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Background: Host genetics significantly influence the composition of the gut
microbiota, but this relationship remains poorly understood, especially in non-
European populations. This study aims to investigate the associations between
host genetic variation and gut microbiome composition in the Japanese
population and to assess methodological factors affecting reproducibility in
microbiome research.

Methods: We performed whole-genome sequencing on 306 Japanese
individuals and obtained their gut microbiome profiles using shotgun
metagenomic sequencing. Genome-wide association studies (GWAS) were
conducted to identify associations between host genetic variants and the
relative abundance of microbial taxa and bacterial pathways. Phenome-wide
association studies (PheWAS) were performed on predicted high-impact variants.
Additionally, we compared methodological approaches to assess their impact on
microbiome composition and reproducibility.

Results: We identified significant associations between host genetic variants and
the relative abundance of one bacterial family, one genus, one species and eight
bacterial pathways (p < 5x107%). However, none of these associations surpassed
the stringent significance threshold of p < 2.75x107™%. Notably, we were unable to
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replicate associations reported in prior studies, including those conducted in
Japanese populations, even regarding the direction of effects. Our PheWAS
analysis uncovered a frameshift variant in the OR6CI1 gene (rs5798345-CA) that
was significantly associated with an increased abundance of Bacteroides uniformis.
Furthermore, comparative analyses highlighted that methodological differences,
particularly in sample processing and DNA extraction protocols, substantially
influence the observed gut microbiome composition. This variability may be a
key factor contributing to the lack of reproducibility across studies.

Conclusion: Our findings enhance the understanding of how host genetics
shape the gut microbiota in the Japanese population and underscore the
importance of methodological standardization in microbiome research. The
identified associations between host genetic variants and specific microbial
taxa provide insights into the complex interplay between genetics and the gut
microbiome. Addressing methodological discrepancies is crucial for improving
reproducibility and advancing knowledge of host—microbiome interactions.

KEYWORDS

host genetic variation, gut microbiome, whole-genome sequencing (WGS), 16S rRNA
sequencing, shotgun metagenomic sequencing, genome-wide association studies

(GWAS), phenome-wide association studies (PheWAS)

1 Introduction

The gut microbiota is a complex ecosystem consisting of bacteria,
archaea, fungi, protozoa, and viruses that plays a crucial role in
human health and disease (Thursby and Juge, 2017; Kho and Lal,
2018; Wu et al,, 2021). Research has demonstrated that host genetics
can significantly influence the composition of the gut microbiota
(Cahana and Iraqi, 2020; Qin et al,, 2022). For instance, monozygotic
twins have been found to exhibit similarities in microbial
communities, suggesting a genetic component (Goodrich et al,
2014; Goodrich et al., 2016; Vilchez-Vargas et al., 2022). Moreover,
specific heritable bacterial taxa have been identified, further
supporting the influence of host genetics on the gut microbiota
(Goodrich et al., 2014; Ishida et al., 2020). However, most genome-
wide association studies (GWAS) have primarily focused on
European populations (Davenport et al., 2015; Scepanovic et al,
2019; Rithlemann et al,, 2021; Lopera-Maya et al,, 2022; Qin et al,,
2022), leaving the genomic basis of the microbiota in other
populations largely unknown. Gut microbial composition is diverse
among different ethnicities and geographies (Nishijima et al., 2016),
emphasizing the importance of host genetics factors in shaping gut
microbiota. An important case in point is the Japanese population,
where only a single study has examined the association between host
genetics and the composition of core genus relative abundance in the
gut (Ishida et al., 2020).

While dietary factors, medication, physical activity, and health
status have been recognized as influencing the gut microbiota
(Leeming et al,, 2019; Cella et al., 2021), the impact of host

Frontiers in Microbiomes

genetics on its composition remains relatively unexplored. The
gut microbiota has been implicated in a wide range of diseases,
including obesity, celiac disease, Crohn’s disease, ulcerative colitis,
gastroenteritis, asthma, and inflammatory bowel disease (Gagliardi
et al,, 2018; Hills et al,, 2019; Gill et al., 2022). Understanding the
factors that shape the gut microbiome is critical for developing
therapeutic interventions to improve human health. Although
environmental factors have been shown to influence gut
microbiota composition, the role of host genetics in modulating
the gut microbiota remains understudied.

GWAS have successfully identified genetic loci associated with
various human traits and diseases (Abdellaoui et al., 2023).
Similarly, microbiome GWAS (mGWAS) aims to identify host
genetic polymorphisms that interact with the composition and
abundance of the gut microbiota. mGWAS have identified
significant loci and their connection to bacterial taxa, highlighting
the influence of host genetics on microbiome composition in health
and disease (Awany et al., 2018).

Despite the progress made in understanding the interplay
between host genetics and the gut microbiota, several challenges
still need to be addressed. Reproducibility across studies is limited,
and associations often lose significance after correction for multiple
testing (Awany et al., 2018; Rothschild et al., 2018; Weissbrod et al.,
2018). Furthermore, environmental factors such as diet and
medication usage appear to have a greater influence on the gut
microbiome than identifiable host genetic factors (Qin et al., 2022).
To address these challenges, it is crucial to incorporate population-
specific cohorts from non-European populations and utilize
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shotgun metagenomic sequencing to establish strong associations
between host genetics and gut microbiota composition at the
species level, which still proves to be challenging when relying
solely on 16S rRNA-based approaches (Lopera-Maya et al., 2022).

Moreover, building upon the observation that host genetics can
shape microbial composition, we turn our attention to the SNP
rs671, which is prevalent in East Asian populations and has been
associated with both altered alcohol metabolism and susceptibility
to metabolic disorders, including type 2 diabetes in men (Moller,
2001; Després and Lemieux, 2006; Spracklen et al., 2020). Some
studies have indicated that fecal carbohydrates, particularly host-
accessible monosaccharides, are closely linked to insulin resistance
(IR) through alterations in gut microbiota while inflammatory
cytokines may act as mediators in this relationship (Moller, 2001;
Spracklen et al., 2020; Takeuchi et al., 2023). Thus, considering the
potential role of rs671 in modulating responses to intestinal
substrates and cytokine-mediated inflammation, we also aim to
explore how this genetic variant may influence the interplay
between fecal carbohydrates, host cytokines, and insulin
resistance status in a Japanese population.

This study seeks to address these gaps by investigating the role
of host genetics in shaping the gut microbiota composition in a
Japanese population. By utilizing a genome-wide approach and
considering shotgun metagenome sequencing, this study aims to
overcome the limitations of previous research by identifying host
genetic associations with the gut microbiota at all taxonomic levels,
and its related bacterial pathways, as illustrated in Supplementary
Figure 1. The findings from this study will contribute to our
understanding of the complex interplay between host genetics
and the gut microbiota.

2 Materials and methods
2.1 Study participants and data collection

Participants in this study (Takeuchi et al., 2023) were recruited
from 2014 to 2016 during their annual health check-ups at Tokyo
University Hospital. The participants were Japanese individuals
aged between 20 and 75 years, including both males and females.
Exclusion criteria was applied, such as a prior diagnosis of diabetes,
routine use of diabetes or intestinal medications, recent antibiotic
use, and significant weight loss in the three months prior to sample
collection. To ensure comparable clinical characteristics, the study
enrolled 101 individuals with normal health, 100 individuals
classified as obese (based on the Japanese definition of Body Mass
Index [BMI] > 25), and 112 individuals classified as prediabetic
(based on FBG > 110 mg/dL and/or HbAlc > 6.0%) using their
clinical data. Participants were instructed to fast overnight before
their hospital visit, during which clinical information and blood
samples were taken in the morning. Blood samples were
immediately processed and stored at —80°C. Fecal samples were
also collected in the morning, transported to the hospital within 24
hours, and stored at —80°C. Out of the total, 256 participants
provided fecal samples on the day of their hospital visit, while the
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rest collected their samples between 2 days before and 7 days after
the visit. A small number of participants either collected their
samples too long after the visit, collected the evening before the
visit, or did not provide fecal samples. Two individuals withdrew
from the study after enrollment. Therefore, a total of 306
individuals underwent physical examination, laboratory tests, and
fecal sampling. Fecal metagenomic data were available for 290
individuals due to limited samples.

2.2 Host whole-genome sequencing data
generation

Genomic DNA was extracted from peripheral blood samples of
306 individuals using standard laboratory procedures. Two different
sequencing technologies were employed: Illumina HiSeqX Five/Ten
was used to sequence 155 samples (conducted by Macrogen Japan
Corporation [https://macrogen-japan.co.jp] in 2017 and 2018), and
Mumina NovaSeq was used to sequence 156 individuals (by RIKEN
sequencing platform in 2020). Both Illumina HiSeqX Five/Ten and
NovaSeq platforms generated 150 bp paired-end reads and a mean
depth of 18.4x. Out of the 311 samples sequenced, five were
duplicates, sequenced with both platforms. Variant calling was
performed using Dragen Bio IT-platform v3.5.7 (Illumina) with
the GRCh38 human reference genome. Joint calling was performed
with Dragen Bio IT-platform v3.6.3 (Illumina) and excluded low
quality variants (QUAL<10.41 for SNPs and QUAL<7.83 for
InDels) following Dragen default parameters. The joint called
VCEF files were then “lifted down” from the GRCh38 to the
GRCh37 reference genome for downstream analyses.

2.3 Whole-genome sequencing quality
control

2.3.1 Sample quality control

Per-sample QC of joint-called VCF files was performed on 306
individuals using Plinkv1.9 (Purcell et al,, 2007). We first removed five
duplicate individuals that were sequenced twice with both Illumina
HiSeqX and NovaSeq. Then, conducted a gender check analysis by
setting homozygosity thresholds of >0.8 for men and <0.2 for women.
All individuals passed this threshold. Moreover, we identified samples
of poor quality based on their call rate (>90%) and heterozygosity (<4
standard deviations from the mean). We removed five individuals that
were over 4 standard deviations from the mean in terms of
heterozygosity. We also evaluated population structure by
combining the genotypes of our study with a reference dataset
(1000 genomes phase 3) consisting of individuals with known
ethnicities (Auton et al, 2015). We applied principal component
analysis (PCA) to identify individuals with divergent ancestry. One
sample was excluded based on the results of PCA. Lastly, we assessed
genetic relatedness by calculating the relatedness between each pair of
samples. We removed the samples with the lowest call rate that had a
degree of relationship over 25% with their pair. After performing these
per-sample QC analyses, we ended up with 296 QCed individuals.
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2.3.2 Per-marker quality control

Per-marker QC was performed on approximately 15.8 million
variants from the 296 QCed samples using Plinkv1.9 (Purcell et al,,
2007). We split and kept autosomal information and excluded
variants with a missing genotype rate greater than 0.05 (ie., call
rate less than 0.95) and variants that deviated from Hardy-
Weinberg Equilibrium (HWE p < 1x107°). This resulted in
approximately 12.98 million QCed variants.

2.4 Compositional data generation from
shotgun metagenome sequencing

2.4.1 Preparation of fecal samples and DNA
extraction from fecal samples

Preparation and DNA extraction from fecal samples was
performed by a previous study (Takeuchi et al., 2021; Takeuchi
et al., 2023).

2.4.2 Shotgun metagenomic sequencing

Metagenome shotgun libraries were prepared and sequenced by
a previous study (Takeuchi et al., 2023). For which they filtered out
reads mapped to human and bacteriophage genomes, the remaining
reads were assembled, and protein-coding genes were predicted. A
total of 6,458,217 non-redundant genes were identified across the
samples. Functional assignment of these genes was performed using
DIAMOND against the KEGG database, resulting in the
identification of KEGG orthologues. Eukaryotic genes were
excluded from further analysis.

2.4.3 Quantification of annotated genes in
human gut microbiomes

Taxonomic assignment of metagenomic reads was performed
by a previous study (Takeuchi et al., 2023). From this, metagenomic
operational taxonomic units (mOTUs) analysis was performed on
one million filter-passed reads to determine the relative abundance
of species (Edgar, 2018). The predicted genes were functionally
annotated by mapping one million filter-passed metagenomic reads
to a combined reference gene set. Multi-mapped reads were
normalized based on the proportion of uniquely mapped reads to
these genes. The proportion of KEGG orthologues (KOs) was
calculated from the mapped reads. Enrichment analysis of KEGG
pathways was conducted by assigning positive and negative scores
to associated KOs and summarizing the points as a ratio to the total
number of KOs in the pathway.

2.5 Microbiome taxonomic relative
abundance filtering and transformation

2.5.1 Filtering of taxa and bacterial pathways

We selected relative abundance taxonomic data at the phylum,
class, order, family, genus, species and bacterial pathway levels from
shotgun metagenome sequencing analysis. Raw relative abundance
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data from each taxonomic level were filtered based on the
prevalence of each taxon in the whole sample and the abundance
ratio of each taxon in each sample. We retained taxa that had a
prevalence of over 25%, indicating that the taxa were present in
more than 25% of the individuals, and the core relative abundance
of each taxonomic level that explained over 90% of the total relative
abundance in our cohort. Furthermore, we excluded pathways that
were not associated with bacteria, as they may have originated from
Eukaryotic pathways during the annotation process.

2.5.2 Transformation and normalization of raw
filtered relative abundance data

Transformation and normalization were carried out using two
approaches: centered-log ratio transformation (CLR) and direct
rank-based inverse normal transformation (INT). For CLR, we
directly applied it to the raw relative abundance data using the R
compositions package. For INT, we applied INT using R, adding a
pseudo-count of 0.1 to handle zero values. We visualized the output
distributions from both transformations by plotting them into
histograms. We selected the transformed and normalized data
that were closer to a normal distribution for downstream analysis.
In this case, the relative abundance INTed data was selected.

2.5.3 Identification of binary taxa

To determine the appropriate statistical models for GWAS, we
assessed the distribution of each taxon. Histograms were created for
all taxa and bacterial pathways post-filtering to visualize their
distributions after INT. To further identify non-normally
distributed taxa, we employed the Shapiro-Wilk test (Shapiro and
Wilk, 1965) using the shapiro.test function from the R stats
package. The Shapiro-Wilk test evaluates how closely a dataset
follows a normal distribution by calculating a W-statistic, which
measures the correlation between the observed data and the
expected values under a normal distribution. The W-statistic is
computed using the formula:

Shiaxg)’

W= n —\2
Eizl (xi - x)

Where:

X(;) are the ordered sample values (smallest to largest),

a; are constants derived from the expected values of a
normal distribution,

x; are the original sample values,

X~ is the sample mean.

A W-statistic of 1 indicates perfect normality, while lower values
suggest deviations from normality. For our analysis, we defined a
threshold of W > 0.95 to indicate sufficient normality. This threshold
balances the risk of false positives (treating non-normal data as
normal) and false negatives (rejecting data that is sufficiently normal
for analysis). Taxa with W-statistics below this threshold were
considered non-normally distributed and were more appropriately
analyzed as binary traits. This approach ensures that linear regression
is applied only to taxa with distributions that are reasonably normal,
improving the robustness of the statistical models.
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2.6 Genome-wide association between
host genetics and microbiome data

2.6.1 Genome-wide association

GWAS was performed between host genetics (QCed genotype)
and INTed transformed relative abundance of each taxonomic level
and bacterial pathway from shotgun metagenome sequencing.
Following the normality assessment using the Shapiro-Wilk test, for
the taxa that met the normality threshold (W > 0.95), we conducted
quantitative GWAS using linear regression with Plink v2.0’s (Chang
etal,, 2015) generalized linear model command. While for taxa that did
not meet the Shapiro-Wilk normality threshold, indicating non-
normal distributions, we conducted GWAS for these as binary taxa
using logistic regression models appropriate for binary traits
implemented in PLINK version 2.0. Each taxon was selected as a
dependent variable (phenotype), and each genetic variant from the host
was considered as an independent variable (genotype). Covariates such
as age, sex, sequencing batch, clinical group (normal, obese, or
prediabetic), and the first 10 principal components were included.
Variants that passed the significance threshold (p < 5x107%) were
considered to be significantly associated with the tested taxon. To
account for multiple testing, a correction was performed by dividing
the nominal significance threshold of 0.05 by the number of tests
(12,985,047 variants x number of taxa and pathways), resulting in a
corrected p-value of 2.75x107!! for the quantitative GWAS and a p-
value of 9.32x10™"" for the binary GWAS. Manhattan and QQ plots
were generated using the R qqman package to visualize the significant
associations. Additionally, lambda was calculated in R to adjust for
genomic control.

2.6.2 Tree-based visualization of significant
associations

Genera were classified based on their raw relative abundance
data using the R package Metacoder (Foster et al., 2017). This
allowed us to create a heat-tree visualization of the taxonomic
diversity in our sample. By using this heat-tree, we were able to
locate the taxa with significant associations and qualitatively assess
the abundance of each and the proximity between them.

2.7 Comparative analysis of methodologies
for generating relative abundance data
between studies

In an attempt to understand the lack of correlation at the genus
level between Ishida et al. (2020) study and ours, we utilized two
methods to process fecal samples from five healthy subjects, in
duplicate, for microbial analysis using 16S rRNA sequencing.

The first method, replicated from Ishida et al., involved
preserving the fresh fecal sample in GuSCN solution, vortexing
with glass beads, and treating with buffer-saturated phenol. After
centrifugation, the supernatant was further extracted with phenol-
chloroform and precipitated with isopropanol. The DNA, extracted
by this bead-beating method, was then subjected to 16S rRNA
sequencing. The resulting sequences were classified into operational
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taxonomic units (OTUs) using QIIME v2 (Bolyen et al., 2019) for
analysis and Greengenes (DeSantis et al., 2006) for classification,
with a 97% identity threshold.

The second method, used in our study, involved treating the
fecal samples with lysozyme, achromopeptidase, and proteinase K
for lysis, followed by phenol-chloroform separation and ethanol
precipitation. The DNA, extracted by this enzymatic lysis method,
was preserved at —80°C prior to 16S rRNA sequencing. The
resulting sequences were grouped into OTUs using UCLUST, also
with a 97% identity threshold.

2.8 Post-GWAS analyses

2.8.1 Comparison with previous host—
microbiome association studies

We conducted a literature search on PubMed to identify
relevant and recent host-microbiome association studies across
multiple populations. We found four studies from 2020 to date
that focused on Japanese, European, and multi-ancestry
populations (Ishida et al., 2020; Kurilshikov et al., 2021; Lopera-
Maya et al., 2022; Qin et al., 2022). From these studies, we obtained
their summary statistics and extracted the significant associations at
the phylum, genus, and species levels to compare with our results.
Additionally, we directly compared the core genus relative
abundance from Ishida et al. (2020) with the genus relative
abundance in our sample and calculated the correlation
coefficient (R) between the two groups.

2.9 Association analyses between
high-impact annotated variants and
microbiome data

2.9.1 Variant annotation of host genotype whole-
genome sequencing data

For variant annotation, we utilized the QCed Plink bfiles, which
were converted to VCF format files using Plink v1.9 (Purcell et al.,
2007). Once we obtained the VCEF files, we applied filters to exclude
indel variants larger than 10 base pairs, indels with a quality score
below 20, and single nucleotide variants with a quality score below
30. Next, we annotated the variants using SNPeff software
(Cingolani et al,, 2012) and extracted the high-impact variants
(10,502) by applying a SnpSift filter. Finally, the selected high-
impact variants were converted back to Plink bfile format and
extracted the variants with a minor allele frequency (MAF) of at
least 0.05 for further downstream analyses.

2.9.2 Phenome-wide association analysis

From the high-impact-annotated variants, we conducted
PheWAS analysis on all phyla, class, order, family, genera, species,
and bacterial pathways. This analysis was performed using the R
PheWAS package (Carroll et al., 2014), with the phenotypes (all 227
taxonomic levels and bacterial pathways) as dependent variables and
the variants (1,412 high-impact variants with MAF=>0.05) as
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independent variables. We also considered age, sex, sequencing batch
(W36 or W37), and clinical group (normal, obese, or prediabetic) as
covariates. Associations were considered significant if they passed the
p-value threshold after multiple testing correction. The p-value
threshold was calculated by dividing the nominal p-value of 0.05 by
the number of tests performed (p < 1.56x1077).

2.9.3 Gene-based analysis of high-impact
variants

To further analyze the high-impact variants, we mapped them to
their respective genes using the gene locations from the MSigDB
database (Subramanian et al., 2005). This database contains the
chromosomal location of each gene. We annotated the variants
into genes using the MAGMA software (de Leeuw et al, 2015)
annotate function. Next, we used the variants bfile along with the
annotated gene file to find associations with all taxa and bacterial
pathways. This analysis was performed using MAGMA, with the
phenotypes (227 taxa and bacterial pathways) as dependent variables
and the genes (96 genes) as independent variables. We also
considered age, sex, sequencing batch (W36 or W37), and clinical
group (normal, obese, or prediabetic) as covariates. Associations were
considered significant if they passed the p-value threshold after
multiple testing correction. The p-value threshold was calculated by
dividing the nominal p-value of 0.05 by the number of tests
performed (p < 2.29x10°°).

2.10 rs671 stratified causal mediation
analysis of fecal carbohydrates effects on
insulin resistance

We extracted rs671 variant (MAF 27%) from 275 individuals in
our dataset. These individuals were categorized into two groups
based on rs671 genotypes: major allele homozygous group (GG);
and minor allele homozygous and heterozygous group (AG + AA).
Additionally, we randomly selected 999 SNPs with allele frequencies
ranging from 25% to 30% from our dataset and categorized them
into two groups: major group (major allele homozygous group); and
minor group (minor allele homozygous & heterozygous group),
following the same approach. The fecal metabolite data was
obtained from a previous study (Takeuchi et al., 2021; Takeuchi
et al., 2023), and normalized using Blom normalization method,
whereas cytokine and clinical data such as Homeostatic Model
Assessment of Insulin Resistance (HOMA-IR) and BMI were
normalized with inverse rank-based method.

Given the evidence that proinflammatory cytokines play a key
role in modulating insulin signaling, our previous research
identified 29 triangular relationships in which certain cytokines
significantly affected IR markers, including HOMA-IR (Takeuchi
et al, 2023). To investigate whether rs671 further shapes these
cytokine-IR associations, we conducted causal mediation analyses
for each of the 29 relationships using 1,000 SNPs (including rs671)
employing R mediation package. For each SNP, we performed 2,000
mediation analyses (1,000 SNPs x 2 groups) per relationship (2,000
x 29 = 58,000 in total) across major and minor genotype groups,
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then calculated Z-scores based on the p-values for the Average
Causal Mediation Effect (ACME), Average Direct Effect (ADE), and
Total Effect (TE). With ACME measuring the portion of the total
effect of a SNP on insulin resistance, that is mediated through
cytokine levels, thus quantifying the indirect effect. ADE
representing the portion of the total effect that is not mediated,
reflecting the direct effect on insulin resistance, and TE the sum of
ACME and ADE, representing the overall effect, as schematically
represented in Supplementary Figure 2. Because of occasional zero
p-values, we added 0.001 before Z-transformation. We assessed the
impact of rs671 by subtracting the Z-score of the minor group from
that of the major group and evaluating significance.

Lastly, the rs671 association results were extracted from our
GWAS analysis. Keeping only nominal associations between rs671
and microbial features, with beta values indicating the direction and
magnitude of the associations.

3 Results

3.1 Selection of quantitative and binary
phenotypes through normality assessment
of taxa distributions

To investigate the relationship between the host and gut
microbiome in the Japanese population, we enrolled 306
individuals. Whole-genome sequencing (WGS) and fecal shotgun
metagenome sequencing analyses were performed on these
individuals (Materials and methods). After conducting per-sample
and per-marker quality control for WGS, we obtained 296 samples
and approximately 13 million variants (Supplementary Figure 3).
Additionally, we applied filtering based on prevalence and
abundance, as well as transformation of the taxonomic
compositional data (Materials and methods). This resulted in the
identification of three phyla, six classes, seven orders, 10 families, 17
genera, 86 species and 98 bacterial pathways from the shotgun
metagenome sequencing data (Supplementary Table 1).

Despite the filtering and inverse normal transformation
(Materials and methods), several taxa, particularly at the species
level, did not exhibit a normal distribution (Supplementary File 1).
Instead, these taxa displayed a binary-like distribution, likely due to
their low abundance in only a subset of individuals, which reflects
the compositional nature of the microbiome at different taxonomic
levels. Thus, by applying the Shapiro-Wilk test to the 227 taxa and
bacterial pathways, we revealed that 140 taxa had W-statistics
> 0.95, indicating that their distributions approximated normality
(Supplementary Table 2). These taxa were thus suitable for analysis
as quantitative phenotypes using linear regression models in
GWAS. Conversely, 87 taxa had W-statistics below 0.95, failing to
meet the normality criterion. These taxa displayed distribution
patterns consistent with binary traits, warranting additional
analysis through logistic regression models. The histograms of
taxa distributions corroborated the Shapiro-Wilk test results, as
taxa failing the normality threshold often exhibited skewed or
bimodal distributions. This distinction ensured that each taxon
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was analyzed using the most appropriate statistical model,
enhancing the reliability of the GWAS findings.

3.2 Finding host variants associated with
gut microbiome relative abundance

Next, we conducted GWAS between the QCed host genotypes
and each filtered and transformed taxa and bacterial pathway
(Materials and methods). GWAS results (Table 1) revealed no
significant associations at the phylum, class, order and species
levels. However, we identified one significant (p < 5x107%,
genome-wide significance threshold) loci at the family level
(Figure 1A), one at the genus level (Figure 1B), and eight
significant loci at the bacterial pathway level (Supplementary
Figure 4). Nonetheless, when applying a more stringent threshold
based on the number of tested phenotypes (p < 2.75x10™'"), all loci
lost its significance.

The logistic regression GWAS conducted on the 87 binary taxa
and bacterial pathways identified one intronic variant, rs4880022-C,
located in the PAX5 gene, associated with the presence of the species
unknown Clostridiales [meta_mOTU_v2_5805] at a p-value of
3.25x107% (Table 1, Figure 2). This association suggests that
individuals carrying rs4880022-C have a higher likelihood of
harboring this specific Clostridiales species (OR = 4.9, SE = 0.29).
Additionally, several suggestive associations (p < 1.0x107°) were

TABLE 1 Summary of genome-wide association results.

10.3389/frmbi.2025.1635907

identified (Supplementary Table 3). For example, a variant in
unknown Clostridiales [meta_mOTU_v2_6852] on chromosome
19 (19:12646825:C:CA) showed a suggestive association with an
OR of 0.236 (SE = 0.27, p = 9.79><1078), while another variant in
Clostridium innocuum [ref_mOTU_v2_0643] on chromosome 3
(3:16735689:G:T) was associated with an OR of 5.27 (SE = 0.32, p =
2.44x1077). These suggestive associations may represent potential
genetic influences on the presence of other low-abundance taxa,
specially from the Clostridiales family, and warrant further
investigation. However, after applying the stringent correction for
multiple testing (p < 9.32x107'"), the association between
rs4880022 and unknown Clostridiales [meta_mOTU_v2_5805]
did not remain statistically significant.

3.3 Lack of reproducibility of results from
previous host—microbiome GWAS

We compared our results with the latest four studies on host-
microbiome GWAS in Japanese (Ishida et al., 2020), European
(Lopera-Maya et al, 2022; Qin et al, 2022), and multi-ancestry
populations (Kurilshikov et al, 2021) (Table 2). In our study,
we analyzed 227 taxa and pathways from 296 individuals and
found 11 independent significant loci. However, as observed in
previous comparable studies, there was a lack of reproducibility in
significant GWAS associations across different studies

Taxonomic Closest ALT
level osome Position SNP gene REF ALT BETA SE

3.12E-

Family Lachnospiraceae 1 24665774 1s35373536 GRHL3 T G 0.482 0.484  0.085 08
1.53E-

Genus Dorea 13 43746561 159315997 ENOX1 G A 0.168 -0.611 0.105 08

unknown_Clostridiales_

Species [meta_mOTU_v2_5805] 4.905 3.25E-

(Binary) (Presence) 9 36868771 154880022 PAXS5 T C 0.192 (OR) 0.288 08

Glycolysis /

Gluconeogenesis 1.42E-

Pathway [PATH:ko00010] 11 71053420 rs76426076 DHCR7 A C 0.121 -0.687 0.117 08
Cytoskeleton proteins 1.53E-

Pathway [BR:ko04812] 8 3337154 rs35061608 CSMD1 C G 0.323 -0.533 0.091 08
Translation factors 1.59E-

Pathway [BR:ko03012] 8 62967803 15141994018 NKAIN3 A AT 0.104 -0.831 0.143 08
One carbon pool by 1.80E-

Pathway folate [PATH:ko00670] 8 62978029 1562508547 NKAIN3 G A 0.104 -0.818 0.141 08
DNA replication 3.53E-

Pathway proteins [BR:ko03032] 8 13525311 rs10503463 DLCI C G 0.070 0.892 0.157 08
Membrane trafficking 3.78E-

Pathway [BR:ko04131] 8 128228863 rs10087719 POUS5F1B A G 0.186 -0.622 0.110 08
ABC transporters 4.77E-

Pathway [PATH:k002010] 17 2132324 rs143499 SMG6 C T 0.238 -0.525 0.093 08
Prokaryotic defense 4.83E-

Pathway system [BR:ko02048] 2 170700579 156433151 UBR3 C T 0.426 -0.508 0.090 08

Lead variants with significant associations (p < 5x%10~%) are shown. Columns include the reference allele (REF), alternative allele (ALT), alternative allele frequency (ALT Frq), standard error (SE),

and p-value (P).
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FIGURE 1

Genome-wide association results for taxa relative abundance. Manhattan plots showing significant loci (p < 5x10-%) associated with variations in taxa
relative abundance. (A) Significant locus associated with the Lachnospiraceae family. (B) Significant locus associated with the genus Dorea. The x-
axis represents genomic positions across chromosomes, and the y-axis shows the -logl10 (p-value) of the associations. The red horizontal line

10.3389/frmbi.2025.1635907

indicates the genome-wide significance threshold.

(Supplementary Table 4), with a direction of effect consistent in
only 46% of the associations, indicating that the observed
associations may be due to random chance rather than true
genetic effects. When considering the association analysis
conducted in Japanese ethnicity by Ishida et al (Ishida et al,
2020), there was a lack of replicated significant associations
between studies, with only four out of 38 associations being
nominally significant in our results (Supplementary Table 4).
Additionally, the direction of effect for the significant associations
between studies was inconsistent when compared to our summary
statistics, with only 53% showing the same direction of effect.
Overall, this inconsistency was demonstrated by a weak positive
linear Pearson correlation and a p-value indicating weak correlation

Frontiers in Microbiomes

of 0.334 (p = 0.020) when comparing with beta values from all
significant variants from previous studies. Moreover, a Pearson
correlation of 0.374 (p = 0.021) was observed when comparing
against Ishida et al. (2020) effect sizes from their suggested
associations (Supplementary Figure 5).

3.4 Discrepancy in relative abundance
correlation across two Japanese
population cohort studies

To further investigate the lack of reproducibility between
studies, particularly those conducted on the same ethnicity

08 frontiersin.org


https://doi.org/10.3389/frmbi.2025.1635907
https://www.frontiersin.org/journals/microbiomes
https://www.frontiersin.org

Ortega-Reyes et al.

Manhattan Plot

.

i
S
O }:
5
ES
o
I
2
0
1 2 3 4 5 6 7 8 9 10 12 13 14 15 16 17 18 19 20 21 22
Chromosome
FIGURE 2

Genome-wide association results for the presence of unknown Clostridiales species. Manhattan plot displaying significant loci (p < 5x10-8)
associated with the presence of the unknown Clostridiales species [meta_mOTU_v2_5805]. The x-axis represents genomic positions across
chromosomes, and the y-axis shows the -logl0 (p-value) of the associations. The red horizontal line indicates the genome-wide significance

threshold.

(Japanese), we compared the raw core genus relative abundance
composition from the study by Ishida et al. with the same genera’s
relative abundance obtained from our 16S rRNA sequencing
(Materials and methods). As shown in Figure 3, the comparison
revealed a low correlation (R = 0.38, p = 0.19) and a Bray-Curtis
dissimilarity value of 0.46, implying a moderate dissimilarity
between the two cohorts. This suggests that while the two cohorts
share some common genera, they differ in their relative
abundance composition.

In an attempt to understand the possible causes of these
differences in relative abundances, we replicated the experimental
workflow used in both studies to generate the 16S rRNA sequencing
relative abundance data (Table 3). We applied the same conditions
and steps from both methods to five healthy Japanese samples
(Materials and methods) and generated the relative abundance
composition for each sample at the phylum and genus levels.
First, we compared the replicates’ relative abundance at the genus
level and found an average correlation between replicates of 97.4%
when using the Ishida et al. method and 99.4% when performing
our method (Supplementary Figure 6). Then, when comparing
between methods, our results showed an average correlation of
95.5% (p = 2.2 x 107*) at the phylum level. Figure 4 illustrates a
more straightforward comparison of relative abundance data, by
extracting only the core genera from the method used by Ishida
et al. and compared it with the relative abundance output from the
method used in our study. Similar to our initial comparison of raw
genus relative abundance composition depicted in Figure 3, our
analysis showed a higher relative abundance of Bacteroides and a
decreased relative abundance of Bifidobacterium in the output from
the Ishida et al. method. With an overall average correlation of core
genus between the two methods of 77% (p = 4.12 x107°).
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3.5 Phenome-wide analysis of high-impact
variants shows novel host functional
genetic variant associated with gut
microbiome composition

To overcome our limited sample size and find further
associations between common host functional genetic variants
and our taxonomic compositional data, we conducted a PheWAS
across all taxonomic levels. We analyzed 1,412 high-impact
variants, which likely cause a disruption in gene function,
including nonsense mutations, frameshift mutations, and splice
site mutations, with a minor MAF > 0.05 (Methods,
Supplementary Table 5). This approach allowed us to assess the
impact of common, functional genetic variants on the relative
abundance of gut microbial taxa.

Our PheWAS identified one significant frameshift variant located
in the OR6CI gene (rs5798345-CA, c.24dup, p.Glu9ArgfsTerl0)
associated with the relative abundance of Bacteroides uniformis
(beta = 0.394, p < 4.78 x 1075 Table 4). The positive beta value
indicates that individuals carrying the frameshift variant have a
higher relative abundance of B. uniformis in their gut microbiome.
The same frameshift variant demonstrated nominal significance in
other Bacteroides species (Bacteroides fragilis, Bacteroides dorei,
Bacteroidales_sp) and their corresponding taxonomic levels, all
showing a consistent positive direction of effect (Figure 5A).
Furthermore, we excluded Bacteroides uniformis and included other
available Bacteroides species from our cohort that had been filtered
out due to low prevalence and abundance. We then re-ran the
PheWAS analysis using only rs5798345 to determine whether the
higher taxonomic levels of B. uniformis retained their nominal
significance, as well as to identify any additional Bacteroides species
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TABLE 2 Comparison of host—microbiome GWAS results across studies.

Number

Number of taxa

Sample Number of Genotyping Significance with significant Software Covariates
Reference size Cohort Population  of taxa variants approach threshold associations for GWAS for GWAS
Japanese (Tokyo Whole- Linear sex, age, sequencing
University genome regression batch, clinical
Our study 296 single Hospital) 227 12985047 sequencing 5.0.E-08 11 model PLINK2 group, 10PCs
Qin et al. (2022), Finnish Genotyping array Linear age, sex, genotyping
Nat. Genet. 5959 single (FINRISKO02) 2801 7967866 + imputation 5.0.E-08 471 mixed model | BOLT_LMMv2.3.2 batch, 10PCs
Lopera-Maya et Dutch (Dutch
al. (2022), Microbiome Genotyping array Linear mixed age, sex, GRM
Nat. Genet. 7738 single Project) 207 5584686 + imputation 5.0.E-08 37 model SAIGE v.0.38 among participants
Kurilshikov et al. Linear
(2021), Genotyping array regression
Nat. Genet. 18340 multiple 24 cohorts 385 NA + imputation 5.0.E-08 27 model In-house eQTL age, sex, 10PCs
Ishida et al. Linear 138 demographic
(2020), Japanese 1.00E- regression variables, sex,
Com. Bio. 1068 single (MYCODE) 21 558583 Genotyping array 5 (suggested) 20 model Plink1.9 age, 2PCs

Summary of findings from our study compared with four recent host-microbiome GWAS conducted in Japanese, European, and multi-ancestry populations. The table includes the number of significant loci, taxa analyzed, and reproducibility metrics.
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FIGURE 3

Comparison of core genus relative abundance composition between two Japanese cohort studies. Bar plot comparing the core genus relative
abundance composition between the study by Ishida et al. (2020) (blue) and our study (orange). The x-axis represents bacterial genera, and the y-
axis shows the relative abundance. The comparison highlights differences in the relative abundance of key genera between the two studies.

TABLE 3 Comparison of experimental workflows for 16S rRNA sequencing.

- Ishida et al. Our study
Number of samples 1098 306
Individual characteristics Healthy Japanese 100 Healthy, 100 Obese, 100 IGT Japanese
Sample collection kit Techno Suruga Laboratory Co., Ltd., Shizuoka, Japan NA
Preservation method GuSCN solution Stored —80 C
DNA extraction from feces Bead-beating method Enzymatic cell lysis
16S rRNA region sequenced V3-V4 region V1-V2 region
PCR TaKaRa Ex Taq HS Kit. Barcoded PCR PCR with barcoded primers
QIAquick PCR Purification Kit (Qiagen, Valencia, CA,
PCR amplicon purification United States) AMPure XP magnetic purification beads (Beckman Coulter, Inc.)
Sequencing Tllumina MiSeq Mlumina MiSeq
QC quality score Quality score of less than 25 was trimmed Quality score of less than 25 was trimmed
Reference-based chimaera checking in USEARCH (ver. Reads having BLAST match lengths <90% with the representative sequence
QC chimeric sequences 5.2.32) and the Genomes OnLine Database (GOLD) in the 16S databases were considered as chimeras

RDP v. 10.27, CORE (http://microbiome.osu.edu/), and NCBI FTP site (ftp://

16S database used Greengenes reference database ftp.ncbi.nih.gov/genbank/, December 2011)
Analysed by QIIME v 1.8.0. OTUs assigned by open- 3,000 reads/sample chosen. All read sorted and grouped into OTUs using
Genus level OTU reference OTU picking with a 97% pairwise identity UCLUST (http://www.drive5.com/) with a identity threshold of 97%

Detailed comparison of the experimental workflows used in the Ishida et al. study and our study for generating genus-level relative abundance data.
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FIGURE 4

Relative abundance composition of bacterial genera using two different methods. Comparison of bacterial genus-level relative abundance in five
samples processed using the Ishida et al. method and our method. Top panel: Stacked bar chart showing the relative abundance of bacterial genera
in each sample. Sample IDs are shown on the x-axis, with “-1" indicating results from the Ishida et al. method and “-T" indicating results from our
method. The y-axis represents the relative abundance, with each color corresponding to a different bacterial genus. Bottom panel: Stacked bar chart
showing the average relative abundance of bacterial genera across the five samples for each method. The x-axis represents the method used, and

the y-axis shows the average relative abundance.

with nominal significance and consistent direction of effects. Notably,
the higher taxonomic levels retained their nominal significance, and
we identified four additional nominally significant independent
species (B. stercoris, B. thetaiotaomicron, B. massiliensis, and B.
plebeius) with concordant directions of effect (Figure 5B;
Supplementary Table 6). These findings suggest that the OR6CI
variant may have a broader impact on the abundance of taxa within
the Bacteroides genus.

Frontiers in Microbiomes 12

3.6 Gene-based analysis of high impact

annotated variants

To enhance the identification of loci, specifically genes, that may
be linked to gut microbiome composition in our cohort, we employed
the strategy of mapping our high-impact-annotated variants to their
corresponding genes. Subsequently, we conducted a gene-based
analysis using MAGMA software (Materials and methods).
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TABLE 4 Phenome-wide association results for high-impact variants.

10.3389/frmbi.2025.1635907

Type of
Associated taxa variant HGVS protein
Phylum Actinobacteria rs12139100 PLA2G2C 0.088 0.589 0.147 7.64.E-05 Nonsense c.97C>T p-(Arg33Ter)
Bacteroides_uniformis_
Species [ref mOTU_v2_0899] rs5798345 OR6C1 0360  0.394 0.070 4.78.E-08 = Frameshift c.24dup p-(Glu9ArgfsTer10)
Coprococcus:
Species [ref mOTU_v2_4313] rs201931080 PARPBP 0.050 0.727 0.152 2.81.E-06 Frameshift | ¢.377_378del = p.(Thr126SerfsTer4)
Dorea_longicatena_ Splice c.1252-
Species [ref mOTU_v2_4203] rs6760610 CCDC148 0.412 0.306  0.070 1.55.E-05 Acceptor 15016C>T
Ruminococcus_torques_
Species [ref mOTU_v2_4718] rs34358 ANKDDIB | 0357 | —0.336 @ 0.078 2.35.E-05 Nonsense c.1439G>A p-(Trp480Ter)
Ruminococcus_bicirculans_
Species [ref mOTU_v2_2358] 135706572 WNK1 0.180 0.346 0.083 3.88.E-05 Frameshift ¢.2175dup p-(Ile726HisfsTer45)
unknown_Eubacterium_ ESR2,
Species [meta_mOTU_v2_6657] rs2781377 SYNE2 0.136 0.449 0.109 4.98.E-05 Nonsense c.12002G>A p-(Trp4001Ter)
unknown_Clostridium_ Splice
Species [meta_mOTU_v2_6792] 1s9610445 APOL4 0.075 0.492 0.123 8.18.E-05 Donor c.35 + 2T>G
Faecalibacterium_prausnitzii_
Species [ref mOTU_v2_4875] rs1138349 PCGF2 0.270 -0.312  0.079 9.80.E-05 Nonsense c.435C>T p-(Aspl45=)
unknown_Clostridiales_
Species [meta_mOTU_v2_7531] 156925614 DACT2 0.317 0.255 0.064 9.81.E-05 Missense c.1052A>T p-(Glu351Val)
Homologous recombination
Pathway [PATH:ko03440] rs1861050 CC2D2A 0.139 -0.511 | 0.124 5.02.E-05 Nonsense c.262C>T p.(Arg88Ter)
Lysine biosynthesis
Pathway [PATH:k000300] rs12139100 PLA2G2C 0.088 0.585 0.142 5.20.E-05 Nonsense c.97C>T p.(Arg33Ter)
Pathway Ribosome [PATH:ko03010] rs3841128 GRIAI 0.111 -0.545 | 0.134 6.54.E-05 Frameshift c.31dup p.(Leul1ProfsTerl3)
Transcription factors
Pathway [BR:ko03000] rs1138349 PCGF2 0270 = 0368 = 0.093 = 9.28.E-05 Nonsense c.435C>T p-(Asp145=)
Glyoxylate and dicarboxylate
Pathway | metabolism [PATH:ko00630] rs1010425 SIGLEC10 0.129  -0.490 = 0.124 9.69.E-05 Missense c.144G>T p-(GIn48His)
RNA polymerase
Pathway [PATH:k003020] rs201764113 = KRTAP4-8 0.437 0.328 0.083 9.70.E-05 Frameshift c.1dup p.(Met1AsnfsTer12)

Summary of significant and nominal associations between 1,412 high-impact variants and gut microbiome taxa or pathways. Columns include the alternative allele frequency (ALT Frq), standard

error (SE), and p-value (P). Statistically significant results are shown in bold.

However, we were unable to find any robust functional associations
(p< 2.29%x1075; Supplementary Table 7).

3.7 rs671 stratified causal mediation
analysis between fecal carbohydrates,
plasma cytokines, and clinical markers

According to previous studies, causal mediation analyses
demonstrated that some inflammatory cytokines may mediate the
effects of fecal carbohydrates on insulin resistance (Takeuchi et al,
2023). Here, we investigated whether host genetics—particularly
rs671—could further shape these relationships in our cohort. This
SNP, which profoundly affects alcohol metabolism, has been linked
to cardiovascular diseases, cancer (Chang et al., 2017; Zhang et al.,

Frontiers in Microbiomes

2023; Koyanagi et al., 2024), and susceptibility to type 2 diabetes in
males (Spracklen et al., 2020).

Our GWAS results indicate that the rs671 variant is nominally
associated with the bacterial chemotaxis pathway [PATH:ko02030],
exhibiting a positive beta value (Supplementary Table 8). Additionally,
rs671 shows nominal associations with the relative abundance of
Clostridium innocuum and Streptococcus salivarius, as well as their
higher taxonomic levels. For S. salivarius, associations extend to the
genus Streptococcus, family Streptococcaceae, order Lactobacillales, and
class Bacilli. Both species are part of the phylum Firmicutes. The
consistent positive beta values across these taxa suggest a potential
relationship between the rs671 minor allele and increased abundance of
these bacteria, as well as enhanced representation of bacterial chemotaxis
functions within the gut microbiota, though the statistical significance of
these associations were lost after multiple testing correction.
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FIGURE 5

Phenome-wide association results for the OR6C1 frameshift variant rs5798345-CA. Results from the PheWAS analysis of variant rs5798345-CA,
showing associations with gut microbiome taxa and pathways. (A) Nominally significant associations with taxa and pathways. Node size represents
the effect size (beta coefficient), and node color indicates the direction of the effect (positive or negative). (B) Results excluding Bacteroides

uniformis and including additional Bacteroides species.

To assess the impact of rs671 on the mediation of fecal
carbohydrates’ effects on insulin resistance, we calculated Z-score
differences for the ACME, ADE, and TE across 29 cytokine-IR
relationships for 1,000 SNPs (Supplementary Table 9; Materials and
methods). Our results revealed one pair (ACME), six pairs (ADE),
and one pair (TE) that surpassed a Z-score difference of 2,
suggesting that this EAS-specific variant may influence how
carbohydrates affect IR. These findings underscore the potential
importance of rs671 in modulating gut microbial pathways and
cytokine-mediated IR processes.

Frontiers in Microbiomes 14

4 Discussion

The interplay between host genetic variation and gut
microbiome composition has predominantly been investigated in
European populations (Davenport et al., 2015; Scepanovic et al.,
2019; Rithlemann et al., 2021; Lopera-Maya et al., 2022; Qin et al.,
2022). However, the Japanese population represents a significant
area of opportunity for research regarding the influence of host
genetics on microbiota shaping. Recently, associations between
changes in microbiome composition, such as dysbiosis, and the
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risk and development of various diseases, including metabolic,
neurological, and autoimmune conditions, have been noted (Liu
etal, 2019; Varesi et al.,, 2022; Amin et al., 2023). Despite this, only
one study has specifically explored the interactions between host
genetics and microbiome composition in the Japanese population,
primarily due to other studies focusing on the interplay between
microbiome composition and disease (Liu et al., 2019; Varesi et al.,
2022; Amin et al., 2023), while neglecting host genetic variability.

Here, we conducted a comprehensive suite of analyses in a
sample of 296 Japanese individuals, utilizing WGS and obtaining
12,985,047 quality-controlled variants. This encompassed the first
mGWAS investigating the relationship between host genetic
variation and the relative abundance of bacterial species and their
related pathways from shotgun metagenomic sequencing in the
Japanese population. We performed quantitative GWAS using
linear regression for taxonomic levels that passed the Shapiro-Wilk
test for normality and binary trait GWAS using logistic regression on
taxa and bacterial pathways that did not exhibit normal distributions
after transformation. From these analyses, we identified a total of 11
significant loci. Interestingly, we found an association between the
intronic SNP rs4880022-C in the PAX5 gene and the presence of the
species unknown_Clostridiales [meta_mOTU_v2_5805]. PAX5
encodes a transcription factor crucial for B-cell development and
function (Cobaleda et al., 2007). Variations in immune-related genes
like PAX5 can influence host immune responses and potentially affect
the colonization and abundance of specific gut microbes (Vicente-
Duenas et al., 2020). The Clostridiales order includes many bacterial
species important for gut homeostasis and modulating immune
responses (Zheng et al., 2020; Li et al., 2024). While the association
did not reach genome-wide significance after correction, it highlights
the importance of considering non-normally distributed taxa in
genetic studies of the microbiome. Further research is needed to
validate this association and explore the underlying mechanisms
linking host genetics to microbiome prevalence.

When comparing our findings with previous GWAS (Ishida
et al., 2020; Kurilshikov et al., 2021; Lopera-Maya et al., 2022; Qin
et al, 2022), we were unable to replicate any of their associated
variants, nor did we observe any variants in close proximity to their
lead variants (Supplementary Table 4). This lack of replication is
not entirely surprising given the known challenges in replicating gut
microbiota results. Low replication for gut microbiota results is a
known issue in the field. Even though we would anticipate
consistent results between cohorts from the same ethnic
population, such as our study and the work conducted by Ishida
et al (Ishida et al, 2020), reproducibility can be elusive due to
various factors, including diet, environmental influences, sample
processing, and the classification pipeline used for bacterial taxa
(Hosomi et al.,, 2017; Kawada et al., 2019; Leeming et al., 2019;
Scepanovic et al., 2019; Qin et al., 2022; Vilchez-Vargas et al., 2022;
Mori et al., 2023).

Our findings, when compared with the previous Japanese study
by Ishida et al. (2020), revealed a low correlation (R = 0.38, Bray-
Curtis dissimilarity = 0.46) between the raw core genus relative
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abundance composition from both studies. A comparative analysis
of methodologies employed in both studies revealed significant
differences, particularly in fecal preservation, DNA extraction, and
post-sequencing analysis (Table 3). These methodological
variations likely explain the observed lack of correlation at the
genus level. To validate these findings, we replicated the methods
used in both studies to process fecal samples from five healthy
subjects for microbial analysis using 16S rRNA sequencing. The
consistency of our experimental results with the low correlation
between relative abundance outputs (Figure 4) emphasizes the
influence of methodological variations on study outcomes. The
impact of factors such as sample storage conditions and DNA
extraction methods on gut microbiota composition has been well-
documented (Hosomi et al., 2017; Kawada et al., 2019; Mori et al.,
2023). For instance, the use of guanidine thiocyanate solution
(GuSCN) for fecal sample storage may not be ideal if proper
protocols are not followed (Hosomi et al, 2017). Similarly, the
choice between mechanical and enzymatic lysis for bacterial DNA
extraction can significantly impact results, particularly for the
phylum Bacteroidetes and genus Bacteroides (Kawada et al,
2019). These methodological variations not only affect taxonomic
profiles but can also influence downstream analyses, such as
identifying host genetic associations with microbiome
composition. Therefore, adopting standardized protocols for
sample collection, preservation, DNA extraction, and sequencing
is crucial. Researchers should consider the potential impacts of
methodological choices and aim for consistency, especially in large-
scale studies and meta-analyses. Standardizing methodologies
across studies will enhance reproducibility and facilitate a more
accurate understanding of the gut microbiome’s role in human
health and disease.

Furthermore, by conducting PheWAS, we aimed to identify
common host functional genetic variants associated with gut
microbiome composition. Our analysis revealed a novel and
potentially interesting association between a loss-of-function
frameshift variant in the OR6CI gene and the relative abundance
of Bacteroides uniformis in the gut microbiome (Table 4; Figure 5a).
Specifically, individuals carrying the rs5798345-CA variant

demonstrated an increased abundance of B. uniformis (beta
0.394, p < 4.78 x 107®). B. uniformis is a prominent member of
the human gut microbiota and plays a crucial role in the digestion of
complex carbohydrates and modulating host immune responses
(Ishikawa et al., 2013; Tufail and Schmitz, 2024). Notably, B.
uniformis has been studied for its potential probiotic properties,
including the ability to relieve symptoms of ulcerative colitis in
experimental models (Zhang et al., 2024). While preliminary, the
consistent positive associations observed across multiple
Bacteroides species suggest a hypothesis that the OR6CI
frameshift variant could have a broader influence on gut
microbiome composition than initially anticipated. The OR6CI
gene encodes an olfactory receptor belonging to the G protein-
coupled receptor (GPCR) superfamily. While olfactory receptors
are primarily associated with odor detection in the olfactory
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epithelium, emerging evidence suggests that certain olfactory
receptors are expressed in other tissues (Kang and Koo, 2012;
Nakanishi et al., 2023), potentially influencing physiological
processes beyond olfaction. However, the specific role of OR6C1
outside the olfactory system remains largely unexplored and
requires further investigation. Given that alterations in B.
uniformis abundance have been associated with various health
conditions (Yan et al, 2023), we hypothesize that the observed
association between the OR6CI variant and B. uniformis abundance
could potentially contribute to understanding individual differences
in disease susceptibility, though additional studies are needed to
validate this relationship.

To expand our search for loci associated with gut microbiome
composition, we performed a gene-based analysis of the high-
impact-annotated variants. However, we couldn’t find any further
associations when employing this method (Supplementary Table 7).

For our causal mediation analysis on fecal carbohydrates, we
observed that differences in the rs671 genotype likely modify the
effect size of the causal relationship between glucosamine/rhamnose
and host insulin resistance markers independently of cytokine
mediation. Interestingly, the direction of Z-score difference of
ADE (2.54) and ACME (-1.65) were opposite in the
glucosamine-adiponectin-HDL combination, suggesting that
rs671 genotype difference is intricately involved in these
triangular relationships. Additionally, there was only one
combination where the difference in ACME Z-scores exceeded 2,
which was the galactose-adiponectin-HOMA-IR combination.
Previous studies have reported that adiponectin is involved in
biological pathways associated with HOMA-IR (Yamauchi et al.,
2007; Borges et al., 2017). In a previous MR study, a potential
negative association between serum adiponectin level and risk of
type 2 diabetes was revealed (Nielsen et al, 2021). This finding
indicates that the difference in the rs671 genotype likely influences
adiponectin-mediated in silico relationships between fecal galactose
and HOMA-IR. Given that rs671 is one of the susceptible loci for
type 2 diabetes in males (Spracklen et al., 2020), this finding might
help us understand the pathophysiology of type 2 diabetes.

Our exploratory GWAS analysis provides preliminary evidence
of a potential association between rs671 and alterations in gut
microbiota composition, particularly with Streptococcus salivarius
and its higher taxonomic levels (Supplementary Table 8). S.
salivarius is a gram-positive, facultative anaerobic bacterium that
colonizes the human oral cavity and upper respiratory tract shortly
after birth and is also a member of the gut microbiota (Kaci et al.,
2014). Current literature indicates that S. salivarius produces
bacteriocins that inhibit the growth of pathogenic bacteria,
suggesting a protective role in the microbial ecosystem.
Additionally, it exhibits anti-inflammatory properties that may
influence immune responses (Kaci et al., 2014). Based on previous
research, we hypothesize that changes in bacterial composition
could alter the fermentation of dietary carbohydrates, affecting
metabolite production and potentially influencing insulin
signaling pathways (Kaci et al,, 2014; MacDonald et al, 2021).
Furthermore, the genus Streptococcus includes species that
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contribute to carbohydrate metabolism and produce metabolites
that may impact host metabolic pathways (Thomas et al, 2011;
Prochazkova et al, 2024). It is important to note that these
observations are preliminary and did not reach genome-wide
significance after multiple testing correction. To validate these
nominal associations and determine whether a true biological
relationship exists between rs671, S. salivarius, and type 2
diabetes, future studies with larger sample sizes and greater
statistical power are essential.

Despite the valuable insights gained from our study, several
limitations should be acknowledged to contextualize the findings
appropriately. Firstly, the sample size of our cohort was relatively
modest (n = 296 after quality control), which may limit the
statistical power to detect genetic associations with small effect
sizes. Secondly, the cross-sectional design of our study limits the
ability to infer causality between host genetic variation and gut
microbiome composition. While we identified associations between
specific genetic variants and microbial taxa, we cannot determine
the directionality of these relationships or assess temporal changes
in the microbiome. Longitudinal studies are needed to establish
causal links and to understand how host genetics and microbiome
composition interact over time.

Future research should address these limitations through larger
cohort studies and meta-analyses to enhance statistical power and
findings robustness. Additionally, standardization of methodologies
across microbiome studies is crucial, as variations in sample collection,
DNA extraction, sequencing platforms, and bioinformatics pipelines
impede reproducibility. The Microbiome Quality Control Project
emphasizes this need for standardization (Sinha et al, 2017).
Integration of multi-omics approaches with environmental data will
provide deeper insights into host-microbiome interactions.

Overall, our comprehensive analysis has revealed significant
genetic variants and functional links illuminating the complex
interplay between lead variants, microbiome composition, and
disease traits. By complementing GWAS with high-impact variant
analyses, we addressed sample size limitations while enhancing
discovery of functionally consequential variants (Supplementary
Figure 7). Our comparative analysis findings underscore the
importance of methodological consistency in microbial studies,
contributing to our understanding of mechanisms driving
complex diseases.
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