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Farm conditions shape microbial
communities and their
association with methane
intensity in dairy cattle: insights
from the rumen microbiome at
the community level
Simon Roques1†‡, Lisanne Koning1‡, Alex Bossers2,3,
Sanne van Gastelen1, Dirkjan Schokker2, Edoardo Zaccaria1,
Léon Šebek1 and Soumya K. Kar1*

1Department of Animal Nutrition, Wageningen Livestock Research, Wageningen, Netherlands,
2Department of Epidemiology, Bioinformatics, Animal Models & Vaccine Development, Wageningen
Bioveterinary Research, Lelystad, Netherlands, 3Institute for Risk Assessment Sciences (IRAS), Utrecht
University, Utrecht, Netherlands
Rumen microbial communities are known to drive methane (CH4) production,

but their dynamics in variable “real-world” farming environments are less

understood. This research aims to identify specific microbial taxa linked to CH4

emission in commercial dairy farms by employing 16S rRNA gene sequencing,

thereby providing a more ecologically relevant understanding of CH4 production

in real-world settings.Rumen fluid samples were collected from 212 cows across

seventeen Dutch dairy farms. Methane production was measured from these

dairy cows using the GreenFeed system and expressed as CH4 intensity (g fat-

and protein-corrected milk yield−1). Rumen microbiota was analyzed using 16S

rRNA gene amplicon sequencing. Analysis was performed to assess association

betweenmicrobial taxa and CH4 intensity, using data from individual cattle across

the dairy farm. We observed that diet and lactation stage influenced CH4

intensity, consistent with previous studies. Results showed higher CH4 intensity

in cows during late lactation, and feeding type, particularly fresh grass intake,

strongly influenced rumen microbiota. However, after classifying low and high

CH4 emitting cows, only limited differences in microbiota composition could be

measured. Few taxa, like Lachnospiraceae, were common across both groups,

while Ruminoccocaceae and Rikenellaceaeweremore abundant in low emitters,

and Oscillospiraceae in high emitters. Methanobrevibacter differentiated CH4

emission groups, but archaeal methanogen abundance may not accurately

reflect CH4 variation due to methodological limitations, including reliance on

relative abundance, limited taxonomic resolution, and primer bias. Using a

bacterial-biased 16S rRNA approach, we observed a limited number of

consistent bacterial taxa associated with CH4 intensity highlights the

challenges of studying dairy farms under practical conditions, where variability

in diet, genetics, and management practices complicates the identification of

specific rumen microbes associated with CH4 emission. Even with control over

key variables, the inherent variability of on-farm conditions impeded the
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detection of stable microbial patterns. In conclusion, our study clearly indicates

that understanding CH4 emissions from dairy cattle in real-world settings

fundamentally requires a broader ecological perspective where rumen

microbes are recognized as key determinants influencing microbiota signals

within multi-factorial farm settings.
KEYWORDS
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1 Introduction

The rumen microbiome, a complex consortium of

microorganisms, is integral to CH4 production. Enteric CH4 is

produced during the fermentation of feed carbohydrates by

microbiota in the rumen. Archaea play a major role in the

production of enteric CH4 as they are the only microorganism

capable of producing CH4 in the rumen (Morgavi et al., 2010).

Within archaea, CH4 is produced through the reduction of CO2 and

methanol, as well as a few minor substrates, with hydrogen (H2)

serving as the primary electron donor (Kurth et al., 2020; Tapio

et al., 2017). However, CH4 production also depends on other

microbes, as the necessary substrates are produced by other

microbes within the rumen (Mizrahi and Jami, 2018). Bacteria,

for instance, produce H2 (e.g. Ruminococcaceae, Eubacterium spp

and numerous Firmicutes) (Tapio et al., 2017) or even methanol

during pectin fermentation (some Lachnospiraceae) (Li, 2021). On

the opposite, some microbes consume H2 (e.g., Fibrobacter

succinogenes) and compete with methanogenic archaea for

H2; but to date, the uptake of H2 by methanogen is still

thermodynamically more favorable (Ungerfeld, 2020).

Overall, the association between the rumen microbiome and

CH4 emission is a key area of research to identify the

microorganisms associated with enteric CH4 emission. The

rumen microbiota is a dynamic community shaped by ecological

interactions within the rumen and influenced by a range of host-

related and external factors. For instance, the rumen microbiota and

its association with CH4 production is shaped by factors like diet

(Huws et al., 2018), genotype (Difford et al., 2018) and lactation

stage of the animals (Bainbridge et al., 2016). Traditionally,

controlled experimental setups are used to minimize the variation

induced by factors of less interests (e.g., cows fed the same diet to

identify microbial biomarkers related to CH4 emission in specific

breeds; Ramayo-Caldas et al., 2020). However, these controlled

environments do not fully reflect the complexity of “real-world-” or

“commercial-” or “practical-” farming conditions.

In real-world conditions, ruminants are exposed to highly

variable environments. For instance, diets can vary significantly

between farms, even within the same region, with differences in

quality and the proportions of roughages (such as fresh grass, grass

silage, and corn silage), concentrates, and by-products. Some farms
02
allow their cows to graze, with grasslands varying not only between

farms but also throughout the year due to differences in botanical

composition (Totty et al., 2013), weather conditions, and

fertilization practices (Rinne et al., 1997). Furthermore, animal

characteristics on commercial farms are not standardized, unlike

in controlled experimental settings where these factors are carefully

managed to minimize variability.

Cows on commercial (practical) farms display a much broader

range of variation in genetics, parity, and lactation stage, which

could potentially lead to different outcomes than those observed in

controlled experiments. Large-scale studies analyzing rumen

microbiota across different farms rarely focus on the association

with CH4 emission (Xue et al., 2018). However, studies that do

examine both microbiota and CH4 emission, provide valuable

insights into the relation between rumen microbes and CH4

emission under real-world-farming conditions (Difford et al.,

2018). The lessons and insights gained from such studies are

increasingly important for the future, especially with the

emergence and adoption of research concepts like the “living

labs” approach for dairy cattle (Karlsson et al., 2024; Pasinato

et al., 2023). Therefore, this study aimed to identify specific

microbial taxa associated to CH4 emission in dairy cows raised

under real-world farming conditions.
2 Materials and methods

2.1 Animals, housing, and diet

The study was conducted from September 2018 to March 2020

on 17 dairy farms in the Netherlands. In this time frame, farms were

visited one to three times (Supplementary Table 1), each time for a

period of at least four weeks; a minimum of two weeks of adaptation

followed by two weeks of measurement period. The farms were

selected from the project “Koeien & Kansen”, a multi-annual

research and demonstration project in the Netherlands that aims

to be representative of the Dutch dairy sector. The study was

conducted in accordance with the Dutch Animal Experiments Act

in compliance with European Union Directive 2010/63 and

approved by the Central Committee for Animal Experiments

(The Hague, The Netherlands, 2016.D-0066.001).
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In total 212 dairy cows were sampled in this study, of which 15

cows were measured multiple times over the study period with a

maximum of three times. Because there was considerable time

between each measurement period, including changes in diet,

lactation stage and parity, observations of the same cows were

considered to be independent. All cows were housed in free-stall

barns with deep-litter sand or rubber matrass with sawdust or in a

(composted) bedded pack barn. All barns had open sides for natural

ventilation and free access to clean drinking water. All cows were

fed ad libitum and received a commercial dairy diet that differed per

farm and season. The diets were formulated according to

commercial practices complied in collaboration with a dairy feed

advisor. Practices and diets per farm were maintained unchanged

during the adaptation period and measurement period as the

objective was to have a representative overview of Dutch farming

on CH4 emission and rumen microbiota. On average (mean ± SD)

the diets consisted of 32 ± 13.6% grass silage, 25 ± 11.8% maize

silage, 12 ± 13.8% fresh grass, 25 ± 7.9% concentrates, and 6 ± 10.7%

by-products, on a DM basis. Supplementary Table 1 presents the

diet composition provided on each farm during each measurement

period. Fifteen farms applied grazing during part of the year (spring,

summer and/or autumn) and thus also during some of the

measurement periods. Grazing time was not controlled and

differed per farm, ranging from a few hours a day to unrestricted

grazing with free choice to stay outside the barn. Farmers were

advised to keep the grazing management as homogenous as possible

during the measurement period.
2.2 Milk measurements

Depending on farm, cows were milked either twice daily in a

milking parlor or two to three times daily by a milking robot. Milk

composition was determined at the individual cow level using milk

samples collected on a single day in the second measurement week.

Milk samples were analyzed by Fourier transform mid-infrared

spectrometry (MIRS) as part of the routine milk recording

programs, for 15 farms performed by Qlip B.V. (Zutphen, the

Netherlands) and for 2 farms by VVB Veluwe-Ijsselstreek

(Nunspeet, the Netherlands). Milk yield and the percentage of

protein and fat in the milk of a sample day were used to calculate

fat- and protein-corrected milk (FPCM) according to the following

equation (CVB, 2016).

FPCM (kg : d−1) = (0:337 + 0:16� % fat + 0:06� %protein)

�milk yield (kg : d−1)
2.3 Methane measurements

Enteric CH4 production was measured non-invasively using the

GreenFeed system (GF, C-lock Inc. Rapid City, SD, USA). The GF is

an adapted feeding station that measures individual CH4 and CO2

production in grams per day during each visit, as described in detail
Frontiers in Microbiomes 03
by van Gastelen et al. (2022). For the present study, the average

recovery of CO2 was 99.1% (for individual GF systems between 97.6

and 102.7%).

Methane production was measured over a 14-day period, with a

minimum 7-day acclimation to the GF prior to the measurement

period and visit times per cow ranging from 3 to 6 min. Cows

received 2 to 6 kg of compound feed per day via the GF, depending

on milk yield and lactation stage. Administration of the compound

feed was divided into 4 to 6 feeding periods per day, with at least 3

to 4 h between each feeding period. Per feeding period, 0.5 to 1 kg of

compound feed was administered in 12–25 drops of approximately

40 g of feed (ranging between 31 and 51 g per drop, depending on

the type of compound feed used). There were 10–30 s between each

drop (depending on the maximum number of drops) to ensure a

minimum visit time of 3 min, but no longer than 6 min.

On each farm, one GF was installed in the barn. In case grazing

was applied at farm level, an additional GF on a pasture trailer was

used to ensure adequate CH4 measurements throughout the day.

Due to the high diurnal variation of enteric CH4 production and

using short-term breath measurements, multiple records are needed

to provide a representative average. Therefore, based on what was

found in the study of Manafiazar et al. (2017), CH4 measurements

from the 14-day measurement period were averaged per cow and 32

cows with fewer than 20 valid records were excluded from the

analysis. Methane intensity (g CH4.kg FPCM−1.d−1) was used as a

metric for CH4 emission rather than CH4 yield (g CH4.kg

DM−1.d−1). Methane production (g.d−1) is strongly related to total

feed intake, which makes it necessary to take measures of feed intake

into account when comparing CH4 emission. However, feed intake

was not available on individual cow level, thus CH4 production was

corrected for FPCM yield, as it is the closest available measure

related to feed intake. Note that CH4 production was averaged over

two weeks while FPCM yield resulted from a single day of

milk samples.
2.4 Rumen sampling

Rumen fluid samples were collected in the second week of the

measurement period (Supplementary Table 1) using the oral

stomach tube (OST) (Muizelaar et al., 2020). Briefly, the OST

consisted of a manual pump and a 190 cm long spiral probe with

a perforated suction head at the end, inserted through the

esophagus into the dorsal cranial part of the rumen. Rumen fluid

was collected by the manual pump. The first 500 ml of the rumen

fluid was discarded to minimize contamination with saliva.

Subsequently, samples of 3 ml were collected and immediately

frozen in dry ice. Samples were stored at –80°C until analysis.
2.5 Microbial DNA extraction and
sequencing

Extraction of microbial DNA from rumen samples, library

construction of hypervariable region V4 (from 16S rRNA gene)
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and subsequent sequencing on an Illumina HiSeq platform were

performed at Genotypic Technology Pvt. Ltd. In Bangalore, India.

DNA from rumen fluid samples was purified using the Qiagen

Dneasy Blood and tissue Kit (Qiagen, Hilden, Germany). Prior to

processing the samples using this method, approximately 200ml of
ruminal fluid was taken in sterile Tomy tubes containing 3–4 beads

and homogenization was carried out at 4,000 rpm for 120 s. A

volume of 200 ml (10mg ml−1) lysozyme (MilliporeSigma, St. Louis,

USA) was added to the homogenates. The homogenate tube was

invert mixed and incubated for 30 min at 37°C. A volume of 200ml
AL buffer was added to the samples and vortexed briefly. The

samples were subjected to Proteinase K treatment at 56°C for 2

hours followed by Rnase A treatment (MP Biomedicals, Solon,

USA) at 65°C for 20 min. The lysate was mixed well with 100%

ethanol and loaded onto Qiagen Dneasy blood and tissue column

(Qiagen, Hilden, Germany). The samples were further processed

following manufacturer’s instructions. Finally, DNA was eluted in

45ml 10mM Tris.Cl, pH 8.0 (Sigma-Aldrich, St. Louis, USA). The

concentration and purity of genomic DNA was quantified using the

Nanodrop Spectrophotometer (Thermo Scientific; 2000). The

integrity of the DNA was assessed by agarose gel electrophoresis.

Sequencing libraries were prepared by a two-step polymerase

chain reaction (PCR)-based workflow based on primers specific to V4

region of the 16S rRNA gene (Caporaso et al., 2011). In the first round

of PCR, the V4 region of the 16S rRNA gene was amplified using the

region-specific primers V4-515F (GTGCCAGCMGCCGCGGTA)

and V4-806R (GACTACHVGGGTATCTAATCC) designed by

Genotypic Technology Pvt. Ltd. In Bangalore, India. Using the

KAPA HiFiHotStart PCR Kit (KAPA Biosystems Inc., Boston, MA

USA) and a primer concentration of 5mM, 50ng of genomic DNAwas

amplified by following first round of PCR condition: 3 min at 95°C,

26 × (30 s at 95°C, 30 s at 64°C, and 30 s at 72°C), and 5 min at 72°C.

The amplicons generated were analyzed on a 1.2% agarose gel. The

second round of PCR was performed to index the amplicons

generated in the first round of PCR. 1ml of the 1:2 diluted PCR

amplicons generated in the first round were amplified by following

second round of PCR condition: 3min at 95°C, 10 × (30 s at 95°C, 30 s

at 55°C, and 30 s at 72°C), and 5 min at 72°C to add Illumina

barcoded adaptors for sequencing (Nextera XT v2 Index Kit, Illumina,

USA). Amplicons (sequencing libraries) generated by the second

round of PCR were analyzed on a 1.2% agarose gel. The libraries

were normalized and pooled for high-throughput multiplex

sequencing. Finally, these pools were quantified using the Qubit

dsDNA HS assay and fluorometer (Thermo Fisher Scientific, MA,

USA). The normalized sample was denatured and fed into the

Illumina HiSeqXTen sequencer, where it was sequenced for 150*2

cycles to generate at least 0.7 million paired-end reads. Upon

completion of the sequencing run, the data were demultiplexed

using bcl2fastq v2.20 software (Illumina, San Diego, USA).
2.6 Sequences pre-processing

Reads were preprocessed using QIIME2 suite v2020.8 (Bolyen

et al., 2019). Reads were first checked for low quality bases (Q30) with
Frontiers in Microbiomes 04
FAST QC v 0.11.9, then trimmed of primers with Cutadapt plug-in

before being merged using FASTQ-join. The merged reads were

denoised, dereplicated, and chimera sequences were removed using

the DADA2 plugin (Callahan et al., 2016) with default parameters

from the QIIME2 suite. The resulting Amplicon Sequence Variants

(ASV) were classified based on SILVA v.138 database (Quast et al.,

2013). To achieve the classification a Naive Bayesian classifier, pre-

trained, was used with the ‘feature-classifier classify-sklearn’

command implemented in Qiime2 (Bokulich et al., 2018). The

classifier was optimized for 515F/806R region at 99% similarity and

can be found here: https://resources.qiime2.org/#naive-bayes-

classifiers-2. Confidence level was set at 0.7% by default.
2.7 Balanced experimental design

A balanced experimental design was established from this large

cohort after data generation to balance the factors influencing CH4

intensity and rumen microbiota (Figure 1A). First, two dairy cows

with outlier CH4 intensity (above third quartile added of three times

the interquartile range) were removed from the dataset. Second,

dairy cows were grouped into three lactation stages, namely early

(0–93 days in milk (DIM)), mid (93–183 DIM) and late (>183

DIM), according to Bainbridge et al. (2016). Third, dairy cows

within each lactation stage were split in two dietary categories, a

group that had access to fresh grass during the measurement period

and a group that had not access to fresh grass during the

measurement period. This resulted in six groups. Fourth, the top

fifth lowest and top fifth highest CH4 emitters within each of these

six groups were selected (Figure 1B), after checking for statistical

significance of the difference of their mean CH4 intensity by a

Welch test (Figure 1A), and placed in two groups; a low and high

CH4 emitting group (N=30 per group) that was balanced for

lactation stage and diet type (i.e., with or without access to fresh

grass). All the high and low emitters cows within this experimental

design were either Holstein Friesian or Holsten Friesian cross breed.
2.8 Statistical analysis

All statistical analysis were performed in R v4.0.3 (R Core Team,

2020) using phyloseq (McMurdie and Holmes, 2013), vegan

(Oksanen et al., 2012) and ropls (Thévenot et al., 2015) packages.

Methane intensity was compared between low and high CH4

emitter groups by a Welch test. The low-high dataset previously

described was filtered for low abundant and low prevalent taxa

(more than five in at least a third of individuals) to limit the zero-

inflation issue (from 90.1% 0 in the dataset prior filtering to 34.0% 0

after filtration). Relative abundance of ASVs were then transform by

centered log-ratio (CLR) which allows to overcome differences in

sequencing depth without wasting data as in rarefaction (McMurdie

and Holmes, 2014; Gloor et al., 2017) and at the same time replace

data into a Euclidean space (Quinn et al., 2019). Multivariate

dimension reduction approaches, namely principal component

analysis (PCA) and orthogonal partial least-square discriminant
frontiersin.org
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analysis (o-PLS-DA) were performed following the CLR

normalization and a z-score scaling to adjust feature-wise

homogeneity. Orthogonal signal correction was used to

decorrelate variation that would be unrelated to the discriminant

low and high emitter groups. Significance of the predictive

performance (Q2) was assessed by random permutation of 10%
Frontiers in Microbiomes 05
of the samples in the discriminant groups repeated 200 times.

Variables important for projection with a value above two were

defined as associated with low or high emitters depending on their

contribution on the predictive component. The relative abundance

of taxa was used to plot the VIP rather than CLR transformed value

for comprehension purpose.
FIGURE 1

Selecting high and low methane (CH4) emitters from the cohort of 212 cows. (A) provides a schematic representation of the balanced experimental
design. Cows were initially stratified by lactation stage and further grouped by diet (with or without fresh grass). From each of the six resulting
subgroups, the five lowest and five highest methane emitters were selected, forming balanced “low” and “high” emitter groups of 30 cows each. The
groups were balanced for lactation stage and diet. Statistical significance in CH4 intensity differences was evaluated using Welch’s t-test, with the p-
value reported. (B) displays the mean CH4 intensity for each subgroup, categorized by lactation stage (early, middle, or late) and diet type (with or
without fresh grass). The top five highest emitters (in red) and the bottom five lowest emitters (in blue) within each subgroup were selected to form
the “high” and “low” emitting groups, respectively.
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3 Results

3.1 Methane emission and animal
characteristics

Methane intensity from the broad cohort of 212 cows, depleted

of two outliers and 32 cows that visited the GF less than 20 times,

ranged from 6.55 to 25.02 g.kg FPCM−1.d−1 (Figure 2). The low CH4

emitters were predominantly cows in early or mid-lactation,

whereas the high CH4 emitters were mostly cows in late lactation.

To isolate individual effects on CH4 intensity from important

confounding factors, we created a balanced experimental design

that account for lactation stage (i.e., early, mid, and late) and diet

type (i.e., with or without access to fresh grass) for two groups of

low and high CH4 emitters. The average CH4 intensity in the low

CH4 group (9.5 ± 1.57 g.kg FPCM−1.d−1) was significantly different

from average CH4 intensity in the high CH4 group (16.8 ± 4.11 g.kg

FPCM−1.d−1, P < 0.001). The group composition was not biased for

specific farms (Supplementary Figure 1) and only one cow in each

group was sampled twice.
3.2 Microbiota composition

The dataset from the balanced experimental design contained

23,578 ASV for 60 samples before filtering for low abundant and

low prevalent ASV. After the filtering, 2,250 taxa remained. On

average, 98.10 ± 2.10% of the ASV were identified as bacteria and

1.90 ± 2.10% were identified as archaea (Supplementary Figure 2).

At the Phylum level, Firmicutes (56.6 ± 9.46%), Bacteroidota (31.90

± 10.17%) and Proteobacteria (3.10 ± 3.55%) composed most of the

taxa (Supplementary Figure 3).

The microbial composition at Phylum level across the 17 farms

is presented in Supplementary Figure 4. In farm “I”, the relative

abundance of the most abundant phylum, Firmicutes, varied

considerably, ranging from a minimum of 47.12 ± 9.18% to a

maximum of 71.04 ± 10.55%. A PCA was performed to have an

overview of the main factors that influenced the composition of

rumen microbiota of cows in the balanced experimental design
Frontiers in Microbiomes 06
(Figure 3). The first two principal components (PC) of the PCA

explained 29% of the total variance. The most visible separation on

the PCA, if any, was related to diet type, namely, the presence of

fresh grass in the diet. No discrimination by the lactation stage or by

the grouping of cows as low or high CH4 emitters was observed.
3.3 Microbiota composition differences
between low and high emitters

A multivariate discriminant analysis, o-PLS-DA, was performed

to reveal ASV associated with low and high CH4 emitter groups in the

balanced experimental design (Figure 4). The predictive accuracy of

the o-PLS-DA was 0.16 (Q2 = 0.16) and significant (P = 0.01). A total
FIGURE 2

Methane emission of dairy cows from the cohort of 212 dairy cows representative of the Dutch cattle farming ranked from lowest to highest and
depleted by two outliers and 32 cows that visited the greenfeed station less than 20 times.
FIGURE 3

Principal component analysis scores plot of cow rumen fluid
microbiota composition from the balanced design of 60 cows. Diet
type, rather than lactation stage or CH4 emission category,
structures the PCA.
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of 88 VIP (ASVs used in the model) were above the defined threshold

of two, i.e., for VIP highly discriminant for the two groups (Figure 5).

Collectively, these VIP represented 14.0 ± 4.9% of the total relative

abundance across all the 60 samples of the balanced experimental

design (Supplementary Figure 5). Thirty-six taxa were more

abundant in the high CH4 emitter group than in the low emitter

group, whereas 52 were more abundant in the low CH4 emitter group

than in the high emitter group. The 36 ASV that were relatively more

abundant in the high CH4 emitter group were identified in the family

[Eubacterium]_coprostanoligenes, Absconditabacteriales_(SR1),

Christensenellaceae, Clostridia_UCG−014, Gastranaerophilales,

Hungateiclostridiaceae, Lachnospiraceae, Oscillospiraceae ,

Prevotel laceae , Ruminococcaceae , Saccharimonadaceae ,

Spirochaetaceae and one uncultured family from the

Armatimonadota Phylum. The 52 ASV more abundant in low CH4

emitter group were identified in the family [Eubacterium]

_coprostanoligenes, Anaerolineaceae, Christensenellaceae ,

Clostridia_UCG−014, Desulfobulbaceae, Eubacteriaceae, F082 from

the Bacteroidales order, Lachnospiraceae, Methanobacteriaceae,

unknown family from the Clostridia class, Oscillospiraceae,

Prevotellaceae, Rikenellaceae and Ruminococcaceae.
4 Discussion

In this study, we investigated the association between microbial

taxa and CH4 intensity, using data collected from individual cattle

across seventeen Dutch dairy farms operating under practical

farming conditions. As individual dry matter intake (DMI)

measurements are often unavailable in such settings, CH4

intensity, defined as CH4 production per unit of fat- and protein-
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corrected milk (FPCM), was used as a proxy instead of CH4 yield,

which is expressed as CH4 production per unit of DMI. During the

analysis of the data in this study, the inherent complexities and

variability in dairy cattle farm conditions and husbandry practices

presented significant challenges in identifying consistent rumen

microbial taxa associated with CH4 intensity as shown in the

variation of the main Phyla (Supplementary Figure 4). We

attempted to mitigated some of the variability by applying a

balanced design post-data collection, carefully accounting for

factors such as lactation stage and the availability of fresh grass,

both of which are known to influence rumen microbiota, either

directly or indirectly. Although the dynamic and diverse nature of

our dataset complicates the identification of specific taxa with

precision, our primary objective was to uncover consistent

microbial patterns linked to the observed CH4 emission

intensities. Therefore, while acknowledging the inherent

complexity, our analysis focused on identifying robust microbial

signatures that consistently associated with CH4 emission

intensities, even if the precise taxonomic resolution remained

challenging. As an outlook, future research could explore these

broader ecological factors to gain a more comprehensive

understanding of the microbial influences on CH4 production in

diverse farm settings.

In a broader context, this study was part of a larger inventory

study in which CH4 production was measured from 1,106 cows of

18 farms (Koning et al., 2020). The linear mixed model analysis

conducted in the inventory study revealed that grazing, coupled

with seasonal variations, accounted for approximately 3% of the

variation in CH4 intensity. While the impact of fresh grass on CH4

emission was modest in the study of Koning et al. (2020), our study

demonstrated a more pronounced effect of fresh grass on rumen

microbiota while the effect of lactation stage was more ambiguous.

Our findings highlight a complex, multifactorial relationship

between grazing practices, rumen microbial dynamics, and CH4

emission under real-world farming conditions. Nonetheless, it is

plausible that the binary classification of fresh grass availability may

mask subtle yet significant dietary variations, which could

intricately influence the structure and function of the rumen

microbiota involved in CH4 production. These unaccounted

dietary nuances may contribute to the observed variability in CH4

emission, underscoring the need for more granular assessments of

feed composition and its microbial interactions.

Interestingly, our analysis revealed a notable similarity in the

bacterial community composition within the rumen of both high

and low CH4-emitting cows. One of the most predominant families

identified was Lachnospiraceae, which was consistently present in

both high and low emitters. Bacteria from the Lachnospiraceae have

been associated with CH4 emission in ruminants in various studies

(Ramayo-Caldas et al., 2020; Shabat et al., 2016; Kittelmann et al.,

2014). They are known to produce H2 which is then used to reduce

CO2 into CH4. The Lachnospiraceae family encompasses a range of

species known for their diverse abilities to degrade plant

polysaccharides, highly present in cow diets (Biddle et al., 2013;

Sorbara et al., 2020). This metabolic versatility likely contributes to

the widespread presence of Lachnospiraceae in the rumen of cows
FIGURE 4

Orthogonal partial least square discriminant analysis (oPLS-DA) of
rumen fluid from low and high emitters (N=30 per group) in the
balanced experimental design from the cohort of dairy cattle. R2Y =
82%, Q2Y = 0.16, P = 0.01.
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across different farms. The ability of this bacterial family to

efficiently process a variety of plant-based diets enables its

prevalence in bovine ruminal microbiomes, regardless of

variations in the plant material composition in the feed across the

17 farms studied. Interestingly, Shabat et al. (2016) also reported

that genes from the Lachnospiraceae family were enriched in cows

both with a low or high feed efficiency, and subsequently a high or

low CH4 production, respectively. In a recent study, Kaminsky et al.

(2023) highlighted the flexibility of the NK3A20 isolate from the

Lachnospiraceae family to grow from different substrates. They

observed that this isolate exhibited varied H2 production depending

on the substrate, with notably lower H2 production when

metabolizing galacturonic acid. This could imply a reduced

potential for CH4 production under certain dietary conditions.

Based on these findings, it can be speculated that the presence of
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Lachnospiraceae in both the low and high CH4 emitting group may

not solely be attributable to the variations in diet composition

across farms. Instead, the inherent genetic and metabolic

adaptability of this bacterial family, particularly in response to

different substrates, could play a significant role in its prevalence

and activity in varying CH4 production contexts. Overall, despite

their divergent CH4 emission profiles in high and low CH4 emitters,

the overall microbial structure remained largely conserved,

suggesting that differences in CH4 emission may be driven by

functional or metabolic shifts within the microbial community,

rather than substantial changes in its taxonomic composition.

In our study, members of the Ruminococcaceae family were

found to be more prevalent in low CH4-emitting cows, contrasting

with prior research that frequently reported higher abundances of

Ruminococcaceae in high CH4 emitters. This discrepancy suggests
FIGURE 5

Heatmap of taxa with variable importance in projection (VIP > 2) identified in the oPLS-DA differentiating low and high methane emitters. Each cow
is ranked from low (left side, 30 lowest) to high emission (right side, 30 highest). Each taxon is identified by its Family rank when possible (otherwise
left unnoted) and ordered alphabetically within taxa more abundant in high emitters (bottom half) and more abundant in low emitters (top half).
Abundance (0–1) within each cows’ rumen fluid is color coded.
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that the relationship between Ruminococcaceae and CH4

production may be context-dependent, potentially influenced by

factors such as diet composition, host genetics, or environmental

conditions, highlighting the complexity of microbial contributions

to CH4 emission (Tapio et al., 2017; Ramayo-Caldas et al., 2020).

Ruminococcaceae are known for their role in cellulose degradation

and H2 production, their prevalence in low CH4 emitters in our

study prompts further investigation. Furthermore, the absence of

Fibrobacteraceae, particularly the absence of ASVs associated with

Fibrobacter succinogenes, among the variables identified as

important for projection (VIP), is noteworthy and warrants

further investigation. Fibrobacter species are specialized in

cellulose and hemicellulose degradation but do not produce H2.

The inability of the PLS-DA model to identify Fibrobacteraceae as a

key variable in the VIP, alongside the overrepresentation of

Ruminococcaceae , suggests that factors beyond dietary

composition are influencing the microbial community structure

in the rumen. Given the shared role of Fibrobacter and

Ruminococcaceae in cellulose degradation, a concurrent increase

in the members from both taxa would be expected if diet were the

primary determinant. However, the absence of this association in

our findings indicates that other environmental or host

physiological factors may play a more critical role in shaping the

relative abundance and dominance of Ruminococcaceae within the

rumen microbiome.

As discussed earlier, CH4 production in the rumen is primarily

driven by archaea, particularly members of the Methanobacteriaceae

family. In our study, Methanobrevibacter was the only genus that

significantly differed between high and low CH4-emitting groups,

with its abundance being higher in the low-emitting group. This

limited detection of archaeal taxa may be attributed to

methodological and technical constraints, as we employed primers

targeting the V4 region of the 16S rRNA gene, which are designed to

capture both bacterial and archaeal populations. However, the use of

archaeal-specific primers targeting alternative regions of the 16S

rRNA gene could provide a more comprehensive and accurate

characterization of the archaeal community within the rumen

(Pausan et al., 2019). Alternatively, researchers may utilize archaea-

specific primers targeting the mcrA gene, which encodes the a-
subunit of methyl-coenzyme M reductase, a key enzyme in

methanogenesis. This approach enables a more precise assessment

of archaeal communities, particularly in CH4-producing

environments (Friedrich, 2005). Amplifying and sequencing the

mcrA gene would not only enhance taxonomic resolution but also

provide direct insights into the methanogenic potential and

community composition in ruminants (Casañas et al., 2015). This

approach is especially relevant in rumen studies, where a detailed

understanding of methanogen diversity could contribute to strategies

for mitigating CH4 emissions. While the 515F/806R primers used in

this study effectively served the purpose of our broader study focused

on large-scale microbial community comparisons and recovering

global ecological patterns (Caporaso et al., 2011), we recognize that

for studies specifically targeting the archaeal component of the rumen

microbiome, and especially those investigating CH4 production,

adopting the above-mentioned suggested approaches of utilizing
Frontiers in Microbiomes 09
archaea-specific primers would be highly beneficial. Another

possible explanation for identifying only one archaeal ASV as

discriminant is that the relative abundance of methanogens may

not be a strong enough factor to differentiate high and low CH4

emitters. Research has indicated that gene expression levels, rather

than the relative abundance of archaea, could serve as a more accurate

marker for distinguishing between CH4 emission profiles (Roehe

et al., 2016; Shi et al., 2014). This implies that functional activity of

methanogens, rather than their population size, could play a more

significant role in determining CH4 emission (Shi et al., 2014).

reported a higher relative abundance of Methanosphaera spp. and a

lower relative abundance of organisms belonging to the

Methanobrevibacter gottschalkii clade in the low CH4 yield sheep.

Even though these authors found some other shifts in subpopulations

of methanogens, they concluded that the higher CH4 yield of the high

CH4 emitting sheep was unlikely to be due to an increased relative

abundance of these methanogens. They did find strong correlations

between gene expression of methanogens and CH4 yield. It is

therefore recommended for follow-up research to focus on gene

expression rather than relative abundance to discuss the role of

archaea in enteric CH4 production.

Our study elucidates the intricate interactions between dietary

factors, rumen microbiota composition, and CH4 emission in dairy

cattle, emphasizing the necessity for a more refined approach that

extends beyond basic phenotype comparisons. The inherent

variability across farm conditions complicates the identification of

consistent microbial signatures associated with CH4 production.

When designing studies in real-world farm settings, it is essential to

account for the diverse management practices and environmental

factors that influence microbial dynamics. Methodologies such as

living labs offer a more accurate representation of microbial

community responses to fluctuating on-farm conditions, thereby

enhancing the precision of CH4 mitigation strategies. However, the

dynamic and multifactorial nature of commercial farming presents

significant challenges in identifying reliable rumen based “microbial

biomarkers” for CH4 emission. Despite these obstacles, our findings

underscore the critical need to incorporate on-farm variability to

deepen our understanding of microbial dynamics and their

contribution to CH4 production, ultimately improving the

development of targeted mitigation strategies. While direct

methanogen data is valuable (Patra et al., 2017; Danielsson et al.,

2017), our findings underscore the need for a broader ecological

perspective in understanding CH4 emissions in real-world settings.

We show that shifts in the wider microbial community, including

non-methanogenic taxa, are significantly associated with CH4

intensity produced by dairy cattle (Danielsson et al., 2017;

Wallace et al., 2015; Bekele et al., 2010) likely reflecting

environmental conditions and complex microbial interactions

that indirectly regulate methanogenesis.

The pronounced susceptibility of CH4-associated rumen

microbiota to environmental conditions necessitates a

fundamental shift towards context-aware CH4 mitigation

strategies in dairy farming. Interventions should leverage holistic

approaches like optimized soil and grassland management, which

impact the entire microbial community (Guo et al., 2024; Egan
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et al., 2018; Su et al., 2023; Chernov and Semenov, 2021). To

advance sustainable solutions, future research must prioritize on-

farm investigations into the effects of specific farm factors on key

microbial groups involved in methanogenesis, including hydrogen

producers, and their complex interactions. This integrative, field-

based approach is crucial for achieving meaningful and consistent

reductions in CH4 emissions.
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