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a mesocosm experiment
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Anthropogenic climate change caused by CO2 emissions forces humanity to

reduce the usage of fossil fuels. Along with the task of emission reduction,

societies face the task of removing excess CO2 from the atmosphere by using

negative emission technologies (NETs). Ocean alkalinity enhancement (OAE) is a

proposed NET, aiming at increasing oceanic CO2 uptake through the addition of

alkaline substances. This is an anthropogenically accelerated version of rock

weathering, a natural global process for atmospheric CO2 regulation. The

environmental impacts of OAE remain poorly understood. This study was part of

a comprehensive OAE-mesocosm experiment in the North Sea (RETAKE), and

focused on the effects of OAE on the pelagic bacterial community during the

experiment. We assessed changes in bacterial community structure with 16S rRNA

amplicon sequencing and abundancewith flowcytometry, to evaluate responses to

alkalinity addition. Beta diversity analysis showed that sampling timewas the primary

driver for community variation, with only marginal structural differences linked to

alkalinity treatments. PERMANOVA tests conducted on predictions of functional

metabolic pathways of the community revealed significant differences between

treatments and baseline controls. A deeper analysis of the identified metabolic

pathways revealed little evidence for alkalinity-induced changes. In contrast, total

bacterial cell counts were influenced by alkalinity additions, showing delayed

abundance peaks at higher concentrations and a non-linear response threshold

between 500–750 µmol/L. These dynamics were linked to shifts in chlorophyll

concentrations, suggesting an indirect effect of OAE on bacteria mediated by
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phytoplankton derived resources. This study is one of the first to assess ecological

impacts of OAE on bacteria. Our findings highlight a structural resilience of bacterial

communities to OAE but also show a quantitative response. By discussing our

findings, this study aims to provide focus points, such as a threshold for save levels

of alkalinity addition, to direct future research.
KEYWORDS

ocean alkalinity enhancement, negative emission technology, environmental
microbiology, marine microbiology, carbon sequestration, mesocosm experiment,
amplicon sequencing, bacterial cell counts
1 Introduction

The industrial revolution in the 18th century marked the

beginning of large-scale use of fossil fuels for energy accompanied

by a substantial increase in CO2 emissions. Since preindustrial

times, the total amount of CO2 in the atmosphere has increased

from 280 ppm to 420 ppm in the year 2022 (Hashimoto and

Hashimoto, 2019; Friedlingstein et al., 2024). Elevated levels of CO2

in the atmosphere are contributing to global warming and climate

change, resulting in an increase of approximately 1°C in global

average temperature since preindustrial times (Pörtner et al., 2022).

The rising atmospheric CO2 concentration is enhancing its

diffusion into the ocean, reacting with water to create carbonic

acid, thereby releasing hydrogen ions. This process is called Ocean

Acidification and since preindustrial times the relative abundance

of hydrogen ions in the seawater has increased by 30% (Raven et al.,

2005). Even under the most favorable scenario developed by the

intergovernmental panel on climate change (IPCC), CO2 emissions

will need to be brought down considerably. Hence, in 2015, a total

of 190 countries agreed to mitigate global warming by adopting the

1.5°C and 2°C climate goals in the Paris agreement. The main

objective is to restrict global warming to 1.5°C and 2°C, respectively,

by limiting CO2 emissions (Rhodes, 2016).

With the goals of reaching net zero emission during the 21st

century, there is a need for carbon dioxide removal (CDR)

strategies, to compensate for emissions that are difficult to

mitigate, such as those from air traffic. Negative emission

technologies (NETs) are anthropogenic practices that remove

more CO2 from the atmosphere than they emit. The AR5 report

of the IPCC evaluated multiple model scenarios for their likelihood

of meeting the 2°C climate goal. The vast majority (87%) of these

promising scenarios incorporated CDR in the latter half of the 21st

century. These modelling results emphasize the crucial role of NETs

in the future (Smith et al., 2016).

One example of such a NET is ocean alkalinity enhancement

(OAE). Alkalinity is the buffering capacity to resist pH changes

upon acidification. Chemically, alkalinity is defined as the sum of all

proton acceptor molecules minus all proton donor molecules in the

solution (Montserrat et al., 2017). Ocean alkalinity can be increased
02
by adding alkalizing substances like sodium hydroxide into the

water (Hartmann et al., 2022). Other methods of alkalinity

enhancement can involve adding particles of quick weathering

rocks, such as olivine (Schuiling and De Boer, 2010) and calcite

(Caserini et al., 2022), to seawater. As a NET, OAE removes CO2

from the atmosphere and stores it in the ocean by shifting the

carbon equilibrium from gaseous CO2 towards dissolved

bicarbonate (HCO3
-) and carbonate (CO3

2-). The resulting

depletion of CO2 in the water enhances its diffusion into the

water, ultimately leading to a reduction of atmospheric CO2 levels

(Vicca et al., 2022). In addition, the elevated alkalinity helps to

counteract ocean acidification by enhancing the oceans buffering

capacity (Renforth and Henderson, 2017; Harms et al., 2024).The

concept of OAE as a CDR strategy is still relatively new, with limited

research available into potential environmental risks. Hypotheses

concerning the effects of OAE on the environment are

predominantly positive. The main reason for that is the presumed

potential to counteract the adverse effects of ocean acidification, on

organisms such as calcifying coccolithophores (D’Amario et al.,

2020) and sponges (Kleypas et al., 1999; Figuerola et al., 2021). The

current literature available on the ecotoxicological effects of OAE is

largely theoretical and potential effects are only predicted based on

the chemical changes caused by it. One important aspect

influencing the anticipated chemical changes from OAE is the

substance used for alkalization. In a comprehensive study on

environmental risks and co-benefits of OAE, the authors propose

that different materials used are likely to benefit different marine

organisms (Bach et al., 2019). OAE using weathering products from

calcite rocks is likely to benefit calcifying organisms like

coccolithophores, while silicate rock weathering products, such as

from olivine, may support silicifying organisms like diatoms. The

authors refer to this as the ‘white or green ocean hypothesis’, as

enhanced growth of the respective algae is associated with the

different color, white for calcifers and green for silicifiers. Aside

from the material used for OAE the equilibration status of the

application is also considered as an important aspect in its

ecotoxicology. Generally, a distinction is made between CO2

equilibrated and unequilibrated OAE. Alkalization increases the

pH, which reduces the availability of dissolved CO2 and bicarbonate
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in the seawater (Wolf-Gladrow et al., 2007). Equilibrated OAE

refers to an alkalinity increase without requiring extended ingassing

of CO2 from the atmosphere to equilibrate dissolved inorganic

carbon concentrations again. This constitutes a milder stressor

compared to unequilibrated OAE, which induces a sudden pH

spike upon abrupt alkalinity addition (Suessle et al., 2025). Large-

scale application of equilibrated OAE involves the use of

weathering- or bioreactors to evenly add dissolved alkalinity into

the environment (Ferderer et al., 2022; Hartmann et al., 2022;

Hutchins et al., 2023). This represents the construction of additional

infrastructure, making equilibrate OAE scenarios more costly

compared to unequilibrated OAE (Gattuso et al., 2021). The

effects of OAE on the marine ecosystem remain uncertain,

presenting a critical bottleneck for its application.

The ocean plays a fundamental role in carbon sequestration,

serving as a sink for ~ 2.8 gigatons of carbon annually (Friedlingstein

et al., 2023). Furthermore, the ocean contributes equally to the global

primary production as terrestrial ecosystem (Field et al., 1998; Moran

et al., 2022). Marine bacteria are essential in the ecosystem as they

have a short generation time and high turnover rates in the recycling

of nutrients (Azam and Malfatti, 2007). Certain bacterial taxa form

mutualistic relationships with diatoms, in which they fix nitrogen and

supply phosphorus and other nutrients that support diatom growth

(Amin et al., 2012). In a trophic pathway known as the microbial loop

bacteria remineralize carbon and other nutrients to make them

available again for primary production in the surface waters

(Heinrichs et al., 2020). Marine snow refers to a phenomenon

where organic material from algal primary production aggregates

into sinking particles that are colonized by bacteria. These particles

act as nutrient hotspots in an otherwise nutrient-poor water column

and are recycled by heterotrophic bacteria, making the nutrients

available again to the surrounding water (Borer et al., 2023). In

addition, marine snow serves as a carbon sink because these particles

can sink to the deep ocean, where they are stored for millennia, with

the associated bacterial community turning over as the particles

descend (Mestre et al., 2018).

Modern advances in next-generation sequencing (NGS)

technologies allow for a qualitative description of entire bacterial

communities. These NGS methods have increasingly been applied

to marine environments to investigate changes in bacterial

communities caused by pollutants such as microplastics (Song

et al., 2022) or wastewater discharge (Kodera et al., 2023). In

addition, NGS methods are increasingly subject of monitoring

programs for aquatic environments (Paruch and Garcıá-Aljaro,

2024). Large-scale surveys such as the Tara Ocean sampling

campaign have mapped reoccurring bacterial community patterns

in the oceans, thereby advancing the understanding of the

ecological significance of bacterial communities across diverse

marine habitats (Sunagawa et al., 2015). Despite the wealth of

information on bacterial communities in natural environments,

only one study has investigated the impact of OAE on seawater

bacterial communities using NGS methods (Ren et al., 2021). In

that study, the authors implemented olivine in an OAE experiment

to examine shifts in both free-living and particle-associated

bacterial communities and found that olivine-based OAE
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primarily affected particle-associated bacteria. Distinguishing

between particle-attached and free-living bacterial communities is

reasonable in an experiment, given their different ecological roles in

the ocean. Particle-attached bacteria are focused on degrading

matter, while free-living ones are focused on locating and

absorbing dissolved nutrients (D’ambrosio et al., 2014). This

division may, however, be premature as empirical studies on the

effects of unequilibrated OAE on bacterial communities have not

been conducted in general. This and the investigations into a safe

threshold for alkalinity addition are critical research gaps in the

ecotoxicology of OAE.

In this study, we analyzed the effects of OAE on the bacterial

community during a large mesocosm experiment in the North Sea

at the south harbor of Helgoland. The experiment was conducted by

the RETAKE consortium under the CDRmare research mission and

was funded by the German Ministry of Education and Science

through the German Alliance for Marine Research (DAM) “https://

retake.cdrmare.de”. The study design specifically aimed to

investigate the effects of OAE treatments on the coastal marine

environment without equilibrating the water with atmospheric

CO2, while applying a gradual range of alkalinity additions. This

is to our knowledge the first major study to have analyzed a wide

range of alkalinity addition levels and their effects on bacterial

communities. We hypothesize that alkalinity-driven changes will be

observable in the beta diversity of the bacterial community samples

taken during the experiment. We expect to see shifts in the

community composition that can be linked to increased alkalinity

gradients in the experiment. The treatments may affect carbon

metabolism, as unequilibrated OAE reduces availability of dissolved

inorganic carbon. Accordingly, we expect to observe increases in the

abundance of predicted functional pathways associated with carbon

processing within the bacterial community of treated mesocosms.

The resulting reduction of CO2 availability also leads us to expect

altered primary production in mesocosms with increased alkalinity

treatments. This is likely to impact heterotrophic bacterial growth.

We hypothesize that the cumulative bacterial cell counts will

decrease in mesocosms receiving higher concentrations

of alkalinity.

The insights generated from this study provide a foundation for

future research by identifying key areas for further investigation,

such as a safe threshold for alkalinity addition and interactions

between bacteria and primary producers during OAE. This

represents an initial step towards establishing a knowledge base

for defining a safe operating space for OAE and assessing whether

its potential environmental impacts are acceptable in view of its

projected benefits for CO2 drawdown.
2 Materials and methods

2.1 Study site and treatments

Twelve mesocosms were deployed in the southern harbor of

Helgoland from March 12, 2023, to April 21, 2023 (Dummermuth

et al., 2023). The timeframe was specifically chosen to capture the
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phytoplankton spring bloom. The mesocosms were constructed

from flexible plastic bags strapped to floating frames, designed to

hold 7800 L of water while floating in a natural marine

environment. This setup has been used in previous mesocosm

studies on OAE (Marı ́n-Samper et al., 2023) and ocean

acidification (Spilling et al., 2016; Langer et al., 2017). For more

detailed descriptions of the mesocosms, see Riebesell et al. (2013)

and Goldenberg et al. (2022). After deployment, the mesocosms

were initially filled with seawater from the Helgoland Roads

observatory site (Wiltshire et al., 2010). The water was filtered

with a <3 mm mesh sized net upon filling of the mesocosms.

The experimental setup included 12 mesocosms, divided into

two groups of six. The experiment was designed to test different

alkalinity dilution scenarios, where immediately diluted alkalinity is

added to the entire mesocosm, in contrast to delayed diluted

alkalinity with high localized concentrations within a top layer of

a mesocosm. The dilution scenarios were invented to test effect of

point-based perturbation of high alkalinity against uniform

dissolution over a larger area. One group assessed the impacts of

immediately even diluted alkalinity and is called the IMM group,

while the other assessed a delayed dilution of alkalinity, called the

DEL group.

The perturbation simulated calcium mineral-based OAE using

sodium hydroxide (NaOH) under non-equilibrated atmospheric

conditions. To mimic the presence of dissolved calcium minerals, a

stock solution of calcium chloride (CaCl) was first prepared using

17 L of pre-filtered freshwater. This solution was introduced into

the mesocosms using a horizontally-distributing device called the

“spider” (Riebesell et al., 2013). An additional 17 L of freshwater was

subsequently flushed through the spider to ensure complete delivery

of the stock solution and to aid in establishing a distinct vertical

salinity gradient (DS ≈ 0.5 PSU), thereby creating two layers in the

DEL mesocosm. After the stratification was established, the NaOH

stock solutions, also prepared with 17 L of pre-filtered freshwater,

were added in the same manner using the spider device. The spider

device ensures even horizontal distribution throughout the

mesocosm water along the depth. The water had a background

alkalinity of 2330 μmol/L. Alkalinity was added in six steps of 250

μmol/L, ranging from D0 μmol/L as the control mesocosms to

D1250 μmol/L as the highest alkalinity concentration (scheme in

supplement). The alkalinity addition and the pH were monitored

over the course of the experiment in each mesocosm via titration of

20 ml of mesocosm water (supplement).
2.2 Sampling

Water samples were taken from the mesocosms using a 2.5

meter long tube sampler with 5 liter capacity (Marıń-Samper et al.,

2023). The sampler had valves at both ends and was inserted into

the mesocosms with open valves. The valves were sealed upon

withdrawal to ensure a depth integrated sample. Samples of 15–20 L

were collected every second day and transported in multiple

canisters to the laboratory for further analysis. During the
Frontiers in Microbiomes
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layering period, samples were not taken with the tube sample, but

with a Niskin bottle to keep the integrity of the layering in the

bottom and top samples. The layering period lasted for three days.

Biomass samples for amplicon sequencing of the bacterial

community were taken weekly with either 6 or 8 days apart from

each other, alternating between Wednesdays and Thursdays. This

shift had to be implemented due to the samplings of the campaign

being every second day. The biomass from 2 L of water was taken by

filtering it on 0.22 μm Sterivex cartridge filters (Merck, Darmstadt,

Germany, Cat No: SVGP01050) using a peristaltic pump equipped

with six tube channels to simultaneously process multiple samples

(DeHart et al., 2023). The filters were then stored at -80°C for

downstream analysis after the remaining water was blown out using

a syringe with a sterile filter.

For bacterial cell counts, 2 mL of water was collected from each

mesocosm in cryovials every second day. Formaldehyde (final

concentration 1%) was added to each cryovial, and the sample

was incubated at 4°C for 24 hours for cell fixation. After incubation,

they were stored at -80°C until further processing.
2.3 DNA extraction and amplicon
sequencing

DNA extraction from the Sterivex filters was performed by

opening the capsules with a clean pipe cutter and retrieving the filter

units (Cruaud et al., 2017). Each filter unit was placed into a Bead

Pro Tube from the DNeasy PowerWater kit (Qiagen, Hilden,

Germany). DNA extraction followed the manufacturer ’s

instructions with the following modifications to optimize yield:

After adding the solution PW1 from the kit (step 5), the Bead Pro

Tube was incubated at 60°C for 10 minutes to lyse organisms with

robust cell walls. The tubes were then vortexed and centrifuged at

1500 g for one minute to separate the DNA from the filter.

Following filter removal, an additional centrifugation step for 1

min at 1500 g was performed and the DNA extraction was

continued at step 8 according to the manufacturers guide.

DNA quantification was conducted using a NanoQuant plate

reader (Tecan Group Ltd., Männedorf, Switzerland) (Bruijns et al.,

2022). From each sample 1 ng/μL of DNA was sent to LGC (Berlin,

Germany) for library preparation and sequencing. A brief

description of the PCR and sequencing procedure: The V4-V5

regions of the 16S rRNA genes were amplified with PCR (see

supplement for the used chemicals and cycling conditions) with

universal primers 515F-Y and 926R (Parada et al., 2016).

Amplicons were purified using Agencourt AMPure XP beads

(Beckman Coulter, Inc., IN, USA) and MiniElute columns

(QIAGEN GmbH, Hilden, Germany) to remove non-specific

products before library construction. The samples were dual

indexed with the Ovation Rapid DR Multiplex System (NuGEN

Technologies, Inc., CA, USA). Sequencing was performed on an

Illumina MiSeq platform with V3 Chemistry, generating 5 million

read pairs. The raw sequencing data is uploaded at the NCBI with

the accession number: PRJNA1245293
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2.4 Bioinformatical processing and ASV-
generation

Read processing was conducted in RStudio using the DADA2

package (Version 1.36.0) (Callahan et al., 2016). Demultiplexed,

merged reads with removed primers underwent quality control,

filtering for base positions with an average Phredscore of 30

(Prodan et al., 2020). The reads were filtered to have a minimum

length of 170 and a maximum length of 350 base pairs. Dereplicated

reads were processed with the dada() function, generating

Amplicon Sequence Variants (ASVs) (Eren et al., 2013) using a

run-specific error model. Post-inference, chimeras were removed,

and taxonomic classification was performed using the IdTaxa()

function (Murali et al., 2018) in the DECIPHER package (Version

3.4.0) (Wright, 2016), utilizing the SILVA 138 SSU database (release

date 16.12.2019) (Quast et al., 2012). Non-bacterial ASVs were

excluded from the analysis. The code used for the ASV generation is

provided at a GitHub repository: https://github.com/Dom-Antoni/

RETAKE_Analysis/tree/RETAKE-Microbiome
2.5 Bacterial community analysis

To assess the overall structure of the microbial community data,

we conducted Principal Coordinates Analysis (PCoA) based on a

Bray–Curtis dissimilarity matrix with the phyloseq package

(McMurdie and Holmes, 2013) and the vegan package in R

(Oksanen et al., 2013). Square root transformed count data,

rarefied to the lowest sequencing depth of 5361 ASVs was used

(Schloss, 2024).

The Bray–Curtis metric was chosen because it incorporates

relative taxonomic abundances, which are central to our analysis, as

shifts in abundance are considered key indicators of ecological

change (Bray and Curtis, 1957). We opted against using

phylogenetic-based metrics such as UniFrac, as these emphasize

evolutionary relationships, which happen in mesocosms regardless

of alkalinity treatments. PCoA was applied to the entire dataset, and

the ordinations were visualized with facets for alkalinity treatment

concentrations and sampling time points to evaluate how each

parameter aligns along the dominant axes of variation.

To further examine whether patterns in community shifts differ

between ecologically distinct subgroups, we repeated the PCoA

analysis with subsets of the bacterial community representative of

the core and transient members of the microbiomes. Core Amplicon

Sequence Variants (ASVs) were defined as those present in at least

50% of all samples, resulting in 139 ASVs representing 26,765

sequence counts. Transient ASVs included all remaining taxa,

comprising 2,169 ASVs with a total of 30,695 counts.

To identify patterns in the taxonomic microbial community

composition beyond predefined experimental groupings, we applied

an unsupervised clustering approach based on community similarity.

Unsupervised means that prior sample groupings based on metadata

of the sample origin, such as alkalinity addition and sampling day,

were ignored, and an algorithm was used to find patterns in the data.
Frontiers in Microbiomes 05
This strategy was necessary because the effects of alkalinity treatment

levels and sampling time points are not distinguishable from each

other in the applied study design, making it difficult to attribute

observed community changes to a single factor.

This unsupervised clustering included the K-means clustering

algorithm (Lloyd, 1982) to group samples with similar bacterial

communities together, allowing for the identification of patterns. To

determine the optimal number of clusters, we applied Elbow and

Silhouette plot analysis (Yuan and Yang, 2019) using the Bray-

Curtis dissimilarity matrix. Both analyses indicated that three was

the optimal number for clustering (see supplement), which was

then used to categorize the samples. After the clustering, we

reapplied the sample metadate again, to assess which factors best

explain the observed grouping. We performed a chi-square test of

independence (Tallarida et al., 1987) on the sampling time point,

alkalinity treatment levels and the dilution treatment, as

parameters. By comparing the p-values returned from the three

tests and identifying the lowest p-value the chi-square test points to

the parameter that describes the clustering best.

The primary purpose of the clustering analysis was to visualize

patterns in the taxonomic composition of bacterial communities

throughout the experiment. Within each of the resulting clusters,

relative abundances at the family level were illustrated using stacked

bar plots. To identify the ASVs that contributed most to the

differences among clusters, a similarity percentage (SIMPER)

analysis was conducted using the vegan package in R (Clarke,

1993). For visualization, we selected ASVs that cumulatively

accounted for up to 70% of the total dissimilarity between

clusters, following the threshold recommended by (Clarke and

Warwick, 2001), resulting in a subset of 613 ASVs. Alpha

diversity of the bacterial community samples was assessed

between clusters using richness, Shannon, and Simpson indices

calculated with the vegan package (Willis, 2019)
2.6 Statistical analysis on the bacterial
community

To evaluate the effects of alkalinity addition, sampling time, and

dilution treatment on bacterial community composition, we

conducted Permutational multivariate analysis of variance tests

(PERMANOVA) using Bray–Curtis dissimilarity matrices derived

from ASV-level abundance data. In contrast to the previous chi-

square test on k-means clusters—which examined groups defined

by similarity in community composition, this analysis tested for

differences between groups explicitly defined by the experimental

treatments. This approach aligns with standard practice for

assessing treatment effects in experiments.

The PERMANOVAs were performed using the Adonis

function in vegan to assess the significance of centroids of

groupings predefined by alkalinity treatment, the sampling time

point and the dilution treatment. Pairwise PERMANOVA

comparisons were performed using the pairwise.adonis() function

(Martinez Arbizu, 2020) to identify specific group differences as a
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post-hoc test. Bonferroni correction was employed to mitigate Type

I errors (Dunn, 1961). Baseline samples taken before treatment

application were excluded to avoid a bias on the result from

untreated controls.
2.7 Predicted functional profiling

To expand the analysis on the bacterial community, we further

investigated differences in predicted functional metabolic pathways

between treatments. Functional profiles of the bacterial

communities samples were predicted with Tax4Fun2 (Wemheuer

et al., 2020) a predictive tool that infers functional metabolic profiles

of bacterial communities using 16S rRNA gene sequence data. The

aim was to test if alkalinity treatment induced shifts in metabolic

pathways. Metabolic pathways represent sequences of chemical

reactions conducted by cells which are associated with functional

mechanisms. These mechanisms are clustered as metabolic

pathways with their own taxonomic classification provided by the

Kyoto Encyclopedia of Genes and Genomes (KEGG). This is a

bioinformatic tool providing databases to interpret genomic data

under a more biological relevant context like metabolic

functionality (Kanehisa and Goto, 2000).

Alkalinity induced changes in the relative abundance of KEGG

pathways identified, were tested by PERMANOVA between

samples grouped by alkalinity addition and by sampling time

point, with subsequent post-hoc test conducted as described above

for the taxonomic bacterial community. With a SIMPER analysis

we identified KEGG pathways which represent a cumulative

difference in the similarity percentage of 70% between baseline

samples and treated samples. We focused on these pathways to

visualize relative abundance of KEGG pathways with a stacked

bar plot.
2.8 Chlorophyll a concentration
measurement

Subsamples (400–1000 ml) were filtered (<200mbar) onto pre-

combusted glass fiber filters (25mm diameter, GF/F Whatman, 0.7

μm nominal pore size). Care was taken to minimize exposure to

light during the filtration process by covering the filtration racks.

Filters were subsequently stored in 2 ml plastic vials at -80°C for 1.5

months until further processing. Pigments were extracted in 100%

acetone (Baker 8142, Avantor, Radnor, USA) by homogenizing the

filters using 0.5 mm glass beads in a cell mill (Precellys, Montigny-

le-Bretonneux, France). Samples were then centrifuged (10 min,

10000 rpm, 4°C), and the supernatant was filtered using a 0.2 μm

polytetrafluoroethylene (PTFE) syringe filter (13mm diameter, Lab

Logistics Group). The concentration of photosynthetic pigments,

including Chlorophyll a in the supernatant was determined through

reverse-phase high-performance Liquid Chromatography (Thermo

Scientific HPLC Ultimate 3000) following the methodology

outlined in Van Heukelem and Thomas (2001).
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2.9 Total bacterial enumeration with flow
cytometry

Flow cytometry was conducted using a FACSCalibur flow

cytometer. Bacterial cell counts followed the protocol described

by Marie et al. (1999) for bacterioplankton enumeration. Briefly:

samples were stained with a 1:10,000 dilution of Sybr Green I stock

solution and incubated in the dark at room temperature for 15

minutes. Flow cytometric measurements were recorded using BD

CellQuest Pro™ software over a one-minute period. All events were

saved in FACS files.

The FACS files were processed using floreader.io, with each file

manually gated to isolate the prokaryotic community. The number

of events within the gate was divided by the calibrated flow rate (μL/

min) to calculate bacterial cell abundance. All gating images and

analysis details are available online in the GitHub repository:

“https://github.com/Dom-Antoni/RETAKE_Analysis/tree/

RETAKE-Microbiome”. Instrument settings and amplification

details are provided as well.
2.10 Cross-correlation analysis between
chlorophyll a and bacterial cell counts

To assess the temporal relationship between phytoplankton and

bacterial dynamics, we conducted a cross-correlation function

(CCF) analysis (Helleseth, 1976) between chlorophyll a

concentrations (as the independent variable, x) and bacterial cell

counts (as the dependent variable, y) using the ccf() function in R.

The CCF calculates correlation coefficients across a range of time

lags to identify potential lead-lag relationships between the two

variables. In this study, a single time lag corresponds to two days,

reflecting the interval between sampling events. The lag at which the

maximum correlation occurs indicates the time delay between

phytoplankton and bacterial responses, while the magnitude and

sign of the correlation coefficient at that lag reflect the strength and

direction of the association. Positive lags suggest that changes in

chlorophyll a concentration precede changes in bacterial cell

counts, whereas negative lags imply the opposite.
3 Results

3.1 Sampling time and alkalinity gradient
drive beta diversity structure

Alkalinity addition influenced beta diversity, but the sampling

time point was the primary driver of variation in bacterial

community composition. The PCoA based on Bray–Curtis

dissimilarities illustrated the factors driving the changes in

bacterial community composition across all 65 samples taken

during the experiment. Axis 1 explained 29.0% of the variance,

while Axis 2 accounted for 14.4%, resulting in a combined explained

variance of 43.4%. Visualizing the data by facets of sampling time
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and alkalinity treatment revealed trends along the gradients of both

parameters (Figure 1): Axis 1 was associated with sampling time, as

sample centroids shifted progressively along the positive direction

of this axis over the course of the experiment—from day 3 (centroid:

−0.49) to day 37 (centroid: 0.22). In contrast, axis 2 was closely

aligned with the gradient of added alkalinity. Centroids of samples

with increasing alkalinity additions shifted downward along the y-

axis, from 0.18 (250 μmol/L) to −0.14 (1250 μmol/L). The centroid

of the untreated control (0 μmol/L) deviated from this trend,

positioned near 0.00 on the y-axis, suggesting a weaker

association with this axis.

A similar trend was observed in the ordination of the core and

transient fractions of the bacterial community (Figure 2). The

ordination patterns across the PCoA plots of all ASVs, the core

ASVs (present in ≥50% of samples), and transient ASVs (present in

<50% of samples) were largely consistent, with sampling time again

aligning with axis 1 and alkalinity with axis 2. However, the

proportion of explained variance differed. In the core community,

the two main axes accounted for 55.9% of total variability, whereas

in the transient community they explained only 33.4%, indicating

that the core microbiome was more influenced by the experimental

conditions. In contrast, the transient community exhibited

greater stochasticity.
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3.2 Patterns in the taxonomic community
composition

With k-means clustering, the 65 community samples were

classified into three distinct clusters (Figure 3). The clustering

results revealed that sampling time was the dominant driver of

taxonomic variation. Samples collected during the first week of the

experiment primarily fell into Cluster 1, while those from later time

points grouped into clusters 2 and 3 (Figure 3). Notably, most

samples from the final week were assigned to cluster 3, with only 2

samples assigned to cluster 2. The chi-square test of independence

confirmed that sampling time had the strongest association with

cluster assignment (p = 0.00007), followed by alkalinity treatment

(p = 0.002), whereas dilution treatment had no significant

association (p = 0.756). While alkalinity was statistically

significant, its influence was secondary to sampling time point.

The SIMPER analysis identified the ASVs that contributed most of

the dissimilarity between clusters (678 ASVs). Across all clusters,

dominant families included Rhodobacteraceae, Flavobacteriaceae,

and Alteromonadaceae, though their relative abundances varied

(Figure 3). Cluster 1 showed a relatively even distribution of

taxonomic families, whereas cluster 3 was dominated by

Rhodobacteraceae (38.3%), indicating a temporal trend toward
FIGURE 1

PCoA of all samples using the Bray Curtis dissimilarity matrix, faceted by the day of the different groups of the sampling time point (upper panels)
and faceted by the different groups of the added alkalinity concentration (lower panels). Both the upper and lower panels are the same PCoA, which
can be seen cumulated on the left panel of Figure 2. The faceting into each sampling timepoint group and alkalinity group, is done to visualize how
the centroids move along the dominant two axes. The centroids of the increasing sampling timepoints move towards the right along the x-axis,
while the centroids of increasing alkalinity addition down on the y-axis.
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reduced evenness and increased dominance. The “Others” category,

comprising families contributing <15% to the total community,

declined from cluster 1 (24.6%) to cluster 3 (10.1%), further

suggesting a narrowing of taxonomic diversity. The SAR11-

associated Clade I decreased from cluster 1 (8.4%) to cluster 3

(2.9%), while Flavobacteriaceae peaked in relative abundance in

cluster 2 (42.4%). To complement the taxonomic analysis, alpha

diversity was assessed using richness, Shannon, and Simpson

indices (see supplement for plot). Alpha diversity declined from

cluster 1 to cluster three across all matrices. Cluster 1 consistently

exhibited the highest diversity (53.81 Richness, 3,51 Shannon, 0.95

Simpson), followed by cluster 2 (53.12 Richness, 3,30 Shannon, 0.93

Simpson). In contrast, cluster 3 showed a marked decline in both

richness and evenness (48.36 Richness, 3,24 Shannon,

0.93 Simpson).
3.3 Effects of alkalinity, sampling time and
dilution on microbial community

The PERMANOVA results indicated that both alkalinity

addition and sampling time had significant effects on bacterial

community composition, while dilution treatment had no

statistically detectable effect (Table 1). The sampling time had the

strongest effect on the community composition. Post hoc pairwise

comparisons revealed that most sampling days differed significantly

from one another (Table 2). Notably, samples from day 9 differed

significantly from those of all other time points (p < 0.05), and

samples from day 17 differed significantly from samples taken on all

other days except from day 23. Toward the end of the experiment,
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the number of significant differences between time points

decreased, particularly between samples taken on days 31 and 37,

no significant differences were detected. Considering the alkalinity

treatments, only the highest addition level (D1250 μmol/L) differed

significantly from the control (D0 μmol/L) after the Bonferroni

correction (p = 0.045; Table 3).
3.4 Alkalinity induced effects on predicted
functional pathways

Differences in the predicted functional pathways between

groups of alkalinity addition and sampling time point were tested

using PERMANOVA. This analysis revealed significant effects

of both sampling time (p = 0.001, R² = 0.29) and added alkalinity

(p = 0.016, R² = 0.14) on the predicted functional pathways of the

microbial communities. Post hoc pairwise comparison of sampling

time point groups showed that only the predicted functional

pathways from the first time point (day 3) differed significantly

from groups of later sample time points in the experiment (Table 4).

In contrast, pairwise comparisons between groups of the different

alkalinity levels did not yield significant differences after correction

for multiple testing (Table 5). A further SIMPER analysis on the

functional pathways between baseline samples and treated

mesocosm samples was used to visualize differences (Figure 4).

Relative abundances of KEGG pathways exhibited only modest

variation between baseline samples and treatment conditions. The

most abundant category, “Metabolic pathways,” showed a slight

decrease from 20.89% at baseline to 19.18% in treatment groups.

Minor changes were also observed for pathways such as
FIGURE 2

PCoA ordination of bacterial communities based on Bray-Curtis dissimilarities for the entire community (left), the core microbiome (center), and the
transient microbiome (right). The core community includes ASVs present in at least 50% of samples (139 ASVs), while the transient community
comprises all other ASVs (2,169 ASVs). Each point represents one sample, color-coded by sampling day. The first axis explains the majority of
variance in all three ordinations and corresponds primarily to sampling time.
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“Biosynthesis of antibiotics” (increase from 7.99% to 9.17%) and

“Biosynthesis of amino acids” (decrease from 4.23% to 3.36%),

other pathways like “Quorum sensing (2.61% to 3.22%)” and “ABC

transporters (5.26% to 5.90%)” remained largely unchanged.

Carbon metabolism pathways similarly displayed no changes in

the relative abundance between baseline and treated samples with a

small increase from 3.63% to 3.71%. Likewise, the dominant

“Others” category (36.27%–37.48%) also remained stable.
3.5 Effects of alkalinity on total bacterial
cell counts and chlorophyll interactions

To assess whether alkalinity addition affected bacterial

abundance, we calculated the cumulative bacterial cell counts for

each mesocosm. The results revealed a non-linear response: the

highest cumulative bacterial cell were observed at the 500 μmol/L

treatment (31,425 cells/μL), whereas counts declined at higher

alkalinity additions. Specifically, at 1000 and 1250 μmol/L

alkalinity addition, total counts fell to 13,459 and 11,765 cells/μL,

respectively. Both high alkalinity treatments had cumulative

bacterial cell counts markedly lower than the control mesocosms

(16,413 cells/μL). Bacterial cell count peaks were observed in seven

mesocosms with alkalinity treatments ranging from 0 to 750 μmol/

L, typically reaching between 2000 and 4000 cells/μL. In the control

and 250 μmol/L mesocosms, peak abundance occurred on day 20,

whereas in the 500 μmol/L treatments, peaks were delayed until day

28 (Table 6). Among the two mesocosms with 750 μmol/L alkalinity

addition only the delayed dilution (DEL) treatment exhibited a clear
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peak, while the immediate dilution (IMM) treatment did not. The

DEL mesocosm at 1000 μmol/L exhibited a steady increase in

bacterial cell counts, suggesting the onset of a peak. The other

high-alkalinity mesocosms (1000 IMM and both 1250 μmol/L

alkalinity addition) did not exhibit comparable peaks at all.

Chlorophyll measurements mirrored this pattern, with peak

concentrations likewise being delayed at higher alkalinity levels. The

six mesocosms with alkalinity additions from 0 to 500 μmol/L had

chlorophyll peaks on day 10, whereas in mesocosms with higher

alkalinity addition, peak concentrations occurred at day 17 on average.

Among the seven mesocosms that exhibited distinct bacterial peaks,

the bacterial response lagged behind the chlorophyll peak by an

average of 13.5 days (Table 6). In the highest alkalinity treatments

(1000 and 1250 μmol/L), the observed bacterial peak preceded the

chlorophyll peak. Visual inspection of the chlorophyll trends showed

no detectable peak in the mesocosms with 1000 and 1250 μmol/L

alkalinity addition.

To further investigate the relationship between phytoplankton

and bacterial abundance, we performed a cross-correlation analysis

(Figure 5). In low to moderate alkalinity treatments (0–250 μmol/L),

the strongest positive correlation occurred at lag −5 (10 days), with a

maximum correlation coefficient of 0.8, showing that bacterial peaks

lagged behind phytoplankton peaks by 10 days. In the mesocosms

with 500 μmol/L alkalinity addition, the maximum correlation was

observed at lag −8 (16 days), with a decline in the correlation

coefficient to 0.57. For the 750 μmol/L alkalinity addition

treatments, the highest correlation was negative and occurred at lag

−4, corresponding to a decline in chlorophyll a concentrations from

days 10 to day 20, followed by increased bacterial abundance from
FIGURE 3

Left: K-means Clustering Results. The coordinates on the Y and X axes originate from a PCoA ordination (Supplement). Different clusters identified
by the algorithm are color-coded and detailed in the legend. Samples from the initial sampling were excluded from the analysis as they represent
baseline samples from each mesocosm without any treatment. Right: Stacked bar plot of the most common bacterial families found in the clusters.
X-axis shows one of the three different clusters and the Y-axis shows the proportion between 0 and 1. Colors are indicative of bacterial taxonomic
group at family level depicted in the legend to the right. “Others” are all taxa which fall under a threshold of 15% of the overall community.
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days 20 to day 25 (Figure 6). A Similar inverse correlation was

observed in the mesocosms with 1000 μmol/L alkalinity addition. In

the 1250 μmol/L mesocosms, the strongest correlation was positive at

lag +5. This was associated with an early increase in bacterial counts

(days 5–13), followed by a rise in chlorophyll (days 13–20), and then a

concurrent decline in both. In all mesocosms, the correlation at lag 0

was negative, indicating an inverse relationship between bacterial cell

abundance and chlorophyll a concentration. Bacterial counts

increased immediately following the filling in all mesocosms. In

mesocosms with no or low added alkalinity (0–250 μmol/L), this

increase was short-lived and diminished soon after alkalinity was

added. In contrast, at higher alkalinity levels, bacterial growth

persisted for longer, while phytoplankton growth was delayed.
4 Discussion

This study is part of a broader mesocosm experiment conducted

by the RETAKE consortium of CDRmare, aimed at investigating the

ecological effects of OAE, with a specific focus on bacterial

communities. To date, relatively few studies have examined

ecotoxicological effects of OAE on bacterial communities. As a

result, there are considerable knowledge gaps present that need to

be investigated. In this study we address these knowledge gap by

investigating how OAE influences bacterial communities qualitatively

and quantitatively.
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4.1 Effects of OAE on bacterial taxonomy
and predicted functionality

The results of the taxonomic analysis indicate that the bacterial

communities in the mesocosms were only marginally affected by the

alkalinity treatments, with the most observable shifts between

communities being explained by the sample time point. We

hypothesized that the beta diversity of the bacterial communities

would align to the imposed alkalinity gradient. This experiment tested

the effects of unequilibrated alkalinity addition. Unequilibrated

alkalization leads to pH increases. It is well-established that pH is a

major environmental determinant shaping microbial community

composition in marine systems (Krause et al., 2012). Our analysis

was limited to beta diversity metrics and did not allow for the

identification of alkaliphilic taxa. We focused on beta diversity

measures as it was not feasible to detect single alkaliphilic bacterial

taxa using 16S rRNA gene amplicon sequencing, as it only provides

taxonomic resolution up to the genus level (Zhang et al., 2023). The

pH tolerance of bacterial taxa can vary considerably at the species and

strain level (Kim and Ndegwa, 2018). The most abundant families

identified in the analysis illustrate this point. Rhodobacteraceae and

Flavobacteriaceae are metabolically versatile and known to thrive

across broad pH ranges, in some cases spanning from pH 6 to 9

(Wong et al., 2017; Ma et al., 2022).

It was unexpected to see that the temporal dynamics played

such a dominant role in shaping the bacterial community
TABLE 1 Centroid based PERMANOVA with Bray Curtis dissimilarity.

Parameter p-value Significance SS R² df

Alkalinity 0.001 * 1.82 0.14 5

Incubation Time 0.012 * 3.72 0.29 4

Treatment 0.323
Significance is indicated by a star if p ≤ 0.05.
TABLE 2 Post Hoc test sampling time on a Bray Curtis
dissimilarity matrix.

Pairs P-value P-adjusted Significance

9 vs 17 0.001 0.01 *

9 vs 23 0.001 0.01 *

9 vs 31 0.001 0.01 *

9 vs 37 0.001 0.01 *

17 vs 23 0.069 0.69

17 vs 31 0.001 0.01 *

17 vs 37 0.001 0.01 *

23 vs 31 0.033 0.33

23 vs 37 0.004 0.04 *

31 vs 37 0.506 1
P-value adjusted indicates a p-value after the Bonferroni correction method. Significance is
indicated by a star if p ≤ 0.05.
TABLE 3 Post hoc test added alkalinity.

Pairs P-value P-adjusted Significance

0 vs 250 0.192 1

0 vs 500 0.381 1

0 vs 750 0.006 0.09

0 vs 1000 0.044 0.66

0 vs 1250 0.003 0.045 *

250 vs 500 0.251 1

250 vs 750 0.156 1

250 vs 1000 0.516 1

250 vs 1250 0.481 1

500 vs 750 0.172 1

500 vs 1000 0.29 1
P-value adjusted indicates a p-value after the Bonferroni correction method. Significance is
indicated by a star if p ≤ 0.05.
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composition. When the three identified clusters are viewed in

chronological order and compared with established site-specific

dynamics, the observed taxonomic shifts align with the known

spring succession patterns at Helgoland Roads. Teeling et al. (2016),

who characterized bacterioplankton dynamics in this region over

multiple spring seasons, reported trends such as an increase in

Rhodobacteraceae and a decline in the SAR11 clade—patterns that

are also evident in our data. Other patterns shared by both datasets

include an increasing relative abundance of Alteromonadales and

Bacteroidetes, and a decreasing abundance of Cellvibrionales (see

supplement). This finding suggests that the marine bacterial

community was resilience to alkalization in the experiment and

that the seasonal succession was the main driver for the observed

community shifts.

The resilience of bacterial communities to alkalization is further

supported by the analysis of the prediction of functional metabolic

pathways. Predicted functional profiles showed no significant

increase or restructuring of carbon metabolic pathways in treated

mesocosms compared to baseline controls. We hypothesized that

mesocosms receiving alkalinity additions would exhibit a detectable

increase in the relative abundance related to carbon metabolism,

due to the anticipated reduction dissolved carbon availability.

However, the results did not support this hypothesis. This

highlights the high degree of functional stability within the

microbial communities during the experiment, even when the

communities themselves were different in structure. This is likely

due to functional redundancy within marine microbial
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communities. Different communities can possess overlapping

capacities for carbon metabolism. Thus, even if succession leads

to shifts in the bacterial composition, the presence of redundant

genes can lead to similar predicted functional outputs (Puente-

Sánchez et al., 2024).

Our finding that bacteria are resilient to alkalinity addition

contrasts with the results of Ren et al. (2021), which, to our

knowledge, is the only other study to investigate impacts of OAE

on bacterial communities. Ren et al. (2021) used olivine to

increase alkalinity and the levels reached were ~200 μmol/L.

Despite far lower alkalinity levels than compared to the OAE

study presented here, they observed statistically significant

alterations in the community structure in particle-associated

bacterial communities. Our study did not separate particle-

attached and free-living bacterial communities and instead

analyzed the bacterial community as a whole. One could argue

that an effect on the entire community would be expected under

higher alkalinity conditions, given that the particle-attached

community is altered by far lower alkalinity levels. However,

our data did not support this assumption. Only a small fraction

of bacteria in the water column are particle-attached (Cho and

Azam, 1988; Mestre et al., 2017). As our analysis did not separate

the bacteria into particle-attached and free-living communities,

the relative abundance of the free-living bacteria possibly obscures

the detection of changes in the particle-attached bacterial

community. The difference may also be caused by the different

substances used for alkalization. The study by Ren et al. (2021)
TABLE 4 Centroid based PERMANOVA with Bray Curtis dissimilarity to test differences in metabolic pathways and predicted functionality between
baseline and treatment mesocosms.

Parameter P-value Significance SS R² df

Added Alkalinity 0.015 * 0.011 0.05 1

Sampling Time 0.001 * 0.088 0.417 5
The symbol * means that the p-value in this row is significant and thus smaller than 0.05.
TABLE 5 Post hoc test of sampling time point and alkalinity addition on pathways and predicted functionality.

Sampling timepoint Added alkalinity

Pairs P-value P-adjusted Significance Pairs P-value P-adjusted Significance

3 vs 9 0.001 0.015 * 0 vs 500 0.04 0.6

3 vs 17 0.001 0.015 * 0 vs 250 0.027 0.405

3 vs 23 0.001 0.015 * 0 vs 1250 0.029 0.435

3 vs 31 0.001 0.015 * 0 vs 1000 0.279 1

3 vs 37 0.001 0.015 * 0 vs 750 0.085 1

9 vs 17 0.478 1 500 vs 250 0.46 1

9 vs 23 0.057 0.855 500 vs 1250 0.259 1

9 vs 31 0.032 0.48 500 vs 1000 0.481 1

9 vs 37 0.008 0.12 500 vs 750 0.727 1

17 vs 23 0.164 1 250 vs 1250 0.162 1
The symbol * means that the p-value in this row is significant and thus smaller than 0.05.
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increased the alkalinity with olivine, which is a particle-based

OAE approach. It is possible that the observed changes in the

particle-attached bacterial community originated from the olivine

as a particle and not from the increased alkalinity.

OAE is a relatively new research topic, and studies on its

ecological impacts, particularly on bacterial communities, are

scarce. In contrast, the effects of ocean acidification have been

extensively studied. Given that alkalization and acidification

represent opposite shifts along the same pH continuum, it is

reasonable to assume that their biological impacts may exhibit

parallels for microbial communities. We argue that, for now, studies

documenting the effects of ocean acidification on bacterial
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communities are the best available comparison to establish some

contrast for our results. For example, a mesocosm study conducted

in the Gullmar Fjord, Sweden, employed two acidification

treatments with five replicates and found that changes in the

bacterial community were largely masked by seasonal succession

(Langer et al., 2017). This aligns closely with our findings, where

sampling time emerged as the dominant driver in the community

structure. Similarly, another acidification study using a gradient-

based experimental design that is comparable to ours, also

concluded that temporal dynamics were the main factor shaping

microbial communities (Sperling et al., 2013). All these studies used

large-scale mesocosms and found that bacterial community shifts

were primarily driven by time, not by the imposed pH changes,

suggesting a general resilience of bacterial communities to both

acidification and alkalization.

This apparent resilience is, however, not universal. There is a highly

relevant study, also conducted with water from Helgoland Roads and it

revealed statistically significant effects of moderate acidification on

bacterial communities (Krause et al., 2012). There is a significant

methodological distinction that likely explains these different

conclusions. The study by Krause et al. (2012) included seasonal

replication and thus was able to disentangle pH effects from seasonal

succession, unlike the studies by Langer et al. (2017) and Sperling et al.

(2013), which were conducted within a single season. Conducting the

same experiment across multiple seasons allows researchers to control

for seasonal succession and thereby better isolate the effects of
FIGURE 4

Relative abundance of predicted microbial metabolic pathways at the KEGG category level 1 between baseline mesocosms (n=12) and treated
mesocosms (n = 53). The stacked bar plots represent the proportional contribution of major pathway categories inferred from community functional
profiles.
TABLE 6 Bacterial cell count and chlorophyll peaks.

Alkalinity
addition

Cell count
peak average

Chlorophyll
peak average

0 20 11

250 20 11

500 28 9

750 23 12

1000 25 18

1250 13 22
The Alkalinity addition column marks the Alkalinity addition group, while the average of the
two diluent treatments is calculated for cell counts and chlorophyll.
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acidification. A similar approach may be necessary for studying the

effects of alkalization, suggesting that experimental designs should aim

to isolate the impact of alkalinity enhancement in order to detect

potential effects on bacterial communities.
4.2 Effects of OAE on bacterial cell
abundance

Although our amplicon sequencing results indicated that bacterial

community composition was largely resilient to alkalinity treatments,

our quantitative analysis revealed differences in the cell abundance.

Bacterial cell counts exhibited pronounced shifts in response to OAE,

particularly in the timing and magnitude of abundance peaks.

Mesocosms that were receiving the highest level of alkalinity

additions (1250 μmol/L) exhibited smaller cumulative bacterial cell

counts. This supports our hypothesis that high levels of unequilibrated

alkalinity might suppress bacterial abundance due to altered carbon

fluxes. However, these findings must be interpreted with caution. In

mesocosms with high alkalinity treatments, bacterial cell counts peaks

were delayed. The experiment may have ended before bacterial

abundance reached its peak, potentially underestimating cumulative

cell counts in mesocosms with higher alkalinity levels, compared to

what would have occurred with a longer experiment. A consistent
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trend across treatments was observed: bacterial cell count peaks

generally followed those of chlorophyll a concentrations, with lag

times increasing at higher alkalinity levels. This lagged relationship

suggests an indirect effect of OAE on bacteria, mediated through its

influence on phytoplankton. Alkalinity additions appears to delay

phytoplankton growth, which in turn postponed bacterial abundance

peaks due to the reduced availability of organic carbon. This dynamic

is consistent with established bloom patterns, where heterotrophic

bacteria respond and recycle organic matter produced by

phytoplankton (Cunliffe et al., 2009; Teeling et al., 2012).

This pattern of delayed blooms mirrors findings from ocean

acidification experiments. In a mesocosm experiment by Newbold

et al. (2012) the peaks in bacterial abundance occurred two days

earlier under acidified conditions, while phytoplankton peaks were

advanced by four days relative to controls. In our case, alkalinity

additions delayed both chlorophyll a and bacterial peaks, suggesting

a mirrored response across the pH spectrum. The study by Newbold

et al. (2012), together with our findings, highlight that quantitative

shifts in bacterial abundance occur in response to changes in

phytoplankton bloom timing—being advanced under acidified

conditions and delayed under alkalization treatments. However,

this pattern may only be accurate for seasons with phytoplankton

blooms. Notably, Newbold et al. (2012) intentionally induced a

phytoplankton bloom to investigate the effects of acidification,
FIGURE 5

Cross-correlation between bacterial cell counts and chlorophyll concentrations at varying levels of added alkalinity (D0–D1250 µmol/L). Each panel
represents a different alkalinity treatment level, showing the cross-correlation coefficient (y-axis) at different time lags 1 lag = 2 days, as sampling
was done every second day. Positive lags indicate chlorophyll leads bacteria; negative lags indicate bacterial dynamics precede chlorophyll. Red bars
highlight the lag with the highest absolute correlation value in each panel.
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whereas our study was conducted in March to coincide with the

natural spring bloom period.

Increased alkalinity levels did not appear to inhibit bacterial

growth. At the beginning of the experiment, bacterial cell counts

increased in all mesocosms and only began to decline with the onset

of the phytoplankton bloom. This suggests that bacterial abundance

is less affected by alkalinity increases than by phytoplankton

blooms. These temporal shifts may be explained by differences in

adaptability between bacteria and phytoplankton. Bacteria generally

have shorter generation times, usually measured on the scale of

minutes to hours, compared to the days required for phytoplankton

replication (Furnas, 1990; Laws, 2013). This allows bacteria to

respond more rapidly to environmental changes (Kirchman,

2016). However, this competitive advantage is limited, as bacteria

are ultimately dependent on phytoplankton-derived organic matter.

As phytoplankton adapts and blooms emerge, bacterial cell counts

decline, and their abundance peaks occur later, after the

phytoplankton bloom. At lower alkalinity levels (~500 μmol/L),

phytoplankton is less affected, and peaks in chlorophyll a and

bacterial abundance occur without temporal delay compared to

untreated controls. We conclude that the observed effects of

alkalinity on bacterial abundance are not direct, but instead arise

indirectly through interactions with phytoplankton.
Frontiers in Microbiomes 14
5 Conclusion

Bacterial communities demonstrated resilience to alkalinity

enhancement within the framework of the mesocosm experiment.

Temporal succession emerged as the primary driver of shifts in

bacterial community composition. Bacterial abundance was

indirectly affected by interactions with phytoplankton, with

alkalinity additions of 500 μmol/L representing a potential threshold

with no observable effect. This study emphasizes the value of

combining amplicon sequencing with some form of quantitative

analysis to gain a more comprehensive understanding of microbial

dynamics (Thomas et al., 2024). We recommend implementing such

combined approaches in future studies wherever feasible. Effects from

OAE on the bacterial community are obscured by seasonal changes.

We suggest that future experiments isolate effects from alkalinity

similarly to Krause et al. (2012) by conducting experiments during

multiple seasons in temperature-controlled settings. It remains unclear

whether previously observed changes in particle-associated bacterial

communities were caused by increased alkalinity or by the addition of

particulate matter. To clarify this, future experiments should

separately analyze free-living and particle-attached communities,

while accounting for the type of substance used for alkalization. If

particulate substances are used to increase alkalinity, the setup must
FIGURE 6

Bacterial Cell count N µL-1 and Chlorophyll concentration µg L-1 during the experiment. Each panel shows one Mesocosm with a short text
describing the Treatment. The number shows the level of alkalinity addition, with “D” = Diluted treatment and “I” = Immediate treatment. The plot
shows the inverse corelated growth dynamics between bacteria and chlorophyll. Higher alkalinity concentrations shift chlorophyll blooms to later
points in the experiment which is reflected in an even later bacterial cell abundance peak. The treatment started on day 4.
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include controls for particle addition with non-alkalizing particles.

The observed quantitative effects from alkalinity on the bacterial

community was connected to the phytoplankton dynamics and

their interactions with bacteria. To further isolate effects of alkalinity

on the bacterial community, filtration of the seawater could be

considered to remove primary producing algae. For the future of

OAE application it needs to be highlighted that there are many

uncertainties. This study details how to identify changes in the

bacterial community during OAE. Further studies and field trials

are needed to investigate interactions with other organisms and to

assess the effects of different alkalinizing agents, in order to evaluate

the feasibility of large-scale OAE implementation.
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