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Centre for Infectious Disease Control, National Institute for Public Health and the Environment 
(RIVM), Bilthoven, Netherlands 
The human gut microbiota is shaped by a multitude of environmental factors, 
including contact with animals. To investigate the association between 
occupational exposure to cattle and the gut microbiome, a cross-sectional 
study was performed on 65 individuals working and/or living on Dutch dairy 
cattle farms in comparison to controls. The gut microbiome of the participants 
was assessed by 16S rRNA gene amplicon sequencing of stool samples. A lower 
alpha diversity and divergent microbiome composition was observed, driven 
largely by a greater Prevotella abundance in dairy farm participants when 
compared to controls. Prevotella was also associated with contact frequency 
with the dairy cattle, with participants with more frequent contact showing 
higher abundance. The results of this study show occupational contact with 
cattle is associated with gut microbiome composition, which is of relevance 
because of the importance of the microbiome for human health. 
KEYWORDS 

gut microbiome, cattle, livestock, dairy farming, Prevotella, occupational exposure, 
farmers, One Health 
1 Introduction 

The bacterial communities in the gastro-intestinal tract of animals and humans have a 
multitude of functions that can impact health, such as the metabolism of nutrients and 
interactions with the immune system. The composition of the gut microbiota is shaped by 
both intrinsic and extrinsic or environmental factors (e.g., diet and geography) (Spor et al., 
2011; Gupta et al., 2017). The human-animal interface is an important element of our 
environment, and interactions between humans and animals are well-recognized as 
important determinants for public health. Especially when this relates to zoonoses, as up 
to 60% of human pathogens are of zoonotic origin (Rahman et al., 2020). Exposure to 
animals also includes exposure to their microbiomes. In recent years, studies have shown 
that contact with animals can have an influence on the microbiome of humans (Trinh et al., 
2018; Mucci et al., 2022). Among others, influence on the diversity and composition of skin, 
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nasal and gut microbiota has been described for people living 
together with pets or having occupational contact with livestock. 
Also, microbiome and resistome (i.e., all the antibiotic resistance 
genes in the gut ecosystem) components can be shared between 
humans and animals when in close contact (Sun et al., 2020; Yang 
et al., 2023; Mahmud et al., 2024). In the Netherlands, dairy farming 
is an important livestock sector with more than 15–000 dairy farms 
and 1.5 million dairy cattle in 2021 (CBS, 2025). Often, these are 
family owned farms, where contact of the farmer and family 
members with the dairy cattle is frequent. In previous studies 
from other countries, influence of contact with dairy cattle on the 
nasal and gut microbiome of humans has been described (Shukla 
et al., 2017; Mahmud et al., 2024). In this pilot study we aimed to 
compare the gut microbiome of participants from Dutch dairy 
farms with age and sex-matched control subjects from a 
population-wide study to determine the main drivers of the 
microbiome composition. This will help to elucidate the impact 
of occupational animal exposure on the human gut microbiome. 
2 Material and methods 

2.1 Study design 

The samples used in this study are part of a surveillance 
program for zoonotic pathogens in livestock (Cuperus et al., 
2022). In short, 200 dairy farms with a minimal farm size of 50 
adult dairy cattle, were selected for farm visits using probability 
sampling without replacement (i.e. probability of inclusion 
increased with farm size). Dairy farms were visited and cattle 
samples (faecal samples and skin swabs) were taken to analyse for 
multiple zoonotic pathogens (van Duijkeren et al., 2025; Cuperus 
et al., 2024). In addition to the animal samples, dairy farmers, their 
family members and employees, aged 18 or up, were asked to 
participate in the human study. Multiple participants from each 
farm were allowed to participate. Informed consent was obtained 
from the participants. According to the Dutch Medical Research 
Involving Human Subjects Act (WMO) this study was exempt from 
review by an Institutional Review Board. 
2.2 Sample collection 

Participants were sent a study kit between February and 
September 2021, with materials to collect a faecal sample in a 
DNA/RNA Shield Fecal Collection Tube (Zymo Research). The 
study kit also contained instructions on proper sample collection. 
Participants were asked to return the faecal sample, in a safety bag 
and medical envelope (UN3373 compliant), by regular mail to the 
Dutch Institute for Public Health and the Environment. Samples 
were received within three days from collection and frozen at -80°C 
upon arrival. Control samples were collected from healthy 
participants in a similar way. 

Informed consent was obtained from the participants. 
Participants who reported to have used antibiotics within six 
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months before sampling or that suffered from chronic intestinal 
complaints were excluded. Control participants (i.e., not dairy 
farmers), were selected from two Dutch population-wide studies on 
vaccine efficiency, before the vaccination event (RIVM 2024a, 2024b). 
Control subjects were matched to the dairy farmers based on sex and 
age. For 36 dairy farm participants a matched control was found 
where the age deviated five years at maximum. For the remaining 
dairy farm participants the control was found in the same age group 
(18–59 year or ≥60 years). The average age of the DF participants was 
49 (range: 18–75 years) and from the controls 47 (range: 14–77 
years). The male/female ratio was 65/35% in both groups. 
2.3 DNA isolation 

The Maxwell RSC Blood DNA extraction kit was used according to 
manufacturer’s instructions with several  modifications. One ml of well-
homogenized faecal material was added to 0.1 mm zirconia/silica beads 
and 2.5 mm glass beads. The faecal suspension was mechanically 
disrupted three times for one minute in a FastPrep-24 Instrument at 
room temperature and 5.5 oscillations, and maintained on ice after 
every cycle. Samples were further heated at 95°C for 15 minutes 
shaking at 300 rpm, and centrifuged for 5 minutes at full speed. 
Resulting supernatants (faecal lysates) were collected and the pellet was 
further resuspended in an additional 350 µl of S.T.A.R. buffer following 
the same procedure.  Pooled  faecal lysates were then transferred to the 
Maxwell RSC Instrument (Promega Benelux BV) for further 
purification steps. Eluted sample was cleaned-up using the OneStep 
PCR Inhibitor Removal Kit (Zymo Research), total DNA was 
measured using a Quantus fluorometer (Promega), and the bacterial 
load was quantified using a quantitative PCR using universal 16S rRNA 
primers (Eub341F and Eub534R (Muyzer et al., 1993). Every extraction 
round included two negative DNA extraction controls (blank samples 
with S.T.A.R. buffer without any added faecal material) and two 
microbial mock communities as positive controls (ZymoBiomics 
Microbial Community Standards; Zymo Research). 
2.4 Illumina sequencing 

The concentrations of bacterial yield obtained from the 
quantitative PCR were used to equalize and dilute the amount of 
bacteria in all samples to an input of 100 pg DNA. The V4 region of 
the 16S rRNA gene was amplified, using the 515F (5’- GTG CCA 
GCM GCC GCG GTA A-3’) and 806R (5’-GGA CTA CHV GGG 
TWT CTA AT-3’) primers, including the Illumina flow cell adapter 
and a unique 8-nt index key (Kozich et al., 2013; Caporaso et al., 
2011). Additional negative controls (MilliQ) and microbial mock 
community samples were added during PCR and sequenced 
alongside the samples. Fragments of the amplified product were 
quantified using the QIAxcel DNA High Resolution Kit on the 
Qiaxcel Advanced System (Qiagen) and pooled equimolar. The 
pool was purified twice, using AMPure XP magnetic beads 
(Beckman Coulter). KAPA library quantification kit (Roche) was 
used for the final quantification of the pool to determine the exact 
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input for the Paired-end sequencing, using a V3 Miseq reagent kit 
(600 cycles) on a Illumina Miseq instrument (Illumina). 
 

2.5 Data analysis 

Raw sequencing data were quality checked and taxonomically 
classified using the DADA2 pipeline (Callahan et al., 2016) using

default parameters. Analysis of sequencing data was performed in R 
version 4.1.0. Alpha and beta diversity were calculated using the 
phyloseq package in R (McMurdie and Holmes, 2013). Significance 
for differences in alpha diversity was calculated using Wilcoxon test 
within the stat_compare_means function in the ggpubr R package 
(Kassambra, 2023). PERMANOVA, calculated using the adonis 
function in the vegan R package (Oksanen, 2022), was used for 
differences in beta diversity. For the plotPCoA analysis, Bray-Curtis 
dissimilarity was calculated using genus-level data and visualized with 
the plotPCoA function from the biomeViz package (Shetty, 2025). 
Genera associated with the PCoA axes were identified using Spearman 
correlation between their abundances and sample coordinates. 
3 Results 

In this study, the faecal microbiome from 130 persons was 
determined; 65 participants from dairy farms (DF) and 65 controls. 
DF participants originated from 36 different farms (1–4 participants 
per farm). From the DF participants, 63% reported being a dairy 
farmer with the others being relatives (partner, parent or child), and 
one person reported being an employee. Most of the DF 
participants (92%) reported going into the cattle stables ≥ 1 time 
a day, and 82% reported daily physical contact with cattle. For the 
controls, no information on animal contact was available. 

Alpha diversity of DF was lower compared to controls, both in the 
Shannon (p=0.0059) and Simpson index (p=0.0018), with no 
differences in the observed number of taxa (p=0.45, Figure 1A). The 
overall microbiome composition of the DF participants was 
significantly different from the controls, assessed by the Bray Curtis 
dissimilarity index and Principal Coordinate Analysis (PCoA) 
(PERMANOVA p=0.001, Figure 1B). Beta diversity analyses showed 
that the difference between DF participants and controls was driven 
largely (with 37% of variance explained by the first principal 
component) by the higher relative abundance of Prevotella and 
Prevotella_9 groups (p=2.8x10-6, with amplicon sequence variants 
(ASV’s) further annotated as P. copri) (Figures 1B, E). 

Looking at the ratio of Prevotella to Bacteroides in our study 
population, a clear gradient emerged, which was distinctive between 
DF participants and controls (Figures 1C, D). At the genus level, the 
other significant differences were a higher relative abundance of 
Bacteroides (p=0.0043), Faecalibacterium (p=0.0004) and 
Subdoligranulum in the controls (p=0.047, Figure 1E). 

We further investigated the influence of contact frequency 
(i.e., contact with cattle once a day or more, n=57 vs. once a week 
or less, n=8). Although group size was limited, we observed 
significant differences in both overall microbiome composition 
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(PERMANOVA p=0.019, Figure 2A) and  in  the relative

abundance of Prevotella_9 between the groups (p=0.01, 
Figure 2B). In the group with less contact with cattle, the relative 
abundance of Prevotella_9 was significantly lower. 
4 Discussion 

In this study, we compared faecal microbiome composition 
between participants from Dutch dairy farms and control subjects. 
The alpha diversity of DF participants was lower than controls. 
Previous reports on farming and alpha diversity have been 
conflicting, as a study in Chinese pig farmers showed a higher 
diversity in control subjects, while a Dutch study on pig farmers and 
a US study on dairy farmers did not report differences compared to 
the control subjects (Sun et al., 2017; Van Gompel et al., 2020; 
Mahmud et al., 2024). While a lower microbial diversity has been 
associated with diseased states, in these cases, other than in our 
study, a lower diversity was observed together with an increased 
proportion of facultative anaerobes (e.g. Proteobacteria and Bacilli), 
often considered less desirable (Kriss et al., 2018). 

Overall microbiomecomposition wassignificantly different between 
DF participants and controls. In contrast, in the study among US 
dairy farmers, no difference in overall microbiome composition was 
observed compared to controls (Mahmud et al., 2024). 

Principal coordinate analysis showed that the main driver of the 
difference between DF and control microbiomes was the genus 
Prevotella. Members of the genus Prevotella are Gram-negative 
anaerobic bacteria, found in various animal hosts. In ruminants, 
Prevotella are a common feature of the gut microbiome (Henderson 
et al., 2015). Human gut microbiomes are often dominated by either 
Prevotella or Bacteroides (Gorvitovskaia et al., 2016), with Prevotella
dominated microbiomes more often found among non-Western 
populations. In addition, a high abundance of Prevotella, a  fibre-
degrading genus, is also associated with diets rich in fibres and 
complex carbohydrates (Tett et al., 2021). A limitation of our study 
was the lack of diet and other lifestyle information gathered from 
both DF participants and controls. The potential contribution of 
these factors, especially diet, to the Prevotella abundance remains to 
be determined. Potential associations of Prevotella with health and 
disease are currently still unclear, with conflicting reports linking this 
genus to both beneficial or detrimental health outcomes (Abdelsalam 
et al., 2023). It becomes more evident that there is also a link between 
Prevotella and animal contact, as higher Prevotella abundance was 
previously observed in a US study of dairy farmers, a Swiss study of 
pig farmers and associated with pet ownership in a Dutch cohort 
(Moor et al., 2021; Mahmud et al., 2024; Gacesa et al., 2022). 

Differences in microbiome composition and Prevotella 
abundance were not only observed between DF participants and 
controls, but also between DF participants with frequent and less 
frequent contact with the dairy cattle. These findings suggest that 
the observed associations between dairy farming and gut 
microbiome are most likely a direct effect of (frequent) contact 
with dairy cattle, rather than other possible differences between DF 
and controls. In a previous study in pig farmers, common bacterial 
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FIGURE 1
 

Gut microbiome composition of dairy farm participants (DF) and controls. (A) Alpha diversity shown as Shannon, Observed and Simpson indices,
 
(B) Principal Coordinate Analysis (PCoA) comparing microbiome composition of DF participants and controls. The side and top boxplots summarize 
the distribution of sample coordinates along the first two PCoA axes, showing how each group varies in these dimensions. Arrows represent genera 
that significantly correlate with the PCoA axes, identified using Spearman correlation between their abundances and sample coordinates, indicating 
their contribution to sample separation, (C) PCoA of Prevotella/Bacteroides ratio of all participants, (D) Boxplot comparing Prevotella/Bacteroides 
ratio of DF participants and controls, (E) Comparison of the relative abundance of the top 10 genera between the study groups. ns=not significant, 
p>0.05, *=p<0.05, **=p<0.01, ***=p<0.001, ****=p<0.0001. 
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sequences, including Prevotella, were found in samples from the 
farmers, the pigs and air samples from the stables (Moor et al., 
2021). The authors suggested that farmers took up aerosols with 
bacteria derived from the pigs. Other studies also reported overlap 
of sequences between humans and the animals they were in close 
contact with (Tan et al., 2020; Mahmud et al., 2024). Possibly, 
shared microbial lineages between the dairy cattle and DF 
participants, leading to a shift in microbiome composition, could 
be similarly explanatory for our findings. Unfortunately, we did not 
include samples from the dairy cattle in our study, as these samples 
were not suitably collected for microbiome analysis (e.g., to preserve 
nucleid acids or prevent the overgrowth of anaerobes). This could 
be a valuable addition for future studies as insight in shared 
sequences at farm-level would help further explain the 
microbiome diversity in dairy farmers. 

In conclusion, we report an association between dairy farming 
and the gut microbiome of farmers and their family members, 
largely driven by Prevotella, and likely as a direct effect of contact 
with dairy cattle. Our results are an addition to previous studies and 
strengthen the knowledge about the influence of human-animal 
contact on the microbiome. 
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