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Katherine Y. Tossas1,2,3,4, Ching-Yi Chen1 and Robert A. Winn1*

1Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, VA, United
States, 2Department of Social and Behavioral Sciences, School of Public Health, Virginia Commonwealth
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Introduction: Lung cancer is a leading cause of cancer-related deaths and has

been associated with the microbiota of the human respiratory tract. However,

the optimal sample type for studying the role of microbiota in lung cancer and

the microbial hallmarks of lung cancer patients remain unclear.

Methods: In this study, we downloaded 16S rRNA sequencing data of 1,105 high-

quality samples from 13 BioProjects, including lung tissues, bronchoalveolar

lavage (BAL) fluids, and saliva, and performed a meta-analysis.

Results: Our results revealed that the BAL microbiota, dominated by taxa such as

Sphingomonas and Pseudomonas, which are not typically abundant in the oral

microbiota, served as hallmarks of individuals without lung cancer. In contrast, BAL

samples from lung cancer patients showed higher relative abundances of oral-

associated taxa, e.g., Streptococcus and Prevotella, with increased rates of

dominance by these taxa in the BAL microbiota of lung cancer patients.

Additionally, beta diversity analysis revealed significant compositional differences

between the BAL microbiota of healthy individuals and those with lung cancer.

Furthermore, while compositional differences were observed in the oral microbiota

between healthy participants and lung cancer patients, as well as between

microbiota from lung tumors and normal adjacent tissues, these differences were

less pronounced than those observed in the BAL samples between healthy

individuals and lung cancer patients. Cross-site correlations indicated limited

associations between the relative abundances of taxa in the oral, BAL, and lung

tissue microbiota, implying that differences in lower respiratory microbiota may not

be directly driven by upper respiratory tract microbiota.

Discussion: These findings highlight distinct microbial patterns linked to lung

cancer in the respiratory tract. More pronounced differences were observed in

the BAL microbiota between healthy individuals and lung cancer patients, with

the predominance of taxa, typically not abundant in the oral microbiota, serving

as hallmarks of health.
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Introduction

Lung cancer is the most prevalent and deadly cancer worldwide

(Bray et al., 2024). In 2022, lung cancer was responsible for over

1.82 million deaths globally, representing approximately 18.7% of

all cancer-related fatalities. Early-stage lung cancer often presents

without obvious symptoms, leading to diagnoses that typically

occur only after the cancer has metastasized or reached an

advanced stage (Nooreldeen and Bach, 2021). This delayed

diagnosis limits treatment options and contributes to a poor

prognosis. Therefore, early detection is critical for improving

survival outcomes for lung cancer patients.

In recent years, the rapid advancement of molecular biology

techniques, particularly sequencing technologies, has positioned

microbiota analysis as a promising approach for early cancer

detection (Bagheri et al., 2022). One widely used method in

respiratory microbiome research is 16S ribosomal RNA (16S

rRNA) sequencing, which allows for the identification and

analysis of bacterial communities within a microbiome. Changes

in the composition of the human respiratory microbiota have been

associated with a variety of diseases, including asthma, chronic

obstructive pulmonary disease, cystic fibrosis, and lung cancer (Mao

et al., 2018; Bou Zerdan et al., 2022). Studies on the human

respiratory microbiota typically utilize saliva or oral swabs for

analyzing the oral microbiota, bronchoalveolar lavage fluid (BAL)

for the bronchoalveolar microbiota, and lung tissue samples for the

lung microbiota (Mao et al., 2018). A BAL sample is obtained by

introducing a small amount of sterile fluid into a specific area of the

lung through a bronchoscope and then collecting the fluid for

analysis. While many previous studies have employed

bronchoscopy samples to investigate the lung microbiota, our

study distinguishes between BAL and lung tissue samples to

provide a more nuanced understanding of microbial communities.

In microbiota studies, alpha diversity describes the variety of

microbial species within a single sample, reflecting both the number

of species and their relative abundance distribution, while beta

diversity compares the differences in microbial composition

between samples, showing how similar or distinct the

communities are. In two independent studies, lung cancer

patients exhibited lower alpha diversity in their oral microbiota

(Hosgood et al., 2021; Vogtmann et al., 2022). Although the

difference in alpha diversity was statistically significant, the 95%

confidence interval was relatively narrow, ranging from 0.84 to 0.96,

indicating a substantial but low level of difference. One study

identified Streptococcus as a risk factor for lung cancer

(Vogtmann et al., 2022), while another reported the Bacilli class

and Lactobacillales order as risk factors, and associated Spirochaetia

and Bacteroidetes with a reduced risk of lung cancer (Hosgood et al.,

2021). Similarly, lower alpha diversity was observed in lung tumor

tissues compared to normal adjacent tissues in lung cancer patients

(Yu et al., 2016) and higher levels of Streptococcus were linked to

lung cancer (Liu et al., 2018). Another study further demonstrated

that Streptococcus intermedius was isolated exclusively from the

BAL samples of non-small-cell lung cancer patients (Sun et al.,

2023), whereas a greater abundance of Staphylococcus was observed
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in control samples (Liu et al., 2018). Nevertheless, both oral and

lung microbiota studies have limitations, including small sample

sizes and inconsistent biomarker findings across studies (Mao et al.,

2018; Zhang et al., 2023). Therefore, large-scale studies are needed

to conduct more robust statistical analyses and validate

these associations.

Although several bacterial taxa in the respiratory microbiota are

known to be associated with lung cancer, the underlying

mechanisms remain unclear. Various hypotheses have been

proposed regarding the potential interactions between microbes

and lung cancer. Under healthy conditions, the lung microbiome of

healthy individuals maintains a dynamic equilibrium that supports

normal physiological functions (Pérez-Cobas et al., 2023). However,

dysbiosis of the lung microbiome may contribute to lung cancer

development through several mechanisms (Natalini et al., 2023;

Pérez-Cobas et al., 2023; Belaid et al., 2024). The enrichment of

specific bacterial species in the lungs of lung cancer patients may

trigger persistent chronic inflammatory responses, leading to

continuous tissue damage and repair, thereby increasing the risk

of cancer development. Chronic inflammation is a well-established

risk factor for cancer, as it promotes DNA damage and abnormal

cell proliferation through the release of pro-inflammatory

mediators, free radicals, and immune-suppressive agents.

Additionally, alterations in the lung microbiome have the

potential to modify the host immune response, facilitating tumor

immune evasion (Natalini et al., 2023; Pérez-Cobas et al., 2023;

Belaid et al., 2024). Thus, the imbalance of the lung microbiome

may play a critical role in lung cancer development by disrupting

immune responses, promoting chronic inflammation, and fostering

conditions favorable for tumor growth.

Bacterial biomass in the lower respiratory tract is generally

lower than in the upper respiratory tract, largely due to effective

microbial clearance mechanisms such as coughing, mucociliary

transport, and immune responses (Natalini et al., 2023; Pérez-

Cobas et al., 2023). However, these clearance functions may be

compromised in lung cancer patients (Mazzoccoli et al., 2003;

Prado-Garcia et al., 2012; Tilley et al., 2015). Consistent with this,

lung cancer patients have been shown to exhibit a higher bacterial

load in the lower respiratory tract compared to individuals without

cancer (Leng et al., 2021). Thus, another hypothesis is that impaired

microbial clearance in the lower respiratory tract contributes to

alterations in the lung microbiota observed in lung cancer patients

(Natalini et al., 2023; Pérez-Cobas et al., 2023).

In this study, publicly available data on the oral, BAL, and lung

tissue microbiota were collected and our meta-analysis compared

the oral and BAL microbiota between healthy participants and lung

cancer patients as well as the microbiota between tumor and normal

adjacent tissues in lung cancer patients. Microbes and diversities of

the microbiota significantly associated with lung cancer in the three

types of samples were identified. The BAL microbiota, dominated

by taxa that are not typically abundant in the oral microbiota,

served as hallmarks of individuals without lung cancer.

Furthermore, since more significant differences were observed in

the BAL microbiota than in the oral microbiota when comparing

healthy individuals and lung cancer patients, and because collecting
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lung tissue samples from healthy individuals is challenging in

clinical settings, BAL may represent a more suitable sample type

for studying microbiota associated with lung cancer.
Methods

Search strategy

BioProjects were searched in the Sequence Read Archive (SRA)

database (https://www.ncbi.nlm.nih.gov/sra) using a strategy that

incorporated four key terms: (microbiota OR microbiome) AND

(16S rRNA) AND (lung OR oral OR BAL OR bronchoalveolar

lavage) AND (lung cancer). Given the limited number of samples

from healthy participants in lung cancer research, an additional

search was conducted with the following keywords: (microbiota OR

microbiome) AND (16S rRNA) AND (lung OR BAL OR

Bronchoalveolar lavage) AND (control OR healthy).
Inclusion and exclusion criteria

The inclusion criteria were as follows: 1) Raw 16S rRNA

sequencing data were publicly available for download from the

SRA; 2) The health status of participants, such as healthy control,

lung cancer, or adenocarcinoma, was clearly specified; 3) Only

microbiota from three body niches, i.e., oral, BAL, and lung, were

included; 4) Participants were not restricted by lung cancer subtype,

sex, race, stage, or smoking history; 5) The study was an original

research article. The exclusion criteria included: 1) Studies not

related to lung cancer, except those involving BAL samples from

healthy participants; 2) Studies with fewer than 20 samples,

although all BAL samples from healthy participants were included

without a sample size threshold for each study; 3) Participants

under the age of 18 were excluded.
Data preprocessing

After quality control, trimming, merging paired sequence reads,

and removing human reads, high-quality sequences of the 16S

rRNA amplicons were aligned to the 16S rRNA database as

previously described (Zhu et al., 2024) using the ublast tool

(Edgar, 2010) with -id, -query_cov, and -evalue set as 0.97, 0.9,

and 1e-5, respectively. Briefly, the 16S rRNA database was created

based on the Greengenes database version gg_13_5 (https://

greengenes.secondgenome.com/) and the HOMD database

version 15.1 (https://www.homd.org/) (DeSantis et al., 2006; Chen

et al., 2010). Due to the inability to annotate many taxa at the

species level and the low relative abundances of many species-level

taxa, taxonomic annotation was performed at the genus level in this

study. Only taxa with a relative abundance of at least 0.1% (or

0.01%) in at least 5% (or 15%) of the samples were retained in the

feature table of the 16S rRNA profiles, as previously described (Zhu
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et al., 2024). Samples with a total read count of less than 2,000 were

excluded from the analysis, resulting in a final dataset of

1,105 samples.
Clustering of microbiota samples

The relative abundance of taxa in each microbiota was used for

clustering analysis. Specifically, the ‘pheatmap’ function was utilized

with the parameters ‘clustering_distance_cols’ set to ‘manhattan’

and ‘clustering_method’ set to ‘ward.D2’.
Alpha and beta diversity

The feature table of the 16S rRNA profiles was normalized by

rarefaction to the sequencing depth of the sample with the fewest

reads (>2,000). Alpha diversity was quantified using the Shannon

index, calculated with the ‘vegan’ package in R (Jari Oksanen et al.,

2020). The difference in alpha diversity between groups was

assessed using the Wilcoxon test. Beta diversity was evaluated

using Bray-Curtis dissimilarity, also with the ‘vegan’ package in R.

The difference in beta diversity between two groups was tested using

the ‘adonis2’ function, a PERMANOVA analysis, within the ‘vegan’

package in R. To identify the influence of multiple factors on the

composition of microbiota, the adonis test with a marginal model

was applied using the parameter ‘by’ set as “margin”.
Differential abundance analysis

Differential abundance analysis was conducted using the

‘ALDEx2’ package in R (Fernandes et al., 2013). The adjusted P-

value for relative abundance differences was calculated using the

‘aldex.ttest’ function, which applied the two-sided Mann-Whitney

U test, followed by the Benjamini-Hochberg correction. The relative

abundance change was measured using the ‘aldex.effect’ function,

quantified by the per-feature median difference between two

conditions. For analyses in which no significant differences were

detected, differential abundance analysis was performed using LefSe

analysis through the ‘run_lefse’ function in the microbiomeMarker

package in R.
Removal of batch effect

For BAL samples, batch effects across cohorts were corrected

using the ‘adjust_batch’ function in the ‘MMUPHin’ package (Ma

et al., 2022) in R with BioProject set as the batch and lung cancer

status as a covariate. For lung tissue samples, batch effects across

cohorts were corrected using the ‘MBECS’ package in R (Olbrich

et al., 2023). Specifically, the ‘mbecCorrection’ function was applied

with the parameters ‘method’ set to ‘rbe’ and ‘type’ set to ‘clr’ to

address batch effects.
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Correlation analysis among taxa between
two microbiota

Spearman’s correlation was used to evaluate the relationship

between taxa in two microbiota. The correlation coefficient (R-

value) and its significance (P-value) were calculated, with P-values

adjusted using the Benjamini-Hochberg procedure via the ‘adjust.p’

function from the ‘cp4p’ package in R. In heatmap visualizations, R-

values associated with adjusted P-values greater than 0.05 were

replaced with zeros to exclude insignificant correlations. Taxa were

clustered in the heatmaps based on the R-values of the Spearman’s

correlation using the ‘pheatmap’ function with default settings in R.
Results

Profiles of the respiratory microbiota

A total of 1,385 samples originated from 13 BioProjects

(Supplementary Figure S2a) (Rylance et al., 2016; Yu et al., 2016;

Kovaleva et al., 2020; Nejman et al., 2020; Zhuo et al., 2020; Bello

et al., 2021; He et al., 2022; Guo et al., 2023; Najafi et al., 2023) were

downloaded from the SRA database and included in this study

(Supplementary Figure S1a), with inclusion criteria detailed in the

Methods section. To determine an appropriate total reads threshold

for individual samples, alpha rarefaction analysis was performed

across various rarefaction depths. As illustrated in Supplementary

Figure S1b, the number of observed taxa at the genus level did not

differ significantly between rarefaction depths of 1,800 and 2,000,

indicating that samples with fewer than 2,000 total reads had

limited impact on diversity estimates. Consequently, samples with

fewer than 2,000 total reads were excluded, resulting in 1,105

samples retained for analysis. Additionally, taxa with low relative

abundance or those that appeared infrequently across the 1,105

samples were removed from the taxonomic profiles (see the

Methods), leaving 416 taxa at the genus level for subsequent

analyses. Given that many taxa were not annotated at the species

level, taxonomic classification at the genus level was used

throughout the study.

The 1,105 high-quality samples spanned 8 countries

(Supplementary Figure S2b). The sample distribution included

594 lung samples, 425 BAL samples, and 86 saliva samples

(Supplementary Figure S2c). All oral microbiota samples in this

study were derived from saliva, not oral swabs. Sputum, though

another common respiratory sample type, contains a mix of

microbes from both the upper and lower respiratory tracts. To

ensure specific site analysis, sputum was excluded from this study.

Of the 594 lung samples, 212 were from primary lung tumors, while

the remainder were derived from non-malignant lung tissues or

tumor-adjacent lung tissues; none were collected from healthy

par t i c ipant s . Var ious lung cancer types , p r imar i l y

adenocarcinoma and squamous cell carcinoma, were represented

(Supplementary Figure S2d), although the specific cancer subtype

was unspecified in some samples. Approximately half of the total

samples contained demographic information on age, race, sex, and
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smoking status. Most participants were between 40 and 80 years old

(Supplementary Figure S2e). About 84% of the total samples came

from non-Hispanic white individuals (Supplementary Figure S2f),

70% were from males (Supplementary Figure S2g), and 7.2% were

from current smokers (Supplementary Figure S2h).
Association between microbiota in
bronchoalveolar lavage fluid and lung
cancer

Of the nine datasets containing BAL samples, only one

(PRJNA586753) included samples from both lung cancer patients

and healthy participants (Supplementary Figure S3a), while the

other datasets contain samples from either healthy individuals or

lung cancer patients exclusively. Consequently, three analytical

strategies were employed to address the limitations posed by this

unbalanced study design.

The first strategy was to perform a batch effect removal prior to

further analysis with BioProject set as the batch and lung cancer

status as a covariate (see Methods). As described previously

(Natalini et al., 2023) and observed in this study (Supplementary

Figure S4), Streptococcus, Prevotella, Veillonella , Rothia,

Porphyromonas, and Neisseria were the predominant taxa in the

oral microbiota. After batch correction, most BAL microbiota from

healthy participants clustered on the left side of the heatmap,

indicating similar microbial profiles among these samples

(Figure 1a). Furthermore, many BAL microbiota samples from

healthy participants, e.g., those predominated by Sphingomonas,

Pseudomonas , Propionibacterium , Fusobacterium , and

Microbacterium, were not dominated by taxa predominant in the

oral cavity (Figure 1a, Table 1; Supplementary Dataset 1 Sheet 1).

This suggests that BAL microbiota characterized by the

predominance of taxa not abundant in the oral cavity serves as a

hallmark of individuals without lung cancer. Additionally, several

taxa frequently observed as the most abundant in the BAL

microbiota of lung cancer patients, including Neisseria,

Veillonella, and Porphyromonas, were rarely detected at high

abundance in samples from healthy participants (Supplementary

Dataset 1 Sheet 1). Streptococcus and Prevotella were abundant in

both the oral and BAL microbiota, but their prevalence as

predominant taxa was significantly lower in the BAL microbiota

(Table 1). Consistent with these observations, differential abundance

analysis showed that oral-abundant taxa, e.g., Streptococcus,

Prevotella, Veillonella, Rothia, Porphyromonas, and Neisseria, were

more abundant in the BAL microbiota of lung cancer patients, while

taxa not abundant in the oral microbiota, e.g., Sphingomonas and

Pseudomonas, were enriched in the BAL microbiota of healthy

individuals (Supplementary Dataset 1, Sheet 2).

Diversity analyses showed that alpha diversity of the BAL

microbiota, quantified at the genus level using the Shannon index,

was similar between healthy individuals and lung cancer patients

(Figure 1b). Supporting the clustering pattern observed in Figure 1a,

the Non-metric Multidimensional Scaling (NMDS) plot, along with

a PERMANOVA analysis (Adonis test), confirmed that the
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composition of the BAL microbiota was significantly associated

with lung cancer status (Figure 1c).

As a second strategy to address the unbalanced cohort design,

an Adonis test was conducted incorporating multiple independent

variables, i.e., lung cancer status, country, BioProject, sex, age, stage,

race, and smoking status, using a marginal model. Each variable was

tested independently of order, while controlling for all other

variables in the model. Therefore, the independent effect of lung

cancer status on the microbiota was assessed. As shown in

Supplementary Dataset 2, lung cancer was the second most

influential factor before batch effect removal and became the

most influential factor after correction. Additionally, BioProject,

age, smoking, and country were also significantly associated with

variation in the BAL microbiota following batch correction,

independent of the other factors in the analysis.

Given that the PRJNA586753 dataset contained BAL

microbiota samples from both healthy individuals and lung
Frontiers in Microbiomes 05
cancer patients, the third strategy was to analyze this individual

cohort in detail. Alpha diversity, measured by the Shannon index at

the genus level, showed no significant association with lung cancer

in this dataset (Figure 2a). However, beta diversity demonstrated an

obvious compositional difference in the BAL microbiota between

healthy individuals and lung cancer patients (Figure 2b).

PERMANOVA analysis using the Adonis test further confirmed

that BAL microbiota composition was significantly associated with

lung cancer.

Consistent with observations across the nine datasets, a

heatmap of the PRJNA586753 dataset revealed that BAL

microbiota in healthy participants was predominantly composed

of Pseudomonas, a genus not abundant in the oral cavity (Figure 2c)

(Natalini et al., 2023). Differential abundance analysis using the

ALDEx2 software indicated that taxa abundant in the oral cavity,

i.e., Streptococcus and Veillonella, were significantly enriched in the

BAL microbiota of lung cancer patients (Figure 2d). In contrast,
FIGURE 1

Composition of the bronchoalveolar lavage (BAL) fluids microbiota in healthy individuals and lung cancer patients. (a) Lung cancer status and
BioProject IDs are indicated by color-coded labels at the top of the heatmap. Samples are clustered using the “ward.D2” method with Manhattan
distance. (b) Alpha diversity of the BAL microbiota, quantified by the Shannon index, is compared between healthy and lung cancer participants, with
differences assessed using the two-sided Mann-Whitney U test. The case numbers are indicated below the box plot. (c) The relationship between
lung cancer and BAL microbiota composition is visualized in an NMDS plot and tested by the Adonis test with default parameters.
frontiersin.org

https://doi.org/10.3389/frmbi.2025.1589686
https://www.frontiersin.org/journals/microbiomes
https://www.frontiersin.org


Zhu et al. 10.3389/frmbi.2025.1589686
taxa typically not abundant in the oral microbiota, particularly,

Sphingomonas and Pseudomonas (Supplementary Dataset 1), were

significantly enriched in the BALmicrobiota of healthy participants.

Overall, these observations suggest a significant association

between the composition of the BAL microbiota and lung cancer.

Specifically, a BAL microbiota that is dominated by taxa not

abundant in the oral cavity serves as a potential hallmark for

lung health.
Association between the oral microbiota
and lung cancer

Since oral microbes are a primary source of the BAL microbiota,

variations in the oral microbiota may underlie the differences in the

BALmicrobiota associated with lung cancer. To test this hypothesis,

we analyzed the oral microbiota from saliva samples. Two datasets

included saliva samples: one dataset (PRJEB29934) contained

samples solely from lung cancer patients, while the other dataset

(PRJNA586753) included samples from both healthy individuals

and lung cancer patients. For our analysis, we focused on the

PRJNA586753 dataset.

The analysis methods were consistent with those described

above. At the genus level, there was no significant difference in

the oral microbiota associated with lung cancer (Figure 3a).

However, the Adonis test revealed that the overall composition of

the oral microbiota was significantly associated with lung cancer

(Figure 3b), although the P-value for this difference (P = 0.049) was

notably weaker than that observed for the BAL microbiota (P ≤

0.001), despite comparable case numbers (Figures 2a, 3a). A

differential abundance analysis using ALDEx2 was also

conducted, but no taxa displayed significantly different

abundances related to lung cancer (data not shown). To explore

potential differences further, a less stringent method, LefSe (Segata

et al., 2011), was applied, identifying enrichment of the genera
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Blautia and Stomatobaculum in lung cancer patients and

Aggregatibacter, Alloprevotella, Lautropia, and Haemophilus in

healthy participants (Figure 3c). Notably, Blautia and

Stomatobaculum were also enriched in lung cancer patients

within the oral microbiota (Figure 2d), although their significance

was stronger in the BAL samples. However, the four genera

associated with health in the oral microbiota were not identified

as differentially abundant in the BAL microbiota after correcting for

multiple testing.

Consistent with previous studies (Hosgood et al., 2021;

Vogtmann et al., 2022; Zhang et al., 2023), the results described

above indicate a significant difference in the composition of the oral

microbiota between healthy individuals and those with lung cancer,

although this difference is less pronounced than that observed in the

BALmicrobiota. Given that Blautia and Stomatobaculum were both

identified as potential risk factors for lung cancer, it is possible that

the differences observed in the BAL microbiota are related to those

in the oral microbiota. To further test this hypothesis, we analyzed

the correlation of taxa in the oral and BAL microbiota using saliva

and BAL samples case-matched by the same participants from the

PRJNA586753 cohort, which includes samples from both healthy

and lung cancer participants. To determine whether the relative

abundance of microbes in the oral microbiota influences that in the

BAL microbiota, Spearman’s correlations were calculated between

specific bacterial taxa in the oral microbiota and their

corresponding abundance in the BAL microbiota. Consistent with

previous studies reporting significant difference between the oral

and BAL microbiota (Bingula et al., 2020; Leitao Filho et al., 2023),

the analysis revealed that only two out of 416 genera showed

significant correlations in relative abundance between the oral

and BAL samples, and neither of these genera were associated

with lung cancer (Supplementary Figure S5, Supplementary Dataset

3). These findings suggest that the relative abundance of microbes in

the oral samples does not directly influence that in the microbiota in

the BAL.
TABLE 1 The number of BAL samples predominant by a specific taxon in healthy and lung cancer participants.

Most
abundant
taxon

Number of BAL samples
predominant by this taxon
in healthy participants

Number of BAL samples
predominant by this taxon
in lung cancer patients

Odds_Ratio Lower_CI Upper_CI
Fisher
P-value

Streptococcus 8 81 5.69825581 2.66554476 12.1814196 1.39E-07

Prevotella 23 80 1.70692432 1.01610875 2.86740039 0.04868917

Pseudomonas 23 2 0.03135167 0.00726741 0.13525133 4.69E-11

Propionibacterium 8 0 0 0 NA 6.17E-05

Sphingomonas 6 0 0 0 NA 0.00072006

Corynebacterium 5 0 0 0 NA 0.0024389

Fusobacterium 9 4 0.1826484 0.05518825 0.60448447 0.00385898

Novosphingobium 3 0 0 0 NA 0.02751112

Microbacterium 4 1 0.1059322 0.01172276 0.95725178 0.0313155
fro
The full list is provided in Supplementary Dataset 1. The numbers of samples from healthy individuals and lung cancer patients were 129 and 296, respectively.
ntiersin.org

https://doi.org/10.3389/frmbi.2025.1589686
https://www.frontiersin.org/journals/microbiomes
https://www.frontiersin.org


Zhu et al. 10.3389/frmbi.2025.1589686
The lung microbiota in lung cancer

For this study, five datasets containing lung microbiota data

collected from tumor and normal adjacent tissue of lung cancer

patients were analyzed (Supplementary Figure S6a). As no studies

included lung tissue from healthy individuals, all comparisons

below are between tumor and adjacent normal tissues from lung

cancer patients. Additionally, one cohort (PRJNA327258) only

contained tumor tissue samples and was excluded from the

analysis. Since the remaining datasets contain both tumor and

normal adjacent tissue samples, a batch effect removal procedure

was applied to remove differences between these cohorts

(Supplementary Figures S6b,c).

Probably due to the larger sample size, a notable difference in

alpha diversity at the genus level was observed in the lung

microbiota between normal adjacent and tumor tissues, as

measured by the Shannon index (Figure 4a). This contrasts with

the findings in the saliva and BAL microbiota, where such
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differences were not observed. The Shannon index reflects both

evenness and the number of observed taxa, where evenness refers to

the uniformity of species represented within a community. In the

lung tissue microbiota, the number of genera but not evenness was

significantly different between normal adjacent and tumor tissues.

Beta diversity, in addition, was significantly different between

normal adjacent and tumor tissues (Figure 4b), suggesting distinct

microbial compositions associated with lung cancer in the lung

tissue microbiota. Further differential abundance analysis using

ALDEx2 identified three taxa, i .e . , Stenotrophomonas ,

Corynebacterium, and Staphylococcus, as significantly enriched in

normal adjacent tissues (Figure 4c). Consistent with the BAL

microbiota findings, the three taxa enriched in normal adjacent

lung tissues were also more abundant in BAL samples from healthy

participants (Figure 2d).

In hierarchical clustering, most of the BAL samples from

healthy participants were grouped close to each other, indicating

similar community profi les (Figure 1a). As shown in
FIGURE 2

Association of the BAL microbiota with lung cancer analyzed by data from the PRJNA586753 cohort. (a) Alpha diversity of the BAL microbiota,
quantified by the Shannon index, is compared between healthy and lung cancer participants, with differences assessed using the two-sided Mann-
Whitney U test. The case numbers are indicated below the box plot. (b) The relationship between lung cancer and BAL microbiota composition is
visualized in an NMDS plot and tested by the Adonis test with default parameters. (c) The composition of the BAL microbiota in healthy and lung
cancer participants is shown in the heatmap, with samples clustered using the “ward.D2” method and Manhattan distance. (d) Relative abundance
differences of bacterial taxa between healthy and lung cancer participants in the BAL microbiota are shown. Changes in relative abundance were
tested using the ALDEx2 package in R, and quantified by the per-taxon median difference between conditions. Adjusted P-values were calculated
with the Benjamini-Hochberg correction applied to the Mann-Whitney U test.
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Supplementary Figure S7, the same hierarchical clustering analysis

was performed on the lung tissue microbiota. However, no distinct

clusters were observed that predominantly included samples from

normal adjacent or tumor tissues. This, combined with the less

significant P-values in the Adonis test for beta diversity (Figure 4b

compared to Figure 1c) and differential abundance analyses

(Figure 4c compared to Supplementary Dataset 2 Sheet 2),

suggests that the differences between the microbiota in normal

adjacent and tumor tissues from lung cancer patients are less

pronounced than those observed between the BAL microbiota of

healthy and lung cancer participants.
Association between taxa at different body
sites in the respiratory tract

The results shown above suggested that the BAL microbiota has

the most significant association with lung cancer and it seems that,

although microbes in the oral cavity are a primary source of the lung

microbiota (Bagheri et al., 2022), there was no significant

correlation between the relative abundance of specific bacterial

taxa in the oral and BAL microbiota (Supplementary Figure S5).

To further investigate microbial associations across different body

sites, we analyzed microbiota from saliva, BAL, and lung tumor

tissue samples case-matched by the same participants, using data

from the PRJEB29934 cohort.

In this study, a total of 416 taxa were identified at the genus

level. However, only four taxa within the oral microbiota showed

significant self-association (FDR ≤ 0.05) with their counterparts in

the BAL microbiota (Supplementary Figure S8a). Likewise, only two

taxa were correlated between the oral and lung tissue microbiota,

and no taxa were correlated between the BAL and lung tissue

microbiota (Supplementary Figures S8b,c). These findings suggest

that, although the upper respiratory tract may serve as a primary

source for microbiota in the lower respiratory tract, the relative

abundances of taxa across different respiratory tract sites are not
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significantly associated. Therefore, oral and BAL samples are not

suitable proxies for investigating the relative abundance of bacterial

taxa in lung tissue samples.
Discussion

This study systematically examined the association between

lung cancer and the microbiota across various sites in the

respiratory tract, including the oral cavity, BAL, and lung tissue.

The BAL microbiota showed the strongest association with lung

cancer when comparing healthy and lung cancer participants. Since

BAL samples are collected from the lower respiratory tract,

specifically from the alveolar spaces, this provides a closer

interaction with lung tissue cells compared to oral samples. Thus,

microbes in BAL samples may have a more direct impact on the

lung microenvironment. A more substantial microbiota difference

may exist between lung tissues from healthy participants and lung

cancer tissues. However, the difficulty of collecting lung tissue

samples from healthy participants limits the ability to detect such

differences. In lung cancer patients, microbiota may move between

normal adjacent and tumor sites or be influenced by common

factors within the lung, such as immune suppression or impaired

respiratory clearance. This could result in less distinct differences

between normal adjacent tissue and tumor-associated microbiota in

lung cancer patients compared to microbiota differences between

BAL samples from healthy participants and lung cancer patients.

Furthermore, recent studies have incorporated lung microbiota data

into predictive models for lung cancer screening (Chen et al., 2023;

Zhou et al., 2024; Kashyap et al., 2025). These findings further

underscore the potential clinical utility of BAL samples in lung

cancer diagnosis, given the significant differences observed between

BAL microbiota in healthy individuals and lung cancer patients.

Another key finding is that a BAL microbiota composition

dominated by taxa not abundant in the oral microbiota is a

hallmark of individuals without lung cancer. In contrast, taxa
FIGURE 3

Association of the oral microbiota with lung cancer, based on data from the PRJNA586753 cohort. (a) Alpha diversity of the oral microbiota,
measured by the Shannon index, compared between healthy participants and those with lung cancer. Differences were evaluated using the two-
sided Mann-Whitney U test, with case numbers indicated below the box plot. (b) The relationship between lung cancer and oral microbiota
composition is illustrated in an NMDS plot and analyzed using the Adonis test with default parameters. (c) Differences in the relative abundance of
bacterial taxa in the oral microbiota between healthy and lung cancer participants are shown. Relative abundance changes were assessed with LefSe
analysis in R, and quantified by the LDA score across conditions.
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commonly found in the oral microbiota, such as the Streptococcus

genus, were more abundant in the BAL of lung cancer patients. This

shift may be attributed to lung cancer impairing respiratory

clearance, thereby facilitating the translocation of microbes from

the upper to the lower respiratory tract. However, this observation

does not rule out the possibility that microbial invasion from the

upper respiratory tract could actively contribute to lung cancer

development by inducing chronic inflammation, as discussed

above. Therefore, these data cannot determine whether the BAL

microbiota merely reflects reduced lung function or actively

contributes to cancer pathogenesis. To establish the causal

relationship between changes in BAL microbiota and lung cancer,

longitudinal studies are essential. Identifying whether these

microbiota shifts occur prior to or during the early stages of lung

cancer could provide valuable insights for early diagnosis

and intervention.

Multiple factors contribute to the differences between the

microbiota of the upper and lower respiratory tracts, including

but not limited to distinct microenvironments such as oxygen

levels, as well as microbial clearance mechanisms like coughing,

mucociliary transport, and immune responses, as introduced above.

In this study, the BAL microbiota showed a stronger association

with lung cancer compared to the oral microbiota. Although few

significant correlations were observed between specific bacterial
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taxa across different body sites, this does not rule out the possibility

that microbial communities in the upper respiratory tract may

influence those in the lower respiratory tract and impact lung

cancer. Microbial seeding from the upper to lower respiratory

tract is likely, as the oral cavity serves as the body’s gateway and

is more directly influenced by external environmental factors.

Addressing this question will require data with strain-

level resolution.

Past reviews have identified limited sample sizes and inadequate

control for confounding variables as key limitations in

understanding the role of respiratory microbiota in lung cancer.

This study partially addressed the sample size limitation but could

not control for confounding factors due to a lack of available

information. Given the observed differences in BAL microbiota

between healthy and lung cancer participants, future studies should

consider larger, well-matched cohorts with expanded BAL sampling

to improve understanding of these associations.

Another major limitation of this study is that significant

challenges in specimen collection, processing, storage, and 16S

rRNA sequencing make reproducibility across multiple sites and

cohorts difficult. Even with similar collection strategies, results can

vary substantially between locations, independent of true

differences in microbial taxa. Therefore, some of the analysis

outcomes, e.g., those shown in Figures 2, 3, are derived from a
frontiersin.or
FIGURE 4

Comparison of microbiota in normal adjacent and tumor tissues in lung cancer patients. (a) Alpha diversity of the lung tissue microbiota, assessed by
the Shannon index, evenness, and observed taxa count, is compared between normal adjacent and tumor tissues, with differences evaluated by the
two-sided Mann-Whitney U test. Case numbers are displayed below the box plot. (b) The relationship between lung cancer and lung tissue
microbiota composition is represented in an NMDS plot and analyzed by the Adonis test with default settings. (c) Differences in the relative
abundance of bacterial taxa in the lung tissue microbiota between normal adjacent and tumor tissues are shown. Changes in relative abundance
were evaluated using the ALDEx2 package in R, with quantification by the per-taxon median difference between conditions. Adjusted P-values were
calculated using the Benjamini-Hochberg correction for the Mann-Whitney U test.
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single cohort. Although batch effect removal techniques were

applied in the rest analyses, potential biases arising from cohort

diversity could still impact the conclusions.

Contamination is another potential factor that may have

influenced the analyses in this study. Approximately half of the

cohorts either have associated publications describing protocols to

minimize contamination (Nejman et al., 2020; Zhuo et al., 2020; He

et al., 2022; Guo et al., 2023), like the use of transbronchoendoscope

in sample collection, or include mock samples to control for

environmental contamination (PRJEB34172). In contrast, for the

cohorts PRJEB29934, PRJNA253931, PRJNA316098, and

PRJNA434133, no related publications are available to confirm

whether contamination control measures were taken. Therefore,

potential contamination in these cohorts could have influenced the

conclusions regarding the BAL microbiota.
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