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Introduction: Common vetch (Vicia sativa) is an important legume used for
forage and green manure. Anthracnose caused by Colletotrichum spinaciae is a
significant disease affecting common vetch, resulting in significant damage and
yield reductions. Furthermore, there is a lack of effective control methods for
this disease.

Methods: This study evaluated the control of anthracnose in V. sativa under
greenhouse conditions, focusing on the efficacy of 25% pyraclostrobin, the
arbuscular mycorrhizal (AM) fungus Glomus tortuosum, and Trichoderma
longibrachiatum, both individually and in combination.

Results: The results showed that 25% pyraclostrobin, G. tortuosum, and T.
longibrachiatum both individually and in combination reduced the incidence of
anthracnose by 53.85%, 34.62%, 34.62%, and 15.39%, respectively.
Correspondingly, the disease index decreased by 68.97%, 34.48%, 32.76%, and
20.69%. Notably, the application of G. tortuosum and T. longibrachiatum alone
enhanced common vetch defense enzyme activities of peroxidase, catalase,
superoxide dismutase, and polyphenol oxidase by 23.57% and 22.10%, 27.12%
and 26.76%, 21.54% and 19.33%, and 35.79% and 34.35%, respectively (P < 0.05).
Moreover, the application of AM fungi and Trichoderma led to increased activities
of soil urease, catalase, and neutral phosphatase by 12.77% to 111.17%, as well as
improved nitrogen and phosphorus uptake by 12.12% to 13.88% and 13.91% to
35.79%, respectively.

Discussiom: Our findings highlight that G. tortuosum and T. longibrachiatum can
effectively induce resistance against anthracnose in common vetch,
demonstrating significant control efficacy.
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1 Introduction

Common vetch serves not only as an exceptional forage crop
but also as a widely used green manure in agricultural production.
The growth of Vicia sativa is threatened by numerous biotic and
abiotic factors, with diseases emerging as a critical constraint on
both quality and yield (Xu and Li, 2015). In recent years,
anthracnose caused by Colletotrichum spp., particularly
Colletotrichum spinaciae, has become prevalent in common vetch
production, primarily affecting the leaves, stems, and pods. In severe
cases, the disease can lead to leaf dieback and even plant mortality
(Wang et al., 2019), resulting in significant declines in yield, quality,
and economic benefits. This decline poses challenges to the
development of agriculture and animal husbandry in regions
where V. sativa is cultivated.

Despite the severity of diseases affecting common vetch,
research on effective control strategies remains limited, primarily
concentrating on the use of disease-resistant varieties and
agricultural management practices (Fernandez-aparicio et al,
2009; Rico et al, 2006). While research on disease control in
common vetch has gradually increased in recent years, there is
still a lack of targeted, systematic, and comprehensive control
measures. Therefore, it is imperative to explore effective methods
for the prevention and control of anthracnose in this crop and to
identify common vetch varieties with inherent disease resistance.

Pyraclostrobin, classified as a methoxyacrylate fungicide, is
recognized for its high efficiency, low toxicity, broad-spectrum
activity, and systemic properties. It has demonstrated effective
control against Colletotrichum destructivum in alfalfa (Medicago
sativa) and can effectively inhibit the mycelial growth of C.
spinaciae, offering substantial prevention and treatment against C.
destructivum in alfalfa (Vasi et al., 2019). Additionally, the
combined application of pyraclostrobin with other agents, such as
a mixture of 32.5% benomyl and 25% pyraclostrobin, as well as
combinations with 50% carbendazim, has shown a field preventive
effect exceeding 63% against anthracnose in common vetch (Li F. X.
et al, 2021). However, despite these advantages, chemical agents
can exert pressure on the environment, particularly in grassland
ecosystems where aboveground tissues are directly consumed by
livestock. As a result, disease prevention and control often face
significant limitations. Due to the secondary and supportive role of
chemical control measures, these agents are primarily utilized in
primary seed fields or experimental settings. Consequently, it is
urgent to explore alternative control methods for managing diseases
in common vetch. Furthermore, the emergence of pyraclostrobin
resistance can be a problem. Field resistance to pyraclostrobin has
been reported in populations of Alternaria solani causing early
blight in potatoes, linked to specific point mutations (e.g., F129L) in
the cytochrome b gene (Pasche and Gudmestad, 2008). The
cytochrome b gene-based assay is used for monitoring the
resistance of Colletotrichum spp. to pyraclostrobin (Isa and
Kim, 2022).
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Biological control is an important complement to chemical
pesticides, providing benefits such as low cost, environmental
friendliness, and sustainability. Biocontrol microorganisms,
notably arbuscular mycorrhizal (AM) fungi and Trichoderma, are
extensively employed in the prevention and control of plant
diseases (Castellanos-Morales et al., 2012; Palani and
Lalithakumari, 1999). AM fungi enhance plant growth
performance, compete with pathogens for nutrients and infection
sites, enrich the root microbiome, and modify root system structure
to bolster plant resistance against pathogens (El-Sharkawy et al,
2018). Research has demonstrated that inoculation with AM fungi
significantly suppresses the occurrence of spring black stem disease
(Phoma medicaginis) in Medicago sativa (Li Y. D. et al., 2021).

Trichoderma employs several biocontrol mechanisms, including
hyperparasitism toward pathogenic fungi, competition with
pathogens for survival resources and space, synthesis of
antimicrobial secondary metabolites, and the induction of local or
systemic defense responses (Poveda, 2021; Vos et al., 2014). Notably,
Trichoderma can envelop and attach to pathogenic fungi upon
contact, forming appressoria on their surfaces. This interaction
facilitates the secretion of cell wall-degrading enzymes, directly
targeting and killing the pathogens (Saldajeno et al., 2014).
Compared with the application of AM fungi or Trichoderma alone,
the synergistic effect of combining these two biocontrol agents
enhanced the control of plant diseases. The combination of
Trichoderma and AM fungi has proven effective in controlling
diseases in Solanum lycopersicum. Mwangi et al. (2011) found that
combined inoculation significantly increased the aboveground
biomass of S. lycopersicum by 11.6% to 69.7% compared to the use
of AM fungi or Trichoderma alone. Interactions between the AM
fungus and Trichoderma enhanced plant growth and suppressed
damping off of cucumber (Cucumis sativus L.) and Fusarium wilt in
melon plants grown in seedling nurseries (Chandanie et al., 2009;
Martinez-Medina et al., 2009). Tanwar et al. (2013) reported that the
incidence of S. lycopersicum inoculated with Fusarium oxysporum
was 70.0%. In contrast, the incidence in plants inoculated with AM
fungi (Funneliformis mosseae and Acaulospora laevis) decreased to
20.0%. Further co-inoculation with one AM fungus and Trichoderma
viride reduced the incidence to 10.0%, while complete inhibition of
the disease was achieved with the combined application of two AM
tungi and Trichoderma.

Currently, studies exploring biological control strategies for
anthracnose in common vetch are limited; however, AM fungi
and Trichoderma show significant potential for managing this
disease. The present study aims to investigate the effectiveness
and mechanisms of the AM fungus, Glomus tortuosum, and
Trichoderma longibrachiatum, both individually and in
combination, along with the chemical agent pyraclostrobin for
controlling anthracnose in common vetch under greenhouse
conditions. We hypothesize that the combined application of G.
tortuosum and T. longibrachiatum will have a synergistic effect,
leading to greater disease suppression than any of the treatments
applied alone.
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FIGURE 1

Design of the experiment and flowchart for each treatment.

2 Materials and methods

2.1 Common vetch, AM fungus,
Trichoderma, and pathogens

The common vetch utilized in this study was V. sativa var.
Lanjian No. 2, cultivated by Lanzhou University. The AM fungus G.
tortuosum (BGC-NMO3A) was obtained from the Bank of
Glomeromycota in China (BGC), maintained by the Beijing
Academy of Agriculture and Forestry Sciences (BAAFS). The
strain was isolated from the alfalfa-growing soil in Ejin Horo
Banner, Inner Mongolia. Glomus tortuosum was propagated by
culturing Trifolium repens in sterilized sand, with root sections cut
to a length of 1 cm to serve as inoculum, containing approximately
50 spores per gram. Trichoderma longibrachiatum was isolated
from alpine meadows on the Tibetan Plateau (Zhu et al., 2024).
The pathogen C. spinaciae was isolated from anthracnose-infected
tissue of common vetch collected from the experimental site in
Shantang Village, Xiahe County, Gansu Province, China (Wang
et al, 2019). The common vetch, AM fungus, Trichoderma, and
pathogens were provided by the State Key Laboratory of Herbage
Improvement and Grassland Agro-ecosystems, Lanzhou
University, China.

2.2 Experimental design

The experiment utilized a factorial arrangement of 5 x 2
treatments. A solution of 25% pyraclostrobin (Henan Yintian
Fine Chemical Co., Henan, China) (F) was sprayed at a
concentration of 225 ghm™, applying 20 mL per pot 3 days after
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the inoculation of pathogenic fungi. The treatments included G.
tortuosum inoculation (AM), T. longibrachiatum inoculation (T), a
combined inoculation of G. tortuosum and T. longibrachiatum (AM
+T), and a control group with no inoculation (CK). This resulted in
treatments divided into groups with pathogenic fungi inoculation
and those without, yielding a total of 10 treatments. Each treatment
was replicated four times, resulting in a total of 40 pots (Figure 1).

2.3 Experiment establishment

The soil was sieved through a 2-mm sieve and sterilized in an
oven at 150°C for two cycles, each lasting 2 h, with a 24-h interval
between cycles. The sand, also sieved through a 2-mm sieve, was
heated in an oven at 170°C for 6 h. A mixture of the above sterilized
soil and sand in a 1:3 ratio was prepared as the soil substrate, with
each pot receiving 600 g of this substrate. For the treatments, 100 g
of G. tortuosum and 100 g of T. longibrachiatum were measured and
evenly distributed over the soil. The combined treatment (AM+T)
received 50 g of each fungus, while the control (CK) and chemical
(F) treatments were supplemented with equal amounts of sterilized
mixed soil and sand. An additional 200 g of substrate was covered
for each pot.

Seeds of common vetch cv. Lanjian No. 2 were sterilized by
immersion in 75% alcohol for 3 min, followed by treatment with 1%
sodium hypochlorite for 10 min. After rinsing the seeds five times
with sterile water, the seeds were placed in sterile Petri dishes on
filter paper and kept moist by daily watering with sterilized water.
After 48 h of incubation, 12 seedlings were transplanted into pots,
with 10 seeds per pot. A week later, eight plants displaying similar
growth conditions were selected for further cultivation. Each pot
received 150 mL of water every 3 days.
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treatments at P<0.05.

Three weeks after planting, the pathogen C. spinaciae was
prepared for inoculation. The pathogen was scraped with a
sterilized slide, filtered, and prepared into a spore suspension at a
concentration of 1 x 10° spores/mL. This suspension was inoculated
onto the common vetch using the stabbing spray method, applying
200 mL per pot. The pots were then covered with black plastic bags
for 48 h to promote infection. Two weeks after pathogen
inoculation, disease incidence and disease index were recorded,
and photosynthesis indicators were measured before harvest using a
portable photosynthesis-fluorescence measurement system
(GFS3000). The experiment was carried out in a greenhouse at
Lanzhou University. Throughout the study, the photosynthetic
photon flux density varied between 480 and 850 mmol/m?s,
while average temperatures ranged from 20°C to 28°C. The plants
received tap water every 2 days until the soil reached a stable weight
equivalent to 10% of its dry weight.

2.4 Plant harvest

Five weeks after emergence, the plants were harvested. The
shoots were harvested and divided with three subsamples, and ~1 g
from each pot was used for the measurement of the activities of
plant defense enzyme activities: superoxide dismutase (SOD)
activity was assessed using the nitrogen blue tetrazolium (NBT)
photoreduction method, peroxidase (POD) activity was determined
by the guaiacol method, catalase (CAT) activity was measured with
the UV-absorbance method, and polyphenol oxidase (PPO) activity
was evaluated using the catechol method (Gao et al., 2018).
Additionally, ~1 g was used to determine the soluble sugar
content with the anthrone method, proline content using the
ninhydrin method, and malondialdehyde content through the
trichloroacetic acid method. In addition, chlorophyll content was
evaluated using the acetone extraction method (Li, 2000). The rest
of the shoot was used for fresh weight, the fresh shoot was then
dried in an oven for 48 h at 80°C, and the total dry weight was
calculated with the ratio of fresh and dry weight.
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The root was washed and divided into two subsamples, and ~0.1
g was used to determine the mycorrhizal colonization as described
by Giovannetti and Mosse (1980). The rest of the fresh shoot was
measured and then dried in an oven for 48 h at 80°C, and the total
dry weight was calculated with the ratio of fresh and dry weight. The
dried samples of the shoots and roots were crushed and used for the
measurement of total nitrogen and phosphorus using a SmartChem
450 automatic chemical analyzer (AMS Alliance, Italy). Soil
available phosphorus was measured by the molybdenum-
antimony colorimetric method (Li, 2000). Soil neutral
phosphatase, urease activity, and peroxidase activity were
measured using the Hefei Lyle Biological Soil Enzyme Reagent Kit
following the kit’s instructions.

2.5 Data analysis

All data were expressed as means with standard errors based on
four replicates. Statistical comparisons between treatment and
control groups were conducted using one-way analysis of
variance (ANOVA) in SPSS 26.0 (SPSS Institute Inc., Chicago, IL,
USA). Tukey’s HSD test was applied for all pairwise comparisons of
treatment means at a significance level of P <0.05.

3 Results

3.1 Mycorrhizal colonization and
Trichoderma in soils

The inoculation of AM fungi formed typical arbuscular and
hypha structures in the roots, with the infection rate ranging from
43.75% to 50.00%, with no significant differences among the
treatments (Figure 2). Non-mycorrhizal structures were detected
in the uninoculated (NM) root segments. The presence of disease
reduced the spore numbers of Trichoderma in the soil. Compared to
the non-pathogen-infected group, the population of Trichoderma
decreased by 45.65% under pathogen infection (P < 0.05). The
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presence of AM fungi also reduced the Trichoderma spore numbers.
In the co-inoculation treatment of AM fungi and Trichoderma, the
Trichoderma spore numbers decreased by 25.62% compared to the
treatment with Trichoderma alone (P < 0.05) (Figure 2).

3.2 Disease incidence and disease index

The application of the fungicide 25% pyraclostrobin (F), the
AM fungi G. tortuosum (AM), T. longibrachiatum (T), and the
combination of AM fungi and Trichoderma significantly decreased
the severity of common vetch anthracnose. Disease incidence was
reduced by 53.85%, 34.62%, 34.62%, and 15.39%, respectively (P <
0.05), and disease index was reduced by 68.97%, 34.48%, 32.76%,
and 20.69%, respectively (P < 0.05) (Figure 3).

3.3 Photosynthesis index

Anthracnose significantly affected the photosynthetic indices of
common vetch. The net photosynthetic rate, transpiration rate, and
stomatal conductance of common vetch were significantly reduced
by the pathogen-infected treatment (C+), with decreases of 33.68%,
30.42%, and 19.50%, respectively, compared to plants under the
non-pathogen-infected treatment (C-) (P < 0.05). Furthermore, the
pathogen-infected treatment significantly increased the intercellular
carbon dioxide concentration by 12.01% (P < 0.05). In the non-
pathogen-infected treatment, there were no significant differences
in net photosynthetic rates among the groups (P > 0.05). In the
pathogen-infected treatment, the net photosynthetic rates under the
fungicide, AM fungi, and Trichoderma treatments were significantly
higher than the control, with increases of 67.16%, 67.94%, and
74.30%, respectively (P < 0.05). Regardless of whether the plants
were infected or not, there were no significant differences in
transpiration rates and stomatal conductance among the
treatments (P > 0.05). In the non-pathogen-infected treatment,
the intercellular carbon dioxide concentration of common vetch
under the AM fungi treatment was 14.48% lower than that of the
fungicide treatment group (P < 0.05). However, in the pathogen-
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infected treatment, the intercellular carbon dioxide concentrations
of common vetch in the fungicide and AM fungi treatment groups
were both lower than that of the control, by 19.83% and 17.07%,
respectively (P < 0.05) (Figure 4).

3.4 The biomass of common vetch

Pathogen infection significantly decreased the growth of
common vetch, with aboveground biomass decreasing by 13.96%
and underground biomass by 39.98% (P < 0.05). AM fungi and
Trichoderma did not affect the growth of common vetch under the
non-pathogen-infected treatments (P > 0.05); however, their
individual application resulted in significantly higher growth
compared to the combined treatment of AM fungi and
Trichoderma, with increases of 26.59% and 24.80%, respectively
(P < 0.05). In addition, the application of AM fungi and
Trichoderma significantly increased the underground biomass of
common vetch by 49.71% and 44.47%, respectively (P < 0.05).
Under the pathogen-infected treatment (C+), the application of
fungicide, AM fungi, and Trichoderma significantly promoted the
growth of plants, with aboveground biomass increases of 43.41%,
25.66%, and 19.09%, respectively (P < 0.05); the underground
biomass also increased significantly by 51.76%, 86.02%, 70.99%,
and 55.20%, respectively (P < 0.05) (Figure 5).

3.5 Nitrogen and phosphorus contents

Anthracnose significantly decreased nitrogen content in both
the shoots and roots by 15.76% and 16.84%, respectively (P < 0.05).
In the non-pathogen-infected treatment, there were no significant
differences in nitrogen content in the aboveground and
underground parts of common vetch (P > 0.05). In the pathogen-
infected treatment, the nitrogen content in the shoots under the
fungicide, AM fungi, and Trichoderma treatments was significantly
higher than that of the control, with increases of 33.44%, 13.88%,
and 12.12%, respectively (P < 0.05). The nitrogen content in the
roots under the AM fungi treatment was 17.27% higher than that of
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the control (P < 0.05), while the nitrogen content in the roots under
the other three treatments showed no significant difference
compared to the control.

Anthracnose also significantly affected phosphorus content in
the shoots of common vetch, resulting in an overall decrease of
11.96% after infection (P < 0.05), but it had no significant impact on
phosphorus content in the roots (P > 0.05). Under the AM fungi
treatment, phosphorus content in both the shoots and roots was
significantly higher than that of the control, with increases of
25.01% and 39.21%, respectively (P < 0.05). In the other three
treatments, with or without pathogen infection, there were no
significant differences in phosphorus content in either the shoots
or roots compared to the control (Figure 6).
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3.6 Soil enzyme activities

The infection with the anthracnose pathogen C. spinaciae did
not affect soil enzyme activity. The urease activity in soil treated
with the AM fungus and Trichoderma was significantly higher than
that of the control group, showing an increase of 111.17% (P < 0.05)
(Figure 7). Additionally, the peroxidase activity in the soil treated
with Trichoderma alone or with the combination of AM and
Trichoderma was 25.11% and 20.52% higher than the control,
respectively (P < 0.05) (Figure 7). Furthermore, the neutral
phosphatase activity in soils treated with AM fungi alone and the
AM + Trichoderma combination was 14.45% and 12.77% higher
than that of the control, respectively (P < 0.05) (Figure 7).
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3.7 Chlorophyll, soluble sugars, proline,
and malondialdehyde content

Pathogen infection reduced chlorophyll by 21.99%. There were
no significant differences among the treatments in the non-
pathogen-infected plants. In contrast, under the pathogen-
infected treatment, fungicides and AM fungi increased
chlorophyll by 45.01% and 27.10% (P < 0.05). Pathogen infection
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also decreased the content of soluble sugars by 22.40% (P < 0.05),
while it enhanced MDA content by 139.50% (P < 0.05). However, it
did not have an impact on proline content. In the pathogen-infected
treatment (C-), the application of fungicide, AM fungi, and
Trichoderma increased soluble sugar content by 80.34%, 32.49%,
and 49.37%, respectively (P < 0.05). In addition, the application of
fungicides also increased the proline content by 61.05% (P < 0.05),
while Trichoderma decreased the proline content by 31.46% (P <
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0.05). The MDA content under the combined treatment of AM
fungi and Trichoderma was 196.62% higher than CK (P < 0.05). In
contrast, in pathogen-infected treatments (C+), the application of
fungicide, AM fungi, and Trichoderma increased the soluble sugar
content by 80.85%, 48.45%, and 38.28%, respectively (P < 0.05). The
proline content in the control was significantly higher than in the
other four treatments, with increases of 14.71%-58.31% (P < 0.05).
The application of fungicide, AM fungi, and Trichoderma
significantly reduced the malondialdehyde content by 44.03%,
43.15%, and 36.72%, respectively (P < 0.05) (Figure 8).

3.8 Plant defense enzyme activities

Pathogen infection significantly increased defense enzyme
activities, including POD, CAT, SOD, and PPO, with increasing
rates of 79.54%, 103.28%, 29.90%, and 146.09% (P < 0.05),
respectively. The application of fungicides, AM fungi, and
Trichoderma significantly affected plant defense enzyme activities,
whether in the presence or absence of pathogens. Under the non-
pathogen-infected treatment, fungicides, AM fungi, and
Trichoderma significantly increased the SOD activities by
148.50%, 361.41%, and 354.64% (P < 0.05), respectively; AM
fungi and Trichoderma increased CAT activities by 44.295% and
78.80% (P < 0.05); the combination of AM fungi and Trichoderma
significantly increased SOD activity by 64.28% and 51.90%,
respectively (P < 0.05); and the AM fungi and Trichoderma,
individually or in combination, increased PPO activities by
396.05%, 255.81%, and 357.08% (P < 0.05), respectively. Under
the pathogen-infected treatment (C+), the application of AM fungi
and Trichoderma significantly increased POD, CAT, SOD, and PPO
activities by 23.57% and 22.10%, 27.12% and 26.76%, 21.54% and
19.33%, and 35.79% and 34.35%, respectively (P < 0.05) (Figure 9).

Frontiers in Microbiomes

4 Discussion

The present study investigates the efficacy of the AM fungus, G.
tortuosum, and T. longibrachiatum, both individually and in
combination, in preventing and controlling anthracnose in
common vetch, with 25% pyraclostrobin serving as a chemical
control reference. AM fungi and Trichoderma species have
demonstrated significant efficacy in managing plant anthracnose
caused by Colletotrichum species. For instance, G. intraradices
notably diminished anthracnose incidence in Forsythia, resulting in
improved yields in mycorrhizal plants compared to non-mycorrhizal
counterparts (Richter et al., 2011). Inoculation with T. harzianum
significantly lessened the incidence of C. gloeosporioides in mango,
decreasing its severity by 87.90% and demonstrating Trichoderma’s
antagonistic potential against C. graminicola (Alvindia and Dionisio,
2018). Trichoderma exhibited an in vitro inhibition rate exceeding
70% against C. graminicola, and field applications showed marked
reductions in seedling mortality and disease incidence across different
growth stages, leading to increases in dry matter by 40.0% and grain
yield by 23.8% compared to control plants (Vasanthakumari and
Shivanna, 2014). In the current experiment, AM fungi and
Trichoderma were effective in mitigating anthracnose in common
vetch caused by C. spinaciae, significantly lowering both the incidence
and severity of the disease.

Both the AM fungi and Trichoderma contribute positively to
soil physicochemical properties, promoting root and aboveground
growth to alleviate the negative impacts of pathogens (Zhu et al,
2024; Zheng et al,, 2016). In this study, the application of AM fungi
increased soil neutral phosphatase and urease activities, while T.
longibrachiatum elevated soil catalase and urease activities. These
increases were positively correlated with higher levels of soil
available phosphorus and improved plant biomass. This finding
aligns with previous research by Wang et al. (2007), who noted that
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AM fungi stimulate phosphatase and urease activities. The
enhanced soil enzyme activity facilitated by AM fungi aids in the
release of essential nutrients (Qin et al, 2020). Conversely, the
application of T. longibrachiatum resulted in increased activities of
soil urease, dehydrogenase, acid phosphatase, catalase, invertase,
and acid protease (Mao and Jiang, 2021). This application also
improved the plants™ ability to convert and utilize nitrogen and
phosphorus from the soil.

Anthracnose negatively affects chloroplast content. Compared to
uninoculated controls, pathogen-infected plants exhibited decreased
net photosynthetic rates, lower stomatal conductance, reduced
transpiration rates, and diminished chlorophyll a, b, and total
chlorophyll content, while intercellular CO, concentrations increased
(Silva et al., 2020). Similar results were found in the current experiment,
as the presence of the AM fungus and Trichoderma significantly
enhanced chlorophyll content and photosynthetic capacity in
diseased plants, aiding their resistance to pathogenic damage.

Plant responses to pathogenic attacks include the production of
defense enzymes such as CAT, phenylalanine ammonia lyase
(PAL), POD, PPO, and SOD (Li et al., 2018). Our results showed
that both G. tortuosum and T. longibrachiatum were able to inhibit
pathogen growth by inducing host resistance and producing
defensive compounds. Inoculation with G. fasciculatum increased
the levels of SOD, ascorbate peroxidase (APX), ascorbic acid (AA),
and phenolics in plants, thereby enhancing resistance against
anthracnose and promoting growth and biomass increase (Maya
and Matsubara, 2013). Trichoderma longibrachiatum inhibited the
mycelial growth of C. graminicola by up to 76.47%. Trichoderma
increased the activities of SOD, POD, and PPO by 36.63%, 43.59%,
and 40.96%, respectively, resulting in a 32.92% reduction in the
anthracnose disease index while simultaneously exerting a growth-
promoting effect (Manzar et al., 2021). In this experiment, both G.
tortuosum and T. longibrachiatum stimulated plant resistance and
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significantly increased defense enzyme activity in common vetch, as
evidenced by decreased malondialdehyde content and increased
soluble sugar content, regardless of pathogen infection.

Although the combined application of G. tortuosum and T.
longibrachiatum demonstrated effectiveness against anthracnose in
common vetch, the overall impact was not fully satisfactory,
potentially due to competitive interactions between the two agents.
Previous research showed that AM fungi can influence the colonization
of plant roots by plant growth-promoting rhizobacteria (PGPB), with
AM fungi possibly inhibiting T. longibrachiatum activity and negatively
affecting its population development, which may impair its growth-
promoting and biocontrol effects (Manzar et al,, 2021).

In addition to the AM fungus and Trichoderma, various biocontrol
agents exhibiting strong antagonistic effects against anthracnose have
been documented. For instance, sterile culture filtrate, crude proteins,
crude lipopeptides, and volatile compounds from Bacillus subtilis
exhibited strong antagonism against C. gloeosporioides (Huang et al,
2020). Furthermore, Stenotrophomonas rhizophila inhibited mycelial
growth and spore germination of the pathogen C. gloeosporioides
through the production of volatile compounds, nutrient competition,
and lytic enzymes, successfully reducing anthracnose incidence in
tomato by 95% (Reyes-Perez et al., 2019). Additionally, Bacillus
amyloliquefaciens demonstrated strong antagonism against C.
truncatum, the causal agent of alfalfa anthracnose, achieving 60%
inhibition of mycelial growth and complete inhibition of conidial
germination and displaying 82.59% efficacy against alfalfa
anthracnose under greenhouse conditions (Hu et al., 2020). Timely
evaluation and field testing of these biocontrol agents are critical for
their potential commercialization in agricultural applications.

Our study also examined the effectiveness of pyraclostrobin, which
exhibited significant inhibitory effects on anthracnose caused by
Colletotrichum spp., with field trials revealing efficacy rates ranging
from 41.14% to 48.91% against C. gloeosporioides. Furthermore, its
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effectiveness against C. fructicola reached 66.70% (Nam et al., 2014).
The application of 25% pyraclostrobin (150 ghm™) demonstrated
superior efficacy against anthracnose in alfalfa, achieving a reduction in
disease index and a corresponding yield increase of 51.14%.
Pyraclostrobin differentially diminished anthracnose severity caused
by Colletotrichum acutatum and C. lindemuthianum (Gao et al,, 2017;
Rodriguez-Salamanca et al., 2015; Gillard and Ranatunga, 2013). In this
study, 25% pyraclostrobin was also effective against anthracnose in
common vetch, significantly reducing the disease index while
increasing forage yield.

5 Conclusion

The present study shows that under greenhouse conditions,
both individual and combined applications of the AM fungus G.
tortuosum and T. longibrachiatum demonstrate significant
preventive effects against anthracnose in common vetch. These
biocontrol agents not only protect against the invasion of
anthracnose by inducing systemic resistance and activating
defense enzyme activities but also stimulate soil enzyme activity,
enhancing nutrient absorption in common vetch. As a result, the
co-application of the AM fungus and Trichoderma increases the
resistance of common vetch to anthracnose disease. This study
highlights the importance of implementing biological control
methods to improve overall plant health and resilience against
pathogens. Specifically, the use of the AM fungus and Trichoderma
enhances disease resistance in common vetch.
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