally designed to reflect a microbial imbalance commonly

observed in intestinal inflammatory conditions, based on the

inverse behavior of these two taxa, representing respectively anti-

inflammatory and potentially pro-inflammatory profiles. While

other microbial groups, such as Enterococcus, may also be

relevant in dysbiotic states, this index was selected for its proven

clinical relevance and reproducibility in previous studies.

The average dysbiosis index among healthy controls defined the

reference range. Thresholds were then established based on

standard deviations from this mean, allowing the classification of

individuals into healthy, mild dysbiosis, or severe dysbiosis

categories. The present study applies this index to fecal samples,

adapting the original calculation—initially based on human cell

normalization—to normalization by sample weight, following the

approach described in Cusachs (Cusachs, 2021).
2.4 Statistical analysis

2.4.1 Data preprocessing
The dataset included several variables, some of which had missing

values. To address this, multiple imputation by chained equations

(MICE) was applied to estimate missing values based on the available

data using the “mice” package in R (Groothuis-Oudshoorn and van,

2011) In this study, five imputations were generated (m = 5), the

maximum number of iterations was set to 50 (maxit = 50), and the

imputation method was random forest (meth = “rf”). Missing values

were limited to four microbial markers (Bacteroidota, Bacillota,

Gammaproteobacteria, and Methanobrevibacter smithii) in 22 out of

154 samples. These missing values were a consequence of an early

change in primer design affecting only a subset of samples. To ensure

comparability across the dataset, these values were imputed using the

MICE procedure. Consequently, the FIR/BAC balance index—which

incorporates these markers—was also imputed in these same 22

samples. The imputed values generated by the MICE algorithm were

subsequently used for further analysis.

2.4.2 Statistical approach
For the analysis of the data, a combination of univariate analysis

of variance (ANOVA), multivariate analysis of variance

(MANOVA), and regression models was used. MANOVA was

first used to detect global differences across the full panel of

microbial markers in relation to clinical and demographic

variables. After MANOVA analysis, follow-up ANOVAs were

conducted to identify specific microbial markers contributing to

those differences. Markers found to be significant in the univariate

analysis were then included in regression models to quantify their

association with outcomes of interest. Statistical power calculations

were performed using the R package “pwr” to assess whether the

sample size was adequate to detect meaningful differences

(Champely, 2020). For the group comparisons reported, power

values ranged from 96.5% to 100%, indicating that the study was

well-powered. Given the limited number of pre-specified
Frontiers in Microbiomes 05
comparisons and the consistently high statistical power, no

adjustment for multiple comparisons (e.g., Bonferroni correction)

was applied.

Regression models are mathematical tools used to establish the

relationship between a response variable (Y) and explanatory

variables (X). Our study aimed to examine the relationships

between the abundance of microbial markers and the occurrence

of disease and symptoms.

To accommodate the diverse nature of our response variables,

which could be continuous or categorical, generalized linear models

(glm) were applied, using a binomial link for binary outcomes

(equivalent to logistic regressions). These models are suitable for

data with nonnormally distributed errors, which aligns well with the

characteristics of our dataset.

The effect size was expressed as an odds ratio (OR), indicating

the change in odds of the outcome for each unit increase in the

explanatory variable. A value of OR equal to 1 signifies no

association between the variables.

All analyses were performed using version 4.1.3 of the R

statistical software (R Core Team, 2013).
3 Results

3.1 Sex

The MANOVA conducted to investigate the panel’s microbial

abundance revealed no statistically significant differences between

the sexes (Figure 1). However, follow-up ANOVA indicated a

significant difference in the abundance of A. muciniphila between

sexes (p value of 0.0481). This result was further validated using a

glm regression model (p value of 0.0104). The OR computed for the

A. muciniphila was 2.54, indicating that women exhibit a notably

greater abundance of this marker than men.
3.2 Age

Patients were categorized into three age groups: young

individuals (aged 18 to 28, n=12), adults (aged 29 to 59, n=89),

and older individuals (aged 60 and above, n=27), following

common epidemiological classifications (e.g., WHO, Eurostat)

and previous microbiota studies that report age-related differences

in gut microbial composition (Odamaki et al., 2016).

In this analysis, neither the MANOVA, ANOVA, nor the glm

model exhibited statistically significant differences across all

microbial markers studied (Figure 2). These findings collectively

indicate that age does not affect the abundance of any specific

microbial marker analyzed.
3.3 Body mass index

Body mass index (BMI) data were available for 65 patients, and

imputation was not conducted due to a considerable number of
frontiersin.org
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missing values. Based on their BMI values, patients were categorized

into four groups: underweight (BMI< 18.5, n=4), normal weight

(BMI 18.5 to 24.9, n=43), overweight (BMI 25 to 29.9, n=14), and

obese (BMI ≥ 30, n=4).

A MANOVA suggested an overall effect of BMI on microbial

composition. To explore this further, ANOVA and regression

analyses were conducted. M. smithii emerged as the microbial

marker most influenced by BMI, showing a significant association
Frontiers in Microbiomes 06
in the glm model (p value = 0.0147), despite not achieving

significance in the ANOVA (p value of 0.1643). Conversely, A.

muciniphila, a marker extensively linked to BMI in the literature,

did not exhibit a significant p value in the glm model; however, it

yielded a noteworthy result in the ANOVA (p value of 0.0346).

Figure 3 illustrates a significant decrease in the abundance of A.

muciniphila andM. smithii in low-weight patients, whereas the first

displayed increased abundance in those classified as obese.
FIGURE 1

Log-ratio differences in geometric mean abundance (Y axis) of each microbial marker according to sex. Y-axis values represent the natural logarithm
of the ratio between groups. A value of 0.05 corresponds to an approximately 5.1% increase in geometric mean abundance.
FIGURE 2

Log-ratio differences in geometric mean abundance (Y axis) of each microbial marker according to age group (young, adult, or older). Y-axis values
represent log-ratios between group means.
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3.4 Intestinal microbiome profile and
digestive symptoms

Among the patients included in this study, 97% were diagnosed

with IBS according to the ROME IV criteria, limiting the scope for

analyzing the relationship between marker abundance and other

diseases, such as mental disorders, neurodegenerative disorders,

coeliac disease, and intolerances, among others. As a result, our

analysis focused solely on the behavior of IBS.

3.4.1 IBS behavior
Behavior data were available for 62 of the 128 patients who were

diagnosed with IBS. Among them, 30 patients exhibited a diarrheal

pattern (48.4%), 19 had constipation (30.6%), and 13 (21.0%)

presented mixed behavior.

A MANOVA indicated significant differences in microbial

composition between the subtypes (Figure 4). Follow-up ANOVA

revealed significant differences for A. muciniphila andM. smithii (p

values of 0.009 and 0.004, respectively). These associations were

further explored and confirmed using a glm model.

Specifically, when examining the glm model for diarrheal

behavior, A. muciniphila displayed a significant association (p

value = 0.003) with an OR of 0.220, indicating that the

abundance of A. muciniphila decreases by a factor of 4.54 (1/0.22

= 4.54) with the presence of diarrhea. Although not statistically

significant, a trend was observed (p value of 0.093) for M. smithii,

with an OR of 0.405, suggesting a 2.5-fold decrease in its abundance

in the presence of diarrhea.

Conversely, in the analysis of constipation behavior, both A.

muciniphila and M. smithii exhibited significant associations in the

glm model (p values of 0.011 and 0.001, respectively), with

corresponding ORs of 3.932 and 5.659, respectively. These findings
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indicate that the abundance of these markers increases by

approximately 4.00- and 5.50-fold, respectively, in the presence

of constipation.

For patients displaying a mixed behavior of diarrhea and

constipation, the glm model revealed a significant association

only for M. smithii (p value of 0.049), with an OR of 0.306,

indicating a decrease in its abundance by a factor of 3.30.
3.5 FIR/BAC index

The FIR/BAC index is designated predominantly Bacillota

(formerly Firmicutes, FIR) when the index value is positive (greater

than zero) and predominantly Bacteroidota (formerly Bacteroidetes,

BAC) when the value is negative (less than zero). Significant results

were observed in the MANOVA when comparing the abundance of

microbial markers based on the predominance of Bacillota or

Bacteroidota (p value< 0.001, as depicted in Figure 5).

In the MANOVA graph, notable differences in the abundance

of A. muciniphila and M. smithii were evident, as confirmed by

ANOVA (p values< 0.001 in both cases). A regression model was

employed to assess and quantify this effect, yielding significant

values for both markers. The OR indicated a substantial 2.72-fold

increase in the abundance of M. smithii and a 5.08-fold increase in

the abundance of A. muciniphila when there was a greater

proportion of Bacillota.

These findings are closely parallel to those observed in the

context of IBS behavior. Consequently, a potential correlation was

investigated using a chi-square test, which yielded a statistically

significant result (p value of 0.008). Figure 6 displays a mosaic plot

illustrating the relationship between IBS subtypes and microbial

predominance. Patients with diarrhea exhibit a greater proportion
FIGURE 3

Log-ratio differences in geometric mean abundance (Y axis) of each microbial marker according to body mass index categories: underweight,
normal weight, overweight, and obese. Y-axis values reflect log-ratio comparisons.
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of Bacteroidota, whereas those with constipation showed a greater

prevalence of Bacillota. Patients with mixed IBS behavior exhibit

patterns akin to those with diarrhea, with a greater abundance

of Bacteroidota.
3.6 Dysbiosis index

The dysbiosis index was categorized into three groups (as

explained in section 2.3 Definition of tolerance values): “healthy”
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when the value of the index was greater than 0.66 (n=109)

represented values within the healthy range; “mild” values

between 0.66 and -0.34 (n=17) indicated a borderline limit

slightly decreased index; and “severe” (values< -0.34) (n=5)

denoted values well below the healthy range. Significant

differences were observed in the MANOVA when comparing the

abundance of microbial markers to the dysbiosis index

(p value<0.001).

Our findings show that a healthy dysbiosis index corresponds to

minimal variation in the microbial marker panel (Figure 7).
FIGURE 5

Log-ratio differences in geometric mean abundance (Y axis) of each microbial marker according to Bacillota or Bacteroidota predominance. Y-axis
values represent log-ratio comparisons between microbial profiles.
FIGURE 4

Log-ratio differences in geometric mean abundance (Y axis) of each microbial marker according to irritable bowel syndrome behavior (diarrhea,
constipation, and mixed). Y-axis values indicate log-ratios between subgroup means.
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Although Figure 7 presents transformed data for statistical analysis

(via ilr transformation), the dysbiosis categories were defined based

on non-transformed index values, as detailed in Section 2.3, based

on internal validation within the study population. In cases of mild

dysbiosis, the variation increases, particularly with a notable

increase in some microbial markers. Conversely, severe dysbiosis

is characterized by evident imbalances, displaying increased and

decreased abundances of microbial markers, notably including
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decreases in beneficial microbial markers and increases in

potential pathogenic species.

Further analysis using ANOVA revealed significant differences

in the abundances of specific markers, namely, Clostridium cluster I

(p value 0.007), and Gammaproteobacteria (p value<0.001). As

expected, E. coli and F. prausnitzii showed significant differences (p

value<0.001 in both cases) across dysbiosis categories, given that

these taxa were used in defining the dysbiosis index.
FIGURE 7

Log-ratio differences in geometric mean abundance (Y axis) of each microbial marker according to dysbiosis category (healthy, mild dysbiosis, or
severe dysbiosis). Y-axis values correspond to log-ratios between group means.
FIGURE 6

Mosaic plot illustrating the relationship between IBS subtypes (diarrhea, constipation, mixed) and microbial predominance (Bacillota vs. Bacteroidota).
The width of each column reflects the proportion of individuals within each IBS subtype, and the height of the colored segments represents the
relative frequency of each microbial group within that subtype. Yellow segments correspond to patients with constipation, while blue tones
represent patients with diarrhea and mixed behavior. A significant association was observed (chi-square test, p = 0.008).
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4 Discussion

In this study, we aimed to evaluate the clinical utility of the

novel stool microbial test TestUrGut®, which incorporates a set of

15 microbial markers representing critical functions of the gut

microbiota. Additionally, two indices were derived: a dysbiosis

index derived from the abundance of Faecalibacterium prausnitzii

and Escherichia coli, which was introduced as a quantitative

measure to assess microbial imbalances in the gut, and the

Firmicutes/Bacteroidetes index, which is related to the type of diet.

Our cohort comprised 154 patients who sought medical

consultation for digestive discomfort and who underwent the

fecal microbiota test TestUrGut®. We categorized the participants

based on sex, age, and BMI to explore potential associations with

microbial marker abundance and gut dysbiosis.

Significant associations were observed between sex and the A.

muciniphila marker, with women displaying notably greater

abundance than men. A. muciniphila is a gram-negative bacterium

within the Verrucomicrobia phylum and is characterized as a strict

anaerobe capable of producing mucin-degrading enzymes. This

bacterium utilizes mucins as a nitrogen and carbon source within

the mucus layer of the epithelium. During mucin fermentation, A.

muciniphila decomposes these substances into acetic and propionic

acids and releases sulfate (Xu et al., 2020). The enrichment degree of

A. muciniphila has been considered an indicator of body metabolic

status, encompassing parameters such as glucose homeostasis, serum

lipids, and adipocyte distribution in humans (Zhang et al., 2019).

Given that human sex exhibits differences in fat distribution, often

linked to variations in sex hormone levels (Haro et al., 2016; Yoon

and Kim, 2021), it is plausible that the sex-related discrepancies

observed in this study concerning A. muciniphila abundance may be

influenced by how men and women differentially store excess energy

and variations in fat body percentages. In addition to fat distribution

and sex hormones, other mechanisms such as sex-specific immune

responses and host genetic factors have also been proposed to

influence A. muciniphila abundance and colonization dynamics

(Org et al., 2016). These factors may contribute to the observed

differences between sexes and warrant further investigation.

In contrast, age did not appear to influence the abundance of

any specific microbial marker in our study. Although some previous

research has similarly reported minimal age-related effects on gut

microbiota composition (Rodrıǵuez et al., 2015; Garcıá-Mantrana

et al., 2016), other studies have described significant age-associated

shifts across the lifespan (Odamaki et al., 2016; Zongxin Ling and

Shaochang, 2022). This discrepancy may be due to differences in

study design and population characteristics. Our cohort consisted

entirely of symptomatic individuals seeking medical consultation, a

clinical context that may override more subtle age-related microbial

variations typically observed in healthy populations. Furthermore,

while the youngest group was relatively small (n = 12), power

analysis confirmed that statistical power was adequate (96.5%),

supporting the validity of the observed uniformity in microbial

marker abundance across age categories.

Regarding BMI, M. smithii showed the most significant

association with weight status, contradicting previous studies that
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reported an increase inM. smithii in patients with anorexia nervosa

(Breton et al., 2019; Camara et al., 2021). One possible explanation

for this discrepancy could be the difference in study populations and

clinical context. Unlike those previous studies, which focused

specifically on diagnosed anorexia, our cohort included

individuals with varying digestive symptoms and undetermined

nutritional or metabolic status. Additionally, potential confounding

factors such as diet composition, metabolic disorders (e.g., insulin

resistance), or medication use were not accounted for in this study

and may have influencedM. smithii abundance (Samuel et al., 2007;

Malat et al., 2024). These elements should be considered in future

research to better understand the complex interactions between

host metabolism, microbiota, and BMI.

Our analysis of patients diagnosed with IBS revealed significant

associations between microbial markers and specific bowel behaviors.

Specifically, A. muciniphila decreased in abundance in individuals

with diarrheal behavior, whereas both A. muciniphila andM. smithii

increased in abundance in the presence of constipation. These

findings align with prior research demonstrating that methane gas

production byM. smithii is correlated with slowing intestinal transit,

consequently leading to constipation (Kim et al., 2012; Ghoshal et al.,

2016). For A. muciniphila, Gobert et al. were the first to observe an

increased abundance of this marker in patients with IBS and

constipation (Gobert et al., 2016). However, the precise relationship

between A. muciniphila and chronic constipation remains uncertain

(Yarullina et al., 2020). Some studies have proposed that A.

muciniphila induces a decrease in fecal water content through the

degradation of intestinal mucin, resulting in impaired intestinal

mucosal barrier function (Cao et al., 2017). Conversely, others have

reported that an increase in A. muciniphila may be associated with

stool firmness, making it more prevalent in individuals with slow

transit (Vandeputte et al., 2016).

The analysis of the FIR/BAC index, distinguishing patients with

a greater proportion of Bacillota or Bacteroidota, revealed

associations with M. smithii and A. muciniphila that closely

mirrored the behavioral patterns observed in the analysis of IBS

patients. A greater proportion of Bacteroidota was significantly

correlated with a diarrheal or mixed pattern, while a greater

proportion of Bacillota was associated with constipation. These

findings align with previous research, such as Zhuang’s study in

2018 (Zhuang et al., 2018), which reported an increased abundance

of Bacteroidota in patients with diarrhea compared to controls, and

other studies linked a greater abundance of Bacillota to patients

with constipation (Zhu et al., 2014; Youmans et al., 2015).

The dysbiosis index demonstrated its efficacy as a reliable

representative of the general dysbiotic state. Furthermore, this study

successfully distinguished between varying degrees of dysbiosis severity.

Our findings revealed that severe dysbiosis exhibits more pronounced

variations in abundance than mild dysbiosis within the specified

tolerance values. The congruence between these variations allows for

meaningful clinical inferences to be drawn. Specifically, mild dysbiosis

is characterized by an increased abundance of potentially pathogenic

markers, while severe dysbiosis is associated with decreases in the

abundance of beneficial markers together with an increased abundance

of potentially pathogenic markers.
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Nevertheless, it remains unclear whether the observed alterations

in microbial markers are a cause, or a consequence of the symptoms

reported. Dysbiosis may result from underlying pathological

conditions but may also be modulated by external factors such as

dietary patterns, medication use (e.g., antibiotics, proton pump

inhibitors), or host physiology (Hooks and O’Malley, 2017; Zmora

et al., 2019). Future longitudinal or interventional studies will be

essential to better understand the directionality of these associations

and to disentangle causal mechanisms from correlation.

This study has several limitations that should be acknowledged.

First and foremost, further exploration and validation of these results

are imperative to enhance the robustness and generalizability of the

findings, primarily by including a larger and more demographically

balanced sample size. Although 154 individuals were included, the

sample was predominantly female (70.13%), which may limit the

extrapolation of results to the general population. Additionally, the

vast majority of participants were white, which did not allow for

analyses comparing different ethnic groups or for assessing whether

microbiota-based differences may vary across ethnicities. As such, the

generalizability of our findings to more diverse populations remains

limited. Furthermore, various lifestyle and clinical factors known to

influence gut microbiota were not controlled for in this study. These

include tobacco use, exercise habits, and particularly dietary patterns,

medication intake (such as antibiotics, proton pump inhibitors, or

laxatives), and presence of metabolic disorders (e.g., insulin

resistance). These variables may act as potential confounders in the

observed associations and should be addressed in future studies to

strengthen causal inference. Digestive symptoms are often

interconnected with mental health conditions, such as stress,

anxiety, or depression, through the intricate gut–brain axis.

Therefore, it would be advantageous to investigate and analyze the

potential effects of these psychological factors on gut dysbiosis and

symptomatology. By addressing these limitations and incorporating

comprehensive analyses of relevant factors, future studies can provide

a more thorough understanding of the complex relationships

between the gut microbiota, external influences, and human health.

This understanding, in turn, may contribute to developing more

effective and tailored therapeutic approaches for individuals affected

by dysbiosis-related disorders.

In conclusion, our study yields valuable insights into the

interplay between gut microbial markers, bowel behaviors, and

the dysbiosis and FIR/BAC indices. In this study, our analyses

elucidate the utility and representativeness of the selected microbial

markers within the TestUrGut® stool microbial test. These markers

emerge as robust indicators of the overall state of the microbiota,

demonstrating varying abundances intricately linked to the clinical

symptomatology observed in patients.

Furthermore, our validation process extends beyond statistical

analyses to encompass the translation of results into clinically

relevant conclusions, particularly regarding symptomatology and

patterns observed in IBS patients. The results of the dysbiosis index

reinforce the robustness of our findings with the identification of

alterations in the index, along with its correlation to the maximum

deviations from the reference values in the panel. This indicates that

both the tolerance levels and the index exhibit consistency and
Frontiers in Microbiomes 11
clinical utility, thereby providing precise and reliable support for the

interpretation and decision-making process. The TestUrGut® stool

microbial test is a promising diagnostic tool for discerning gut

dysbiosis-related conditions, as the dysbiosis index has been shown

to be a good indicator of the status of the overall microbiota. The

potential of TestUrGut® extends beyond digestive diseases,

encompassing a broad range of conditions previously associated

with dysbiosis. Implementing the TestUrGut® test offers a potential

avenue for quantifying the intestinal microbiota, advancing towards

more targeted and effective interventions. However, it is crucial to

further validate and refine the test through additional research,

encompassing diverse cohorts and larger sample sizes, to establish

its clinical validity and broader applicability.
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