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Background: Host genetics significantly influence the composition of the gut

microbiota, but this relationship remains poorly understood, especially in non-

European populations. This study aims to investigate the associations between

host genetic variation and gut microbiome composition in the Japanese

population and to assess methodological factors affecting reproducibility in

microbiome research.

Methods: We performed whole-genome sequencing on 306 Japanese

individuals and obtained their gut microbiome profiles using shotgun

metagenomic sequencing. Genome-wide association studies (GWAS) were

conducted to identify associations between host genetic variants and the

relative abundance of microbial taxa and bacterial pathways. Phenome-wide

association studies (PheWAS) were performed on predicted high-impact variants.

Additionally, we compared methodological approaches to assess their impact on

microbiome composition and reproducibility.

Results: We identified significant associations between host genetic variants and

the relative abundance of one bacterial family, one genus, one species and eight

bacterial pathways (p ≤ 5×10−8). However, none of these associations surpassed

the stringent significance threshold of p ≤ 2.75×10−11. Notably, we were unable to
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replicate associations reported in prior studies, including those conducted in

Japanese populations, even regarding the direction of effects. Our PheWAS

analysis uncovered a frameshift variant in the OR6C1 gene (rs5798345-CA) that

was significantly associated with an increased abundance of Bacteroides uniformis.

Furthermore, comparative analyses highlighted that methodological differences,

particularly in sample processing and DNA extraction protocols, substantially

influence the observed gut microbiome composition. This variability may be a

key factor contributing to the lack of reproducibility across studies.

Conclusion: Our findings enhance the understanding of how host genetics

shape the gut microbiota in the Japanese population and underscore the

importance of methodological standardization in microbiome research. The

identified associations between host genetic variants and specific microbial

taxa provide insights into the complex interplay between genetics and the gut

microbiome. Addressing methodological discrepancies is crucial for improving

reproducibility and advancing knowledge of host–microbiome interactions.
KEYWORDS

host genetic variation, gut microbiome, whole-genome sequencing (WGS), 16S rRNA
sequencing, shotgun metagenomic sequencing, genome-wide association studies
(GWAS), phenome-wide association studies (PheWAS)
1 Introduction

The gut microbiota is a complex ecosystem consisting of bacteria,

archaea, fungi, protozoa, and viruses that plays a crucial role in

human health and disease (Thursby and Juge, 2017; Kho and Lal,

2018; Wu et al., 2021). Research has demonstrated that host genetics

can significantly influence the composition of the gut microbiota

(Cahana and Iraqi, 2020; Qin et al., 2022). For instance, monozygotic

twins have been found to exhibit similarities in microbial

communities, suggesting a genetic component (Goodrich et al.,

2014; Goodrich et al., 2016; Vilchez-Vargas et al., 2022). Moreover,

specific heritable bacterial taxa have been identified, further

supporting the influence of host genetics on the gut microbiota

(Goodrich et al., 2014; Ishida et al., 2020). However, most genome-

wide association studies (GWAS) have primarily focused on

European populations (Davenport et al., 2015; Scepanovic et al.,

2019; Rühlemann et al., 2021; Lopera-Maya et al., 2022; Qin et al.,

2022), leaving the genomic basis of the microbiota in other

populations largely unknown. Gut microbial composition is diverse

among different ethnicities and geographies (Nishijima et al., 2016),

emphasizing the importance of host genetics factors in shaping gut

microbiota. An important case in point is the Japanese population,

where only a single study has examined the association between host

genetics and the composition of core genus relative abundance in the

gut (Ishida et al., 2020).

While dietary factors, medication, physical activity, and health

status have been recognized as influencing the gut microbiota

(Leeming et al., 2019; Cella et al., 2021), the impact of host
02
genetics on its composition remains relatively unexplored. The

gut microbiota has been implicated in a wide range of diseases,

including obesity, celiac disease, Crohn’s disease, ulcerative colitis,

gastroenteritis, asthma, and inflammatory bowel disease (Gagliardi

et al., 2018; Hills et al., 2019; Gill et al., 2022). Understanding the

factors that shape the gut microbiome is critical for developing

therapeutic interventions to improve human health. Although

environmental factors have been shown to influence gut

microbiota composition, the role of host genetics in modulating

the gut microbiota remains understudied.

GWAS have successfully identified genetic loci associated with

various human traits and diseases (Abdellaoui et al., 2023).

Similarly, microbiome GWAS (mGWAS) aims to identify host

genetic polymorphisms that interact with the composition and

abundance of the gut microbiota. mGWAS have identified

significant loci and their connection to bacterial taxa, highlighting

the influence of host genetics on microbiome composition in health

and disease (Awany et al., 2018).

Despite the progress made in understanding the interplay

between host genetics and the gut microbiota, several challenges

still need to be addressed. Reproducibility across studies is limited,

and associations often lose significance after correction for multiple

testing (Awany et al., 2018; Rothschild et al., 2018; Weissbrod et al.,

2018). Furthermore, environmental factors such as diet and

medication usage appear to have a greater influence on the gut

microbiome than identifiable host genetic factors (Qin et al., 2022).

To address these challenges, it is crucial to incorporate population-

specific cohorts from non-European populations and utilize
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shotgun metagenomic sequencing to establish strong associations

between host genetics and gut microbiota composition at the

species level, which still proves to be challenging when relying

solely on 16S rRNA-based approaches (Lopera-Maya et al., 2022).

Moreover, building upon the observation that host genetics can

shape microbial composition, we turn our attention to the SNP

rs671, which is prevalent in East Asian populations and has been

associated with both altered alcohol metabolism and susceptibility

to metabolic disorders, including type 2 diabetes in men (Moller,

2001; Després and Lemieux, 2006; Spracklen et al., 2020). Some

studies have indicated that fecal carbohydrates, particularly host-

accessible monosaccharides, are closely linked to insulin resistance

(IR) through alterations in gut microbiota while inflammatory

cytokines may act as mediators in this relationship (Moller, 2001;

Spracklen et al., 2020; Takeuchi et al., 2023). Thus, considering the

potential role of rs671 in modulating responses to intestinal

substrates and cytokine-mediated inflammation, we also aim to

explore how this genetic variant may influence the interplay

between fecal carbohydrates, host cytokines, and insulin

resistance status in a Japanese population.

This study seeks to address these gaps by investigating the role

of host genetics in shaping the gut microbiota composition in a

Japanese population. By utilizing a genome-wide approach and

considering shotgun metagenome sequencing, this study aims to

overcome the limitations of previous research by identifying host

genetic associations with the gut microbiota at all taxonomic levels,

and its related bacterial pathways, as illustrated in Supplementary

Figure 1. The findings from this study will contribute to our

understanding of the complex interplay between host genetics

and the gut microbiota.
2 Materials and methods

2.1 Study participants and data collection

Participants in this study (Takeuchi et al., 2023) were recruited

from 2014 to 2016 during their annual health check-ups at Tokyo

University Hospital. The participants were Japanese individuals

aged between 20 and 75 years, including both males and females.

Exclusion criteria was applied, such as a prior diagnosis of diabetes,

routine use of diabetes or intestinal medications, recent antibiotic

use, and significant weight loss in the three months prior to sample

collection. To ensure comparable clinical characteristics, the study

enrolled 101 individuals with normal health, 100 individuals

classified as obese (based on the Japanese definition of Body Mass

Index [BMI] ≥ 25), and 112 individuals classified as prediabetic

(based on FBG ≥ 110 mg/dL and/or HbA1c ≥ 6.0%) using their

clinical data. Participants were instructed to fast overnight before

their hospital visit, during which clinical information and blood

samples were taken in the morning. Blood samples were

immediately processed and stored at −80°C. Fecal samples were

also collected in the morning, transported to the hospital within 24

hours, and stored at −80°C. Out of the total, 256 participants

provided fecal samples on the day of their hospital visit, while the
Frontiers in Microbiomes 03
rest collected their samples between 2 days before and 7 days after

the visit. A small number of participants either collected their

samples too long after the visit, collected the evening before the

visit, or did not provide fecal samples. Two individuals withdrew

from the study after enrollment. Therefore, a total of 306

individuals underwent physical examination, laboratory tests, and

fecal sampling. Fecal metagenomic data were available for 290

individuals due to limited samples.
2.2 Host whole-genome sequencing data
generation

Genomic DNA was extracted from peripheral blood samples of

306 individuals using standard laboratory procedures. Two different

sequencing technologies were employed: Illumina HiSeqX Five/Ten

was used to sequence 155 samples (conducted by Macrogen Japan

Corporation [https://macrogen-japan.co.jp] in 2017 and 2018), and

Illumina NovaSeq was used to sequence 156 individuals (by RIKEN

sequencing platform in 2020). Both Illumina HiSeqX Five/Ten and

NovaSeq platforms generated 150 bp paired-end reads and a mean

depth of 18.4x. Out of the 311 samples sequenced, five were

duplicates, sequenced with both platforms. Variant calling was

performed using Dragen Bio IT-platform v3.5.7 (Illumina) with

the GRCh38 human reference genome. Joint calling was performed

with Dragen Bio IT-platform v3.6.3 (Illumina) and excluded low

quality variants (QUAL<10.41 for SNPs and QUAL<7.83 for

InDels) following Dragen default parameters. The joint called

VCF files were then “lifted down” from the GRCh38 to the

GRCh37 reference genome for downstream analyses.
2.3 Whole-genome sequencing quality
control

2.3.1 Sample quality control
Per-sample QC of joint-called VCF files was performed on 306

individuals using Plinkv1.9 (Purcell et al., 2007). We first removed five

duplicate individuals that were sequenced twice with both Illumina

HiSeqX and NovaSeq. Then, conducted a gender check analysis by

setting homozygosity thresholds of >0.8 for men and <0.2 for women.

All individuals passed this threshold. Moreover, we identified samples

of poor quality based on their call rate (>90%) and heterozygosity (<4

standard deviations from the mean). We removed five individuals that

were over 4 standard deviations from the mean in terms of

heterozygosity. We also evaluated population structure by

combining the genotypes of our study with a reference dataset

(1000 genomes phase 3) consisting of individuals with known

ethnicities (Auton et al., 2015). We applied principal component

analysis (PCA) to identify individuals with divergent ancestry. One

sample was excluded based on the results of PCA. Lastly, we assessed

genetic relatedness by calculating the relatedness between each pair of

samples. We removed the samples with the lowest call rate that had a

degree of relationship over 25% with their pair. After performing these

per-sample QC analyses, we ended up with 296 QCed individuals.
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2.3.2 Per-marker quality control
Per-marker QC was performed on approximately 15.8 million

variants from the 296 QCed samples using Plinkv1.9 (Purcell et al.,

2007). We split and kept autosomal information and excluded

variants with a missing genotype rate greater than 0.05 (i.e., call

rate less than 0.95) and variants that deviated from Hardy–

Weinberg Equilibrium (HWE p ≤ 1×10−6). This resulted in

approximately 12.98 million QCed variants.
2.4 Compositional data generation from
shotgun metagenome sequencing

2.4.1 Preparation of fecal samples and DNA
extraction from fecal samples

Preparation and DNA extraction from fecal samples was

performed by a previous study (Takeuchi et al., 2021; Takeuchi

et al., 2023).

2.4.2 Shotgun metagenomic sequencing
Metagenome shotgun libraries were prepared and sequenced by

a previous study (Takeuchi et al., 2023). For which they filtered out

reads mapped to human and bacteriophage genomes, the remaining

reads were assembled, and protein-coding genes were predicted. A

total of 6,458,217 non-redundant genes were identified across the

samples. Functional assignment of these genes was performed using

DIAMOND against the KEGG database, resulting in the

identification of KEGG orthologues. Eukaryotic genes were

excluded from further analysis.

2.4.3 Quantification of annotated genes in
human gut microbiomes

Taxonomic assignment of metagenomic reads was performed

by a previous study (Takeuchi et al., 2023). From this, metagenomic

operational taxonomic units (mOTUs) analysis was performed on

one million filter-passed reads to determine the relative abundance

of species (Edgar, 2018). The predicted genes were functionally

annotated by mapping one million filter-passed metagenomic reads

to a combined reference gene set. Multi-mapped reads were

normalized based on the proportion of uniquely mapped reads to

these genes. The proportion of KEGG orthologues (KOs) was

calculated from the mapped reads. Enrichment analysis of KEGG

pathways was conducted by assigning positive and negative scores

to associated KOs and summarizing the points as a ratio to the total

number of KOs in the pathway.
2.5 Microbiome taxonomic relative
abundance filtering and transformation

2.5.1 Filtering of taxa and bacterial pathways
We selected relative abundance taxonomic data at the phylum,

class, order, family, genus, species and bacterial pathway levels from

shotgun metagenome sequencing analysis. Raw relative abundance
Frontiers in Microbiomes
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data from each taxonomic level were filtered based on the

prevalence of each taxon in the whole sample and the abundance

ratio of each taxon in each sample. We retained taxa that had a

prevalence of over 25%, indicating that the taxa were present in

more than 25% of the individuals, and the core relative abundance

of each taxonomic level that explained over 90% of the total relative

abundance in our cohort. Furthermore, we excluded pathways that

were not associated with bacteria, as they may have originated from

Eukaryotic pathways during the annotation process.

2.5.2 Transformation and normalization of raw
filtered relative abundance data

Transformation and normalization were carried out using two

approaches: centered-log ratio transformation (CLR) and direct

rank-based inverse normal transformation (INT). For CLR, we

directly applied it to the raw relative abundance data using the R

compositions package. For INT, we applied INT using R, adding a

pseudo-count of 0.1 to handle zero values. We visualized the output

distributions from both transformations by plotting them into

histograms. We selected the transformed and normalized data

that were closer to a normal distribution for downstream analysis.

In this case, the relative abundance INTed data was selected.

2.5.3 Identification of binary taxa
To determine the appropriate statistical models for GWAS, we

assessed the distribution of each taxon. Histograms were created for

all taxa and bacterial pathways post-filtering to visualize their

distributions after INT. To further identify non-normally

distributed taxa, we employed the Shapiro–Wilk test (Shapiro and

Wilk, 1965) using the shapiro.test function from the R stats

package. The Shapiro–Wilk test evaluates how closely a dataset

follows a normal distribution by calculating a W-statistic, which

measures the correlation between the observed data and the

expected values under a normal distribution. The W-statistic is

computed using the formula:

W =  
(on

i=1aix(i))
2

on
i=1(xi − �x)2

Where:

x(i) are the ordered sample values (smallest to largest),

ai are constants derived from the expected values of a

normal distribution,

xi are the original sample values,

xˉ is the sample mean.

A W-statistic of 1 indicates perfect normality, while lower values

suggest deviations from normality. For our analysis, we defined a

threshold of W ≥ 0.95 to indicate sufficient normality. This threshold

balances the risk of false positives (treating non-normal data as

normal) and false negatives (rejecting data that is sufficiently normal

for analysis). Taxa with W-statistics below this threshold were

considered non-normally distributed and were more appropriately

analyzed as binary traits. This approach ensures that linear regression

is applied only to taxa with distributions that are reasonably normal,

improving the robustness of the statistical models.
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2.6 Genome-wide association between
host genetics and microbiome data

2.6.1 Genome-wide association
GWAS was performed between host genetics (QCed genotype)

and INTed transformed relative abundance of each taxonomic level

and bacterial pathway from shotgun metagenome sequencing.

Following the normality assessment using the Shapiro–Wilk test, for

the taxa that met the normality threshold (W ≥ 0.95), we conducted

quantitative GWAS using linear regression with Plink v2.0’s (Chang

et al., 2015) generalized linear model command.While for taxa that did

not meet the Shapiro–Wilk normality threshold, indicating non-

normal distributions, we conducted GWAS for these as binary taxa

using logistic regression models appropriate for binary traits

implemented in PLINK version 2.0. Each taxon was selected as a

dependent variable (phenotype), and each genetic variant from the host

was considered as an independent variable (genotype). Covariates such

as age, sex, sequencing batch, clinical group (normal, obese, or

prediabetic), and the first 10 principal components were included.

Variants that passed the significance threshold (p < 5×10−8) were

considered to be significantly associated with the tested taxon. To

account for multiple testing, a correction was performed by dividing

the nominal significance threshold of 0.05 by the number of tests

(12,985,047 variants × number of taxa and pathways), resulting in a

corrected p-value of 2.75×10–11 for the quantitative GWAS and a p-

value of 9.32×10–11 for the binary GWAS. Manhattan and QQ plots

were generated using the R qqman package to visualize the significant

associations. Additionally, lambda was calculated in R to adjust for

genomic control.

2.6.2 Tree-based visualization of significant
associations

Genera were classified based on their raw relative abundance

data using the R package Metacoder (Foster et al., 2017). This

allowed us to create a heat-tree visualization of the taxonomic

diversity in our sample. By using this heat-tree, we were able to

locate the taxa with significant associations and qualitatively assess

the abundance of each and the proximity between them.
2.7 Comparative analysis of methodologies
for generating relative abundance data
between studies

In an attempt to understand the lack of correlation at the genus

level between Ishida et al. (2020) study and ours, we utilized two

methods to process fecal samples from five healthy subjects, in

duplicate, for microbial analysis using 16S rRNA sequencing.

The first method, replicated from Ishida et al., involved

preserving the fresh fecal sample in GuSCN solution, vortexing

with glass beads, and treating with buffer-saturated phenol. After

centrifugation, the supernatant was further extracted with phenol-

chloroform and precipitated with isopropanol. The DNA, extracted

by this bead-beating method, was then subjected to 16S rRNA

sequencing. The resulting sequences were classified into operational
Frontiers in Microbiomes 05
taxonomic units (OTUs) using QIIME v2 (Bolyen et al., 2019) for

analysis and Greengenes (DeSantis et al., 2006) for classification,

with a 97% identity threshold.

The second method, used in our study, involved treating the

fecal samples with lysozyme, achromopeptidase, and proteinase K

for lysis, followed by phenol-chloroform separation and ethanol

precipitation. The DNA, extracted by this enzymatic lysis method,

was preserved at −80°C prior to 16S rRNA sequencing. The

resulting sequences were grouped into OTUs using UCLUST, also

with a 97% identity threshold.
2.8 Post-GWAS analyses

2.8.1 Comparison with previous host–
microbiome association studies

We conducted a literature search on PubMed to identify

relevant and recent host–microbiome association studies across

multiple populations. We found four studies from 2020 to date

that focused on Japanese, European, and multi-ancestry

populations (Ishida et al., 2020; Kurilshikov et al., 2021; Lopera-

Maya et al., 2022; Qin et al., 2022). From these studies, we obtained

their summary statistics and extracted the significant associations at

the phylum, genus, and species levels to compare with our results.

Additionally, we directly compared the core genus relative

abundance from Ishida et al. (2020) with the genus relative

abundance in our sample and calculated the correlation

coefficient (R) between the two groups.
2.9 Association analyses between
high-impact annotated variants and
microbiome data

2.9.1 Variant annotation of host genotype whole-
genome sequencing data

For variant annotation, we utilized the QCed Plink bfiles, which

were converted to VCF format files using Plink v1.9 (Purcell et al.,

2007). Once we obtained the VCF files, we applied filters to exclude

indel variants larger than 10 base pairs, indels with a quality score

below 20, and single nucleotide variants with a quality score below

30. Next, we annotated the variants using SNPeff software

(Cingolani et al., 2012) and extracted the high-impact variants

(10,502) by applying a SnpSift filter. Finally, the selected high-

impact variants were converted back to Plink bfile format and

extracted the variants with a minor allele frequency (MAF) of at

least 0.05 for further downstream analyses.
2.9.2 Phenome-wide association analysis
From the high-impact-annotated variants, we conducted

PheWAS analysis on all phyla, class, order, family, genera, species,

and bacterial pathways. This analysis was performed using the R

PheWAS package (Carroll et al., 2014), with the phenotypes (all 227

taxonomic levels and bacterial pathways) as dependent variables and

the variants (1,412 high-impact variants with MAF≥0.05) as
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independent variables. We also considered age, sex, sequencing batch

(W36 or W37), and clinical group (normal, obese, or prediabetic) as

covariates. Associations were considered significant if they passed the

p-value threshold after multiple testing correction. The p-value

threshold was calculated by dividing the nominal p-value of 0.05 by

the number of tests performed (p < 1.56×10−7).

2.9.3 Gene-based analysis of high-impact
variants

To further analyze the high-impact variants, we mapped them to

their respective genes using the gene locations from the MSigDB

database (Subramanian et al., 2005). This database contains the

chromosomal location of each gene. We annotated the variants

into genes using the MAGMA software (de Leeuw et al., 2015)

annotate function. Next, we used the variants bfile along with the

annotated gene file to find associations with all taxa and bacterial

pathways. This analysis was performed using MAGMA, with the

phenotypes (227 taxa and bacterial pathways) as dependent variables

and the genes (96 genes) as independent variables. We also

considered age, sex, sequencing batch (W36 or W37), and clinical

group (normal, obese, or prediabetic) as covariates. Associations were

considered significant if they passed the p-value threshold after

multiple testing correction. The p-value threshold was calculated by

dividing the nominal p-value of 0.05 by the number of tests

performed (p < 2.29×10−6).
2.10 rs671 stratified causal mediation
analysis of fecal carbohydrates effects on
insulin resistance

We extracted rs671 variant (MAF 27%) from 275 individuals in

our dataset. These individuals were categorized into two groups

based on rs671 genotypes: major allele homozygous group (GG);

and minor allele homozygous and heterozygous group (AG + AA).

Additionally, we randomly selected 999 SNPs with allele frequencies

ranging from 25% to 30% from our dataset and categorized them

into two groups: major group (major allele homozygous group); and

minor group (minor allele homozygous & heterozygous group),

following the same approach. The fecal metabolite data was

obtained from a previous study (Takeuchi et al., 2021; Takeuchi

et al., 2023), and normalized using Blom normalization method,

whereas cytokine and clinical data such as Homeostatic Model

Assessment of Insulin Resistance (HOMA-IR) and BMI were

normalized with inverse rank-based method.

Given the evidence that proinflammatory cytokines play a key

role in modulating insulin signaling, our previous research

identified 29 triangular relationships in which certain cytokines

significantly affected IR markers, including HOMA-IR (Takeuchi

et al., 2023). To investigate whether rs671 further shapes these

cytokine–IR associations, we conducted causal mediation analyses

for each of the 29 relationships using 1,000 SNPs (including rs671)

employing R mediation package. For each SNP, we performed 2,000

mediation analyses (1,000 SNPs × 2 groups) per relationship (2,000

× 29 = 58,000 in total) across major and minor genotype groups,
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then calculated Z-scores based on the p-values for the Average

Causal Mediation Effect (ACME), Average Direct Effect (ADE), and

Total Effect (TE). With ACME measuring the portion of the total

effect of a SNP on insulin resistance, that is mediated through

cytokine levels, thus quantifying the indirect effect. ADE

representing the portion of the total effect that is not mediated,

reflecting the direct effect on insulin resistance, and TE the sum of

ACME and ADE, representing the overall effect, as schematically

represented in Supplementary Figure 2. Because of occasional zero

p-values, we added 0.001 before Z-transformation. We assessed the

impact of rs671 by subtracting the Z-score of the minor group from

that of the major group and evaluating significance.

Lastly, the rs671 association results were extracted from our

GWAS analysis. Keeping only nominal associations between rs671

and microbial features, with beta values indicating the direction and

magnitude of the associations.
3 Results

3.1 Selection of quantitative and binary
phenotypes through normality assessment
of taxa distributions

To investigate the relationship between the host and gut

microbiome in the Japanese population, we enrolled 306

individuals. Whole-genome sequencing (WGS) and fecal shotgun

metagenome sequencing analyses were performed on these

individuals (Materials and methods). After conducting per-sample

and per-marker quality control for WGS, we obtained 296 samples

and approximately 13 million variants (Supplementary Figure 3).

Additionally, we applied filtering based on prevalence and

abundance, as well as transformation of the taxonomic

compositional data (Materials and methods). This resulted in the

identification of three phyla, six classes, seven orders, 10 families, 17

genera, 86 species and 98 bacterial pathways from the shotgun

metagenome sequencing data (Supplementary Table 1).

Despite the filtering and inverse normal transformation

(Materials and methods), several taxa, particularly at the species

level, did not exhibit a normal distribution (Supplementary File 1).

Instead, these taxa displayed a binary-like distribution, likely due to

their low abundance in only a subset of individuals, which reflects

the compositional nature of the microbiome at different taxonomic

levels. Thus, by applying the Shapiro–Wilk test to the 227 taxa and

bacterial pathways, we revealed that 140 taxa had W-statistics

≥ 0.95, indicating that their distributions approximated normality

(Supplementary Table 2). These taxa were thus suitable for analysis

as quantitative phenotypes using linear regression models in

GWAS. Conversely, 87 taxa had W-statistics below 0.95, failing to

meet the normality criterion. These taxa displayed distribution

patterns consistent with binary traits, warranting additional

analysis through logistic regression models. The histograms of

taxa distributions corroborated the Shapiro–Wilk test results, as

taxa failing the normality threshold often exhibited skewed or

bimodal distributions. This distinction ensured that each taxon
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was analyzed using the most appropriate statistical model,

enhancing the reliability of the GWAS findings.
3.2 Finding host variants associated with
gut microbiome relative abundance

Next, we conducted GWAS between the QCed host genotypes

and each filtered and transformed taxa and bacterial pathway

(Materials and methods). GWAS results (Table 1) revealed no

significant associations at the phylum, class, order and species

levels. However, we identified one significant (p < 5×10−8,

genome-wide significance threshold) loci at the family level

(Figure 1A), one at the genus level (Figure 1B), and eight

significant loci at the bacterial pathway level (Supplementary

Figure 4). Nonetheless, when applying a more stringent threshold

based on the number of tested phenotypes (p < 2.75×10-11), all loci

lost its significance.

The logistic regression GWAS conducted on the 87 binary taxa

and bacterial pathways identified one intronic variant, rs4880022-C,

located in the PAX5 gene, associated with the presence of the species

unknown Clostridiales [meta_mOTU_v2_5805] at a p-value of

3.25×10−8 (Table 1, Figure 2). This association suggests that

individuals carrying rs4880022-C have a higher likelihood of

harboring this specific Clostridiales species (OR = 4.9, SE = 0.29).

Additionally, several suggestive associations (p ≤ 1.0×10−5) were
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identified (Supplementary Table 3). For example, a variant in

unknown Clostridiales [meta_mOTU_v2_6852] on chromosome

19 (19:12646825:C:CA) showed a suggestive association with an

OR of 0.236 (SE = 0.27, p = 9.79×10−8), while another variant in

Clostridium innocuum [ref_mOTU_v2_0643] on chromosome 3

(3:16735689:G:T) was associated with an OR of 5.27 (SE = 0.32, p =

2.44×10−7). These suggestive associations may represent potential

genetic influences on the presence of other low-abundance taxa,

specially from the Clostridiales family, and warrant further

investigation. However, after applying the stringent correction for

multiple testing (p ≤ 9.32×10−11), the association between

rs4880022 and unknown Clostridiales [meta_mOTU_v2_5805]

did not remain statistically significant.
3.3 Lack of reproducibility of results from
previous host–microbiome GWAS

We compared our results with the latest four studies on host–

microbiome GWAS in Japanese (Ishida et al., 2020), European

(Lopera-Maya et al., 2022; Qin et al., 2022), and multi-ancestry

populations (Kurilshikov et al., 2021) (Table 2). In our study,

we analyzed 227 taxa and pathways from 296 individuals and

found 11 independent significant loci. However, as observed in

previous comparable studies, there was a lack of reproducibility in

significant GWAS associations across different studies
TABLE 1 Summary of genome-wide association results.

Taxonomic
level Taxa Chromosome Position SNP

Closest
gene REF ALT

ALT
Frq BETA SE P

Family Lachnospiraceae 1 24665774 rs35373536 GRHL3 T G 0.482 0.484 0.085
3.12E-
08

Genus Dorea 13 43746561 rs9315997 ENOX1 G A 0.168 -0.611 0.105
1.53E-
08

Species
(Binary)

unknown_Clostridiales_
[meta_mOTU_v2_5805]

(Presence) 9 36868771 rs4880022 PAX5 T C 0.192
4.905
(OR) 0.288

3.25E-
08

Pathway

Glycolysis /
Gluconeogenesis
[PATH:ko00010] 11 71053420 rs76426076 DHCR7 A C 0.121 -0.687 0.117

1.42E-
08

Pathway
Cytoskeleton proteins

[BR:ko04812] 8 3337154 rs35061608 CSMD1 C G 0.323 -0.533 0.091
1.53E-
08

Pathway
Translation factors

[BR:ko03012] 8 62967803 rs141994018 NKAIN3 A AT 0.104 -0.831 0.143
1.59E-
08

Pathway
One carbon pool by

folate [PATH:ko00670] 8 62978029 rs62508547 NKAIN3 G A 0.104 -0.818 0.141
1.80E-
08

Pathway
DNA replication

proteins [BR:ko03032] 8 13525311 rs10503463 DLC1 C G 0.070 0.892 0.157
3.53E-
08

Pathway
Membrane trafficking

[BR:ko04131] 8 128228863 rs10087719 POU5F1B A G 0.186 -0.622 0.110
3.78E-
08

Pathway
ABC transporters
[PATH:ko02010] 17 2132324 rs143499 SMG6 C T 0.238 -0.525 0.093

4.77E-
08

Pathway
Prokaryotic defense
system [BR:ko02048] 2 170700579 rs6433151 UBR3 C T 0.426 -0.508 0.090

4.83E-
08
frontie
Lead variants with significant associations (p < 5×10−8) are shown. Columns include the reference allele (REF), alternative allele (ALT), alternative allele frequency (ALT Frq), standard error (SE),
and p-value (P).
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(Supplementary Table 4), with a direction of effect consistent in

only 46% of the associations, indicating that the observed

associations may be due to random chance rather than true

genetic effects. When considering the association analysis

conducted in Japanese ethnicity by Ishida et al (Ishida et al.,

2020), there was a lack of replicated significant associations

between studies, with only four out of 38 associations being

nominally significant in our results (Supplementary Table 4).

Additionally, the direction of effect for the significant associations

between studies was inconsistent when compared to our summary

statistics, with only 53% showing the same direction of effect.

Overall, this inconsistency was demonstrated by a weak positive

linear Pearson correlation and a p-value indicating weak correlation
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of 0.334 (p = 0.020) when comparing with beta values from all

significant variants from previous studies. Moreover, a Pearson

correlation of 0.374 (p = 0.021) was observed when comparing

against Ishida et al. (2020) effect sizes from their suggested

associations (Supplementary Figure 5).
3.4 Discrepancy in relative abundance
correlation across two Japanese
population cohort studies

To further investigate the lack of reproducibility between

studies, particularly those conducted on the same ethnicity
FIGURE 1

Genome-wide association results for taxa relative abundance. Manhattan plots showing significant loci (p < 5×10⁻8) associated with variations in taxa
relative abundance. (A) Significant locus associated with the Lachnospiraceae family. (B) Significant locus associated with the genus Dorea. The x-
axis represents genomic positions across chromosomes, and the y-axis shows the -log10 (p-value) of the associations. The red horizontal line
indicates the genome-wide significance threshold.
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(Japanese), we compared the raw core genus relative abundance

composition from the study by Ishida et al. with the same genera’s

relative abundance obtained from our 16S rRNA sequencing

(Materials and methods). As shown in Figure 3, the comparison

revealed a low correlation (R = 0.38, p = 0.19) and a Bray–Curtis

dissimilarity value of 0.46, implying a moderate dissimilarity

between the two cohorts. This suggests that while the two cohorts

share some common genera, they differ in their relative

abundance composition.

In an attempt to understand the possible causes of these

differences in relative abundances, we replicated the experimental

workflow used in both studies to generate the 16S rRNA sequencing

relative abundance data (Table 3). We applied the same conditions

and steps from both methods to five healthy Japanese samples

(Materials and methods) and generated the relative abundance

composition for each sample at the phylum and genus levels.

First, we compared the replicates’ relative abundance at the genus

level and found an average correlation between replicates of 97.4%

when using the Ishida et al. method and 99.4% when performing

our method (Supplementary Figure 6). Then, when comparing

between methods, our results showed an average correlation of

95.5% (p = 2.2 × 10⁻4) at the phylum level. Figure 4 illustrates a

more straightforward comparison of relative abundance data, by

extracting only the core genera from the method used by Ishida

et al. and compared it with the relative abundance output from the

method used in our study. Similar to our initial comparison of raw

genus relative abundance composition depicted in Figure 3, our

analysis showed a higher relative abundance of Bacteroides and a

decreased relative abundance of Bifidobacterium in the output from

the Ishida et al. method. With an overall average correlation of core

genus between the two methods of 77% (p = 4.12 ×10−6).
Frontiers in Microbiomes 09
3.5 Phenome-wide analysis of high-impact
variants shows novel host functional
genetic variant associated with gut
microbiome composition

To overcome our limited sample size and find further

associations between common host functional genetic variants

and our taxonomic compositional data, we conducted a PheWAS

across all taxonomic levels. We analyzed 1,412 high-impact

variants, which likely cause a disruption in gene function,

including nonsense mutations, frameshift mutations, and splice

site mutations, with a minor MAF ≥ 0.05 (Methods,

Supplementary Table 5). This approach allowed us to assess the

impact of common, functional genetic variants on the relative

abundance of gut microbial taxa.

Our PheWAS identified one significant frameshift variant located

in the OR6C1 gene (rs5798345-CA, c.24dup, p.Glu9ArgfsTer10)

associated with the relative abundance of Bacteroides uniformis

(beta = 0.394, p ≤ 4.78 × 10⁻8; Table 4). The positive beta value

indicates that individuals carrying the frameshift variant have a

higher relative abundance of B. uniformis in their gut microbiome.

The same frameshift variant demonstrated nominal significance in

other Bacteroides species (Bacteroides fragilis, Bacteroides dorei,

Bacteroidales_sp) and their corresponding taxonomic levels, all

showing a consistent positive direction of effect (Figure 5A).

Furthermore, we excluded Bacteroides uniformis and included other

available Bacteroides species from our cohort that had been filtered

out due to low prevalence and abundance. We then re-ran the

PheWAS analysis using only rs5798345 to determine whether the

higher taxonomic levels of B. uniformis retained their nominal

significance, as well as to identify any additional Bacteroides species
FIGURE 2

Genome-wide association results for the presence of unknown Clostridiales species. Manhattan plot displaying significant loci (p < 5×10⁻8)
associated with the presence of the unknown Clostridiales species [meta_mOTU_v2_5805]. The x-axis represents genomic positions across
chromosomes, and the y-axis shows the -log10 (p-value) of the associations. The red horizontal line indicates the genome-wide significance
threshold.
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TABLE 2 Comparison of host–microbiome GWAS results across studies.

mber
taxa

Number
of

variants
Genotyping
approach

Significance
threshold

Number of taxa
with significant
associations

Model
for

GWAS
Software
for GWAS

Covariates
for GWAS

227 12985047

Whole-
genome

sequencing 5.0.E-08 11

Linear
regression
model PLINK2

sex, age, sequencing
batch, clinical
group, 10PCs

2801 7967866
Genotyping array
+ imputation 5.0.E-08 471

Linear
mixed model BOLT_LMMv2.3.2

age, sex, genotyping
batch, 10PCs

207 5584686
Genotyping array
+ imputation 5.0.E-08 37

Linear mixed
model SAIGE v.0.38

age, sex, GRM
among participants

385 NA
Genotyping array
+ imputation 5.0.E-08 27

Linear
regression
model In-house eQTL age, sex, 10PCs

21 558583 Genotyping array
1.00E-

5 (suggested) 20

Linear
regression
model Plink1.9

138 demographic
variables, sex,
age, 2PCs

GWAS conducted in Japanese, European, and multi-ancestry populations. The table includes the number of significant loci, taxa analyzed, and reproducibility metrics.

O
rte

g
a-R

e
ye

s
e
t
al.

10
.3
3
8
9
/frm

b
i.2

0
2
5
.16

3
5
9
0
7

Fro
n
tie

rs
in

M
icro

b
io
m
e
s

fro
n
tie

rsin
.o
rg

10
Reference
Sample
size Cohort Population
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Our study 296 single

Japanese (Tokyo
University
Hospital)

Qin et al. (2022),
Nat. Genet. 5959 single

Finnish
(FINRISK02)

Lopera-Maya et
al. (2022),
Nat. Genet. 7738 single

Dutch (Dutch
Microbiome
Project)

Kurilshikov et al.
(2021),

Nat. Genet. 18340 multiple 24 cohorts

Ishida et al.
(2020),

Com. Bio. 1068 single
Japanese
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FIGURE 3

Comparison of core genus relative abundance composition between two Japanese cohort studies. Bar plot comparing the core genus relative
abundance composition between the study by Ishida et al. (2020) (blue) and our study (orange). The x-axis represents bacterial genera, and the y-
axis shows the relative abundance. The comparison highlights differences in the relative abundance of key genera between the two studies.
TABLE 3 Comparison of experimental workflows for 16S rRNA sequencing.

- Ishida et al. Our study

Number of samples 1098 306

Individual characteristics Healthy Japanese 100 Healthy, 100 Obese, 100 IGT Japanese

Sample collection kit Techno Suruga Laboratory Co., Ltd., Shizuoka, Japan NA

Preservation method GuSCN solution Stored −80 C

DNA extraction from feces Bead-beating method Enzymatic cell lysis

16S rRNA region sequenced V3–V4 region V1–V2 region

PCR TaKaRa Ex Taq HS Kit. Barcoded PCR PCR with barcoded primers

PCR amplicon purification
QIAquick PCR Purification Kit (Qiagen, Valencia, CA,

United States) AMPure XP magnetic purification beads (Beckman Coulter, Inc.)

Sequencing Illumina MiSeq Illumina MiSeq

QC quality score Quality score of less than 25 was trimmed Quality score of less than 25 was trimmed

QC chimeric sequences
Reference-based chimaera checking in USEARCH (ver.
5.2.32) and the Genomes OnLine Database (GOLD)

Reads having BLAST match lengths <90% with the representative sequence
in the 16S databases were considered as chimeras

16S database used Greengenes reference database
RDP v. 10.27, CORE (http://microbiome.osu.edu/), and NCBI FTP site (ftp://

ftp.ncbi.nih.gov/genbank/, December 2011)

Genus level OTU
Analysed by QIIME v 1.8.0. OTUs assigned by open-
reference OTU picking with a 97% pairwise identity

3,000 reads/sample chosen. All read sorted and grouped into OTUs using
UCLUST (http://www.drive5.com/) with a identity threshold of 97%
F
rontiers in Microbiomes
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Detailed comparison of the experimental workflows used in the Ishida et al. study and our study for generating genus-level relative abundance data.
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with nominal significance and consistent direction of effects. Notably,

the higher taxonomic levels retained their nominal significance, and

we identified four additional nominally significant independent

species (B. stercoris, B. thetaiotaomicron, B. massiliensis, and B.

plebeius) with concordant directions of effect (Figure 5B;

Supplementary Table 6). These findings suggest that the OR6C1

variant may have a broader impact on the abundance of taxa within

the Bacteroides genus.
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3.6 Gene-based analysis of high impact
annotated variants

To enhance the identification of loci, specifically genes, that may

be linked to gut microbiome composition in our cohort, we employed

the strategy of mapping our high-impact-annotated variants to their

corresponding genes. Subsequently, we conducted a gene-based

analysis using MAGMA software (Materials and methods).
FIGURE 4

Relative abundance composition of bacterial genera using two different methods. Comparison of bacterial genus-level relative abundance in five
samples processed using the Ishida et al. method and our method. Top panel: Stacked bar chart showing the relative abundance of bacterial genera
in each sample. Sample IDs are shown on the x-axis, with “-I” indicating results from the Ishida et al. method and “-T” indicating results from our
method. The y-axis represents the relative abundance, with each color corresponding to a different bacterial genus. Bottom panel: Stacked bar chart
showing the average relative abundance of bacterial genera across the five samples for each method. The x-axis represents the method used, and
the y-axis shows the average relative abundance.
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However, we were unable to find any robust functional associations

(p < 2.29×10−6; Supplementary Table 7).
3.7 rs671 stratified causal mediation
analysis between fecal carbohydrates,
plasma cytokines, and clinical markers

According to previous studies, causal mediation analyses

demonstrated that some inflammatory cytokines may mediate the

effects of fecal carbohydrates on insulin resistance (Takeuchi et al.,

2023). Here, we investigated whether host genetics—particularly

rs671—could further shape these relationships in our cohort. This

SNP, which profoundly affects alcohol metabolism, has been linked

to cardiovascular diseases, cancer (Chang et al., 2017; Zhang et al.,
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2023; Koyanagi et al., 2024), and susceptibility to type 2 diabetes in

males (Spracklen et al., 2020).

Our GWAS results indicate that the rs671 variant is nominally

associated with the bacterial chemotaxis pathway [PATH:ko02030],

exhibiting a positive beta value (Supplementary Table 8). Additionally,

rs671 shows nominal associations with the relative abundance of

Clostridium innocuum and Streptococcus salivarius, as well as their

higher taxonomic levels. For S. salivarius, associations extend to the

genus Streptococcus, family Streptococcaceae, order Lactobacillales, and

class Bacilli. Both species are part of the phylum Firmicutes. The

consistent positive beta values across these taxa suggest a potential

relationship between the rs671 minor allele and increased abundance of

these bacteria, as well as enhanced representation of bacterial chemotaxis

functions within the gut microbiota, though the statistical significance of

these associations were lost after multiple testing correction.
TABLE 4 Phenome-wide association results for high-impact variants.

Class Associated taxa SNP Gene
ALT
Frq Beta SE P

Type of
variant

HGVS
coding HGVS protein

Phylum Actinobacteria rs12139100 PLA2G2C 0.088 0.589 0.147 7.64.E-05 Nonsense c.97C>T p.(Arg33Ter)

Species
Bacteroides_uniformis_
[ref_mOTU_v2_0899] rs5798345 OR6C1 0.360 0.394 0.070 4.78.E-08 Frameshift c.24dup p.(Glu9ArgfsTer10)

Species
Coprococcus:

[ref_mOTU_v2_4313] rs201931080 PARPBP 0.050 0.727 0.152 2.81.E-06 Frameshift c.377_378del p.(Thr126SerfsTer4)

Species
Dorea_longicatena_
[ref_mOTU_v2_4203] rs6760610 CCDC148 0.412 0.306 0.070 1.55.E-05

Splice
Acceptor

c.1252-
15016C>T

Species
Ruminococcus_torques_
[ref_mOTU_v2_4718] rs34358 ANKDD1B 0.357 −0.336 0.078 2.35.E-05 Nonsense c.1439G>A p.(Trp480Ter)

Species
Ruminococcus_bicirculans_

[ref_mOTU_v2_2358] rs35706572 WNK1 0.180 0.346 0.083 3.88.E-05 Frameshift c.2175dup p.(Ile726HisfsTer45)

Species
unknown_Eubacterium_
[meta_mOTU_v2_6657] rs2781377

ESR2,
SYNE2 0.136 0.449 0.109 4.98.E-05 Nonsense c.12002G>A p.(Trp4001Ter)

Species
unknown_Clostridium_
[meta_mOTU_v2_6792] rs9610445 APOL4 0.075 0.492 0.123 8.18.E-05

Splice
Donor c.35 + 2T>G

Species
Faecalibacterium_prausnitzii_

[ref_mOTU_v2_4875] rs1138349 PCGF2 0.270 −0.312 0.079 9.80.E-05 Nonsense c.435C>T p.(Asp145=)

Species
unknown_Clostridiales_
[meta_mOTU_v2_7531] rs6925614 DACT2 0.317 0.255 0.064 9.81.E-05 Missense c.1052A>T p.(Glu351Val)

Pathway
Homologous recombination

[PATH:ko03440] rs1861050 CC2D2A 0.139 −0.511 0.124 5.02.E-05 Nonsense c.262C>T p.(Arg88Ter)

Pathway
Lysine biosynthesis
[PATH:ko00300] rs12139100 PLA2G2C 0.088 0.585 0.142 5.20.E-05 Nonsense c.97C>T p.(Arg33Ter)

Pathway Ribosome [PATH:ko03010] rs3841128 GRIA1 0.111 −0.545 0.134 6.54.E-05 Frameshift c.31dup p.(Leu11ProfsTer13)

Pathway
Transcription factors

[BR:ko03000] rs1138349 PCGF2 0.270 0.368 0.093 9.28.E-05 Nonsense c.435C>T p.(Asp145=)

Pathway
Glyoxylate and dicarboxylate
metabolism [PATH:ko00630] rs1010425 SIGLEC10 0.129 −0.490 0.124 9.69.E-05 Missense c.144G>T p.(Gln48His)

Pathway
RNA polymerase
[PATH:ko03020] rs201764113 KRTAP4-8 0.437 0.328 0.083 9.70.E-05 Frameshift c.1dup p.(Met1AsnfsTer12)
Summary of significant and nominal associations between 1,412 high-impact variants and gut microbiome taxa or pathways. Columns include the alternative allele frequency (ALT Frq), standard
error (SE), and p-value (P). Statistically significant results are shown in bold.
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To assess the impact of rs671 on the mediation of fecal

carbohydrates’ effects on insulin resistance, we calculated Z-score

differences for the ACME, ADE, and TE across 29 cytokine–IR

relationships for 1,000 SNPs (Supplementary Table 9; Materials and

methods). Our results revealed one pair (ACME), six pairs (ADE),

and one pair (TE) that surpassed a Z-score difference of 2,

suggesting that this EAS-specific variant may influence how

carbohydrates affect IR. These findings underscore the potential

importance of rs671 in modulating gut microbial pathways and

cytokine-mediated IR processes.
Frontiers in Microbiomes 14
4 Discussion

The interplay between host genetic variation and gut

microbiome composition has predominantly been investigated in

European populations (Davenport et al., 2015; Scepanovic et al.,

2019; Rühlemann et al., 2021; Lopera-Maya et al., 2022; Qin et al.,

2022). However, the Japanese population represents a significant

area of opportunity for research regarding the influence of host

genetics on microbiota shaping. Recently, associations between

changes in microbiome composition, such as dysbiosis, and the
FIGURE 5

Phenome-wide association results for the OR6C1 frameshift variant rs5798345-CA. Results from the PheWAS analysis of variant rs5798345-CA,
showing associations with gut microbiome taxa and pathways. (A) Nominally significant associations with taxa and pathways. Node size represents
the effect size (beta coefficient), and node color indicates the direction of the effect (positive or negative). (B) Results excluding Bacteroides
uniformis and including additional Bacteroides species.
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risk and development of various diseases, including metabolic,

neurological, and autoimmune conditions, have been noted (Liu

et al., 2019; Varesi et al., 2022; Amin et al., 2023). Despite this, only

one study has specifically explored the interactions between host

genetics and microbiome composition in the Japanese population,

primarily due to other studies focusing on the interplay between

microbiome composition and disease (Liu et al., 2019; Varesi et al.,

2022; Amin et al., 2023), while neglecting host genetic variability.

Here, we conducted a comprehensive suite of analyses in a

sample of 296 Japanese individuals, utilizing WGS and obtaining

12,985,047 quality-controlled variants. This encompassed the first

mGWAS investigating the relationship between host genetic

variation and the relative abundance of bacterial species and their

related pathways from shotgun metagenomic sequencing in the

Japanese population. We performed quantitative GWAS using

linear regression for taxonomic levels that passed the Shapiro–Wilk

test for normality and binary trait GWAS using logistic regression on

taxa and bacterial pathways that did not exhibit normal distributions

after transformation. From these analyses, we identified a total of 11

significant loci. Interestingly, we found an association between the

intronic SNP rs4880022-C in the PAX5 gene and the presence of the

species unknown_Clostridiales [meta_mOTU_v2_5805]. PAX5

encodes a transcription factor crucial for B-cell development and

function (Cobaleda et al., 2007). Variations in immune-related genes

like PAX5 can influence host immune responses and potentially affect

the colonization and abundance of specific gut microbes (Vicente-

Dueñas et al., 2020). The Clostridiales order includes many bacterial

species important for gut homeostasis and modulating immune

responses (Zheng et al., 2020; Li et al., 2024). While the association

did not reach genome-wide significance after correction, it highlights

the importance of considering non-normally distributed taxa in

genetic studies of the microbiome. Further research is needed to

validate this association and explore the underlying mechanisms

linking host genetics to microbiome prevalence.

When comparing our findings with previous GWAS (Ishida

et al., 2020; Kurilshikov et al., 2021; Lopera-Maya et al., 2022; Qin

et al., 2022), we were unable to replicate any of their associated

variants, nor did we observe any variants in close proximity to their

lead variants (Supplementary Table 4). This lack of replication is

not entirely surprising given the known challenges in replicating gut

microbiota results. Low replication for gut microbiota results is a

known issue in the field. Even though we would anticipate

consistent results between cohorts from the same ethnic

population, such as our study and the work conducted by Ishida

et al (Ishida et al., 2020), reproducibility can be elusive due to

various factors, including diet, environmental influences, sample

processing, and the classification pipeline used for bacterial taxa

(Hosomi et al., 2017; Kawada et al., 2019; Leeming et al., 2019;

Scepanovic et al., 2019; Qin et al., 2022; Vilchez-Vargas et al., 2022;

Mori et al., 2023).

Our findings, when compared with the previous Japanese study

by Ishida et al. (2020), revealed a low correlation (R = 0.38, Bray–

Curtis dissimilarity = 0.46) between the raw core genus relative
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abundance composition from both studies. A comparative analysis

of methodologies employed in both studies revealed significant

differences, particularly in fecal preservation, DNA extraction, and

post-sequencing analysis (Table 3). These methodological

variations likely explain the observed lack of correlation at the

genus level. To validate these findings, we replicated the methods

used in both studies to process fecal samples from five healthy

subjects for microbial analysis using 16S rRNA sequencing. The

consistency of our experimental results with the low correlation

between relative abundance outputs (Figure 4) emphasizes the

influence of methodological variations on study outcomes. The

impact of factors such as sample storage conditions and DNA

extraction methods on gut microbiota composition has been well-

documented (Hosomi et al., 2017; Kawada et al., 2019; Mori et al.,

2023). For instance, the use of guanidine thiocyanate solution

(GuSCN) for fecal sample storage may not be ideal if proper

protocols are not followed (Hosomi et al., 2017). Similarly, the

choice between mechanical and enzymatic lysis for bacterial DNA

extraction can significantly impact results, particularly for the

phylum Bacteroidetes and genus Bacteroides (Kawada et al.,

2019). These methodological variations not only affect taxonomic

profiles but can also influence downstream analyses, such as

identifying host genetic associations with microbiome

composition. Therefore, adopting standardized protocols for

sample collection, preservation, DNA extraction, and sequencing

is crucial. Researchers should consider the potential impacts of

methodological choices and aim for consistency, especially in large-

scale studies and meta-analyses. Standardizing methodologies

across studies will enhance reproducibility and facilitate a more

accurate understanding of the gut microbiome’s role in human

health and disease.

Furthermore, by conducting PheWAS, we aimed to identify

common host functional genetic variants associated with gut

microbiome composition. Our analysis revealed a novel and

potentially interesting association between a loss-of-function

frameshift variant in the OR6C1 gene and the relative abundance

of Bacteroides uniformis in the gut microbiome (Table 4; Figure 5a).

Specifically, individuals carrying the rs5798345-CA variant

demonstrated an increased abundance of B. uniformis (beta =

0.394, p ≤ 4.78 × 10⁻8). B. uniformis is a prominent member of

the human gut microbiota and plays a crucial role in the digestion of

complex carbohydrates and modulating host immune responses

(Ishikawa et al., 2013; Tufail and Schmitz, 2024). Notably, B.

uniformis has been studied for its potential probiotic properties,

including the ability to relieve symptoms of ulcerative colitis in

experimental models (Zhang et al., 2024). While preliminary, the

consistent positive associations observed across multiple

Bacteroides species suggest a hypothesis that the OR6C1

frameshift variant could have a broader influence on gut

microbiome composition than initially anticipated. The OR6C1

gene encodes an olfactory receptor belonging to the G protein-

coupled receptor (GPCR) superfamily. While olfactory receptors

are primarily associated with odor detection in the olfactory
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epithelium, emerging evidence suggests that certain olfactory

receptors are expressed in other tissues (Kang and Koo, 2012;

Nakanishi et al., 2023), potentially influencing physiological

processes beyond olfaction. However, the specific role of OR6C1

outside the olfactory system remains largely unexplored and

requires further investigation. Given that alterations in B.

uniformis abundance have been associated with various health

conditions (Yan et al., 2023), we hypothesize that the observed

association between the OR6C1 variant and B. uniformis abundance

could potentially contribute to understanding individual differences

in disease susceptibility, though additional studies are needed to

validate this relationship.

To expand our search for loci associated with gut microbiome

composition, we performed a gene-based analysis of the high-

impact-annotated variants. However, we couldn’t find any further

associations when employing this method (Supplementary Table 7).

For our causal mediation analysis on fecal carbohydrates, we

observed that differences in the rs671 genotype likely modify the

effect size of the causal relationship between glucosamine/rhamnose

and host insulin resistance markers independently of cytokine

mediation. Interestingly, the direction of Z-score difference of

ADE (2.54) and ACME (−1.65) were opposite in the

glucosamine-adiponectin-HDL combination, suggesting that

rs671 genotype difference is intricately involved in these

triangular relationships. Additionally, there was only one

combination where the difference in ACME Z-scores exceeded 2,

which was the galactose-adiponectin-HOMA-IR combination.

Previous studies have reported that adiponectin is involved in

biological pathways associated with HOMA-IR (Yamauchi et al.,

2007; Borges et al., 2017). In a previous MR study, a potential

negative association between serum adiponectin level and risk of

type 2 diabetes was revealed (Nielsen et al., 2021). This finding

indicates that the difference in the rs671 genotype likely influences

adiponectin-mediated in silico relationships between fecal galactose

and HOMA-IR. Given that rs671 is one of the susceptible loci for

type 2 diabetes in males (Spracklen et al., 2020), this finding might

help us understand the pathophysiology of type 2 diabetes.

Our exploratory GWAS analysis provides preliminary evidence

of a potential association between rs671 and alterations in gut

microbiota composition, particularly with Streptococcus salivarius

and its higher taxonomic levels (Supplementary Table 8). S.

salivarius is a gram-positive, facultative anaerobic bacterium that

colonizes the human oral cavity and upper respiratory tract shortly

after birth and is also a member of the gut microbiota (Kaci et al.,

2014). Current literature indicates that S. salivarius produces

bacteriocins that inhibit the growth of pathogenic bacteria,

suggesting a protective role in the microbial ecosystem.

Additionally, it exhibits anti-inflammatory properties that may

influence immune responses (Kaci et al., 2014). Based on previous

research, we hypothesize that changes in bacterial composition

could alter the fermentation of dietary carbohydrates, affecting

metabolite production and potentially influencing insulin

signaling pathways (Kaci et al., 2014; MacDonald et al., 2021).

Furthermore, the genus Streptococcus includes species that
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contribute to carbohydrate metabolism and produce metabolites

that may impact host metabolic pathways (Thomas et al., 2011;

Procházková et al., 2024). It is important to note that these

observations are preliminary and did not reach genome-wide

significance after multiple testing correction. To validate these

nominal associations and determine whether a true biological

relationship exists between rs671, S. salivarius, and type 2

diabetes, future studies with larger sample sizes and greater

statistical power are essential.

Despite the valuable insights gained from our study, several

limitations should be acknowledged to contextualize the findings

appropriately. Firstly, the sample size of our cohort was relatively

modest (n = 296 after quality control), which may limit the

statistical power to detect genetic associations with small effect

sizes. Secondly, the cross-sectional design of our study limits the

ability to infer causality between host genetic variation and gut

microbiome composition. While we identified associations between

specific genetic variants and microbial taxa, we cannot determine

the directionality of these relationships or assess temporal changes

in the microbiome. Longitudinal studies are needed to establish

causal links and to understand how host genetics and microbiome

composition interact over time.

Future research should address these limitations through larger

cohort studies and meta-analyses to enhance statistical power and

findings robustness. Additionally, standardization of methodologies

across microbiome studies is crucial, as variations in sample collection,

DNA extraction, sequencing platforms, and bioinformatics pipelines

impede reproducibility. The Microbiome Quality Control Project

emphasizes this need for standardization (Sinha et al., 2017).

Integration of multi-omics approaches with environmental data will

provide deeper insights into host–microbiome interactions.

Overall, our comprehensive analysis has revealed significant

genetic variants and functional links illuminating the complex

interplay between lead variants, microbiome composition, and

disease traits. By complementing GWAS with high-impact variant

analyses, we addressed sample size limitations while enhancing

discovery of functionally consequential variants (Supplementary

Figure 7). Our comparative analysis findings underscore the

importance of methodological consistency in microbial studies,

contributing to our understanding of mechanisms driving

complex diseases.
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