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Serial nitrogen-phosphate
co-limitation controls the
primary productivity in the
transitional waters of northern
South China Sea and the Pearl
River Estuary
Yuanhao Liu, Xunying Zhou, Ruoyu Niu, Rongman Yan,
Shuaishuai Xu, Kangli Guo, Jing Guo, Jianchang Tao,
Sha Wu and Shengwei Hou*

Department of Ocean Science and Engineering, Southern University of Science and Technology,
Shenzhen, China
Nitrogen (N) and phosphorus (P) are essential nutrients for marine

phytoplankton, playing a crucial role in shaping the structure of microbial

communities. Nutrients in coastal seawater are influenced by multiple factors,

including ocean currents, terrestrial runoff, and anthropogenic activities, leading

to region-specific patterns of nutrient limitation. This study investigates nutrient

limitation in the transitional waters near Sanmen Island, located at the confluence

of the Pearl River Estuary (PRE) and the northern South China Sea. Using 4-hourly

in situ time-series observations and nutrient addition experiments, we found that

nitrogen limitation persists in this region despite its proximity to the nutrient-rich

Pearl River. Urea addition significantly enhanced primary productivity, as

evidenced by the increased chlorophyll a concentration and the increased

relative abundance of cyanobacteria, whereas phosphate addition alone

favored the growth of heterotrophic bacteria, yet limited the growth of

cyanobacteria and other primary producers. Combined nitrogen-phosphorus

treatments revealed serial co-limitation, where nitrogen relief shifted limitation

to phosphorus. In conclusion, these findings highlight the complex nutrient

dynamics in transitional coastal waters and underscore the impact of

anthropogenic nutrient discharge on ecosystem productivity.
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1 Introduction

Marine phytoplankton are fundamental to oceanic food webs

and global biogeochemical cycles, contributing approximately 50%

of global primary productivity (Falkowski et al., 1998; Field et al.,

1998). The availability of key inorganic nutrients primarily governs

the growth and community structure of marine phytoplankton, and

their cellular stoichiometry roughly follows the Redfield ratio,

approximating the average ratio of inorganic C, N, and P found

in the ocean (Redfield, 1958). Coastal marine environments exhibit

complex and spatially variable patterns of nutrient limitation that

differ significantly from those in open ocean systems (Elser et al.,

2007). While oligotrophic open ocean regions typically experience

N limitation or N-P co-limitation, coastal waters present a more

heterogeneous picture due to the confluence of terrestrial inputs,

anthropogenic activities, and oceanographic processes, leading to a

notable deviation in inorganic N:P ratios from the Redfield ratio

(Peng et al., 2002; Elser et al., 2007; Lan et al., 2024). According to

Liebig’s Law of the Minimum, the primary productivity of marine

phytoplankton is limited by the most scarce essential nutrient in the

environment (de Baar, 1994). Nitrogen is often the primary limiting

nutrient in marine environments, a pattern consistently observed

across diverse coastal systems (Vitousek and Howarth, 1991).

However, modern understanding recognizes that multiple

essential nutrients can be deficient in the system, resulting in

simultaneous co-limitation (where multiple nutrients are equally

limiting at the same time) or serial co-limitation (where the relief of

one limiting nutrient shifts the limitation to another) (de Baar,

1994; Harpole et al., 2011; Moore et al., 2013). A global analysis of

ocean phytoplankton nutrient limitation has revealed a high

prevalence of co-limitation in coastal regions, where N, P and

other nutrients can simultaneously or sequentially limit primary

productivity (Elser et al., 2007; Moore et al., 2013; Cao et al., 2024).

This complexity is particularly pronounced in transitional coastal

waters where multiple water masses converge, creating dynamic

conditions that can rapidly alter nutrient availability and limitation

patterns (Nixon, 1995), particularly in the face of unprecedented

pressures f rom cl imate change , eutrophicat ion , and

human activities.

The northern South China Sea (SCS) is one of the most dynamic

subtropical coastal marine systems globally, characterized by

complex interactions between monsoon-driven circulation, river

inputs, and anthropogenic activities (Liu et al., 2002). Daya Bay is

located in the northern SCS off the coast of Shenzhen and Huizhou.

Within the bay, submarine groundwater discharge contributes

more nutrients than riverine inputs (Wang et al., 2018). Nitrate

and nitrite primarily originate from atmospheric deposition and

submarine groundwater discharge, while dissolved inorganic

phosphorus (DIP) is mainly derived from riverine sources, and

silicate is predominantly supplied by groundwater discharge from

the seabed and continental slope (Wang et al., 2018). The rapid

economic development along the coast of Shenzhen and Huizhou,

such as tourism, fishery, aquaculture, has led to an increasingly

anthropogenic impact on Daya Bay and nearby coastal waters,
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including eutrophication, an increase in the N:P ratio, a shift in the

limiting nutrient factor from N to P (Wang et al., 2004, 2008; Wu

et al., 2009; Shi and Huang, 2013; Guo et al., 2023). Eutrophication

leads to an increase in primary productivity, which has had a

significantly negative impact on the aquaculture and tourism

industries of Daya Bay (Wu et al., 2009).

Sanmen Island is situated at the mouth of Daya Bay in northern

SCS, near the Pearl River Estuary (PRE), making it a unique

transitional zone where multiple water masses converge. Seawater

environmental parameters near Sanmen Island are influenced by

multiple factors, including tidal dynamics from SCS, groundwater

discharge from the continent and island, riverine input and human

activities (Wang et al., 2018; Li et al., 2021). During the wet season,

typically from April to September, the increased flow of the Pearl

River can introduce substantial nutrient loads into the nearby

estuarine and coastal waters (Yin and Harrison, 2008). The

summer riverine input typically enhances nitrogen concentration

in the estuary, though phosphorus concentration remains low, and

the interaction with seawater from the northern South China Sea

further complicates the nutrient limitation in this highly dynamic

system (Li et al., 2017). Due to their different geographical locations,

the PRE and Daya Bay exhibit distinct patterns of nutrient

limitation in summer. The N:P ratio of surface water in the PRE

is significantly influenced by Pearl River input and coastal

anthropogenic activities (Niu et al., 2020; Tao et al., 2021), while

Daya Bay is primarily influenced by Guangdong coastal upwelling

brought by the southwest monsoon, with relatively weaker impact

from terrestrial runoff and human influence (Han and Ma, 1988; Li

et al., 1990; Zhang, 1992; Yang and Tan, 2019). While in the

transitional zone offshore Sanmen Island, in the vicinity of the

Pearl River Estuary and Daya Bay, the bioavailability of nutrients

depends on the mixing of different water bodies, creating a natural

laboratory for studying nutrient limitation patterns. The frequent

occurrence of phytoplankton blooms in this region during spring

and summer is consistent with seasonal variations in nutrient

availability and productivity (Lin et al., 2024). However, the effect

of nutrient limitation on phytoplankton growth, particularly

regarding the role of organic nitrogen sources and the

competitive dynamics between autotrophs and heterotrophs,

remains poorly understood. Altogether, Sanmen Island’s unique

geographical location and complex hydrological conditions make it

a special site for studying the ecology of transitional waters.

This study aims to elucidate the primary nutrient limitation in

these transitional waters, focusing on the role of organic nitrogen

sources like urea on phytoplankton growth, as well as the interactive

relationship between nutrient limitation and microbial community

structure. Specifically, in July 2022, an in situ observation and an

incubation experiment with urea and potassium dihydrogen

phosphate (KH2PO4) additions at Sanmen Island were conducted.

Through 16S rRNA gene and metagenomic sequencing, the

following questions will be addressed: (1) What is the nutrient

limitation pattern in the Sanmen Island region? (2) How do

microbial communities respond to the addition of urea and

KH2PO4, respectively?
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2 Materials and methods

2.1 Experimental design

The sampling site was located at MawanWharf, Sanmen Island,

with coordinates of 22°27′49.65″N, 114°37′0.73″E (Figure 1). This

location was specifically chosen as a representation of transitional

coastal waters, as it experiences the confluence of multiple water

masses with more pronounced nutrient dynamics compared to

inner bay or riverine locations. The experimental design consisted

of two complementary approaches, a high-frequent in situ

observation and a controlled nutrient incubation experiment. For

the in situ observation, samples were collected from surface

seawater (~20 cm depth) between 22:00 on July 18, 2022, and

14:00 on July 21, 2022, with the sampling intervals of 4 hours,

yielding a total of 17 sample sets. Detailed sampling time for each

sample is provided in Supplementary Table 2. Meanwhile, an

incubation experiment was initiated at 18:00 on July 18, 2022.

Considering that Sanmen Island is directly influenced by

anthropogenic activities, and referring to previous incubation

experiments, we selected organic nitrogen compound urea and

inorganic phosphate KH2PO4 as the added nitrogen and

phosphorus sources, respectively (Rondell et al., 2000; Bonnet

et al., 2016). Initial surface seawater from the observation site was

transferred into four sets of three replicate 20 L transparent low-

density polyethylene buckets. The four groups were: (1) Blank

group, the control group without nutrient addition; (2) N group,

with urea added to reach a final concentration of 0.16 mmol urea-

N/L; (3) P group, with KH2PO4 added to a final concentration of

0.01 mmol KH2PO4-P/L; (4) NP group, with both urea and
Frontiers in Microbiomes 03
KH2PO4 added at the same concentrations as the N and P

groups. Here, the final concentration of phosphate was

moderately higher than the highest observed value in surface

seawater of Daya Bay during summer (Li et al., 2019). The urea

concentration was determined based on the final concentration of

phosphate and the Redfield ratio (Redfield, 1958). Due to tidal

influence, one replicate each from the Blank and N groups was

damaged during the in situ incubation. The remaining samples were

collected after 68 hours for productivity and microbial composition

analysis. Before sample collection, in situ measurements of

temperature, pH, dissolved oxygen (DO), salinity, and chlorophyll

a concentration were taken. For microbial sample collection, large

particles and zooplankton were first removed by pre-filtering

through a 200-mesh (74 mm) nylon sieve. Then, approximately 20

liters of seawater were filtered through 0.22 mm pore size

polycarbonate (PC) membranes (Millipore, USA) to capture

prokaryotic cells. The filters were used to extract DNA. The

remaining filtrate was analyzed to measure the concentrations of

nutrients (including nitrate, nitrite, ammonia, phosphate, and

silicate) and dissolved organic carbon (DOC).
2.2 Measurement and analysis of
environmental parameters

Temperature, pH, DO, salinity, and chlorophyll a concentration

were measured in situ using a MultiAnna MTA-6A multi-

parameter water quality sonde (Lightsun, China). During

measurement, the sonde was immersed in seawater and

continuously monitored for at least 3 minutes. After removing
FIGURE 1

The sampling location (red dot) off the Sanmen Island, in the south of Daya Bay.
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outliers, the arithmetic mean of the remaining data was recorded as

the result of the environmental parameter.

DOC concentration was measured with a TOC-L total organic

carbon analyzer (Shimadzu, Japan) according to the manufacturer’s

protocol. Nutrient concentrations, including nitrate, nitrite,

ammonia, silicate, and phosphate, were measured using the

CleverChem Anna automatic discrete analyzer (DeChem-Tech,

Germany) according to the “GB17378.4, 2007 Specifications for

oceanographic survey-part 4: Survey of chemical parameters in sea

water” and instrument operation manual (GB17378.4, 2007). Data

analysis and visualization were conducted using R packages with R

version 4.2.3 (R Core Team, 2023). Specifically, in situ samples

grouping was determined using the mclust package based on the

temporal variation of nutrient concentrations (Scrucca et al., 2016).

The Wilcoxon test was used to verify the validity of samples

grouping (Wilcoxon, 1945). The ggplot2 package (version 3.5.0)

was used for data visualization (Wickham, 2016).
2.3 DNA extraction and sequencing

FastDNA™ SPIN Kit for Soil (MP Biomedical, USA) was used

to extract microbial DNA from filter membranes. DNA samples

were sent to Novogene Co., Ltd. (Tianjin, China) for amplicon and

metagenomic sequencing. The V4-V5 region of prokaryotic 16S

rRNA gene was ampl ified us ing pr imers 515Y (5 ’ -

GTGYCAGCMGCCGCGGTAA - 3 ’ ) a n d 9 2 6R ( 5 ’ -

CCGYCAATTYMTTTRAGTTT-3’) (Yeh et al., 2021). The PCR

amplification steps include: (1) pre-denaturation at 95°C for 120

seconds; (2) 30 cycles of denaturation at 95°C for 45 seconds,

annealing at 50°C for 45 seconds and extension at 68°C for 90

seconds; (3) final extension at 68°C for 300 seconds (Yeh et al.,

2021). Amplicon sequencing was carried out on the Illumina

NovaSeq PE250 platform (Illumina, USA). Metagenomic

sequencing was performed on the Illumina NovaSeq PE150

platform (Illumina, USA).
2.4 16S rRNA gene sequencing analysis

The amplicon sequencing data were processed on the QIIME2

platform (Bolyen et al., 2019). Adapter and primer sequences in the

raw reads were trimmed using Cutadapt (version 4.6) (Martin,

2011). The trimmed sequences were classified into prokaryotic and

eukaryotic sequences using BBSplit (BBTools version 39.19, https://

sourceforge.net/projects/bbmap/) with reference to the SILVA 132

and PR2 4.14.0 databases (Quast et al., 2012; Guillou et al., 2012).

For prokaryotic sequences, denoising, paired-end reads merging,

and clustering were performed using DADA2 (version 1.22.0) to

obtain amplicon sequence variants (ASVs) (Katoh et al., 2002;

Callahan et al., 2016). Taxonomic annotation of ASVs was

conducted according to the SILVA 138.1 database (Quast et al.,

2012). ASVs annotated as chloroplasts or mitochondria were

discarded. Default parameters were used for all the software

unless otherwise specified. The quality control results are detailed
Frontiers in Microbiomes 04
in Supplementary Table 1. Statistical analysis was performed in

QIIME2 and R software (R version 4.2.3) (Bolyen et al., 2019; R

Core Team, 2023). All samples were rarefied to 140,168 sequences

per sample to reduce the impact of varying sequencing depths

(Supplementary Figure 1). Alpha diversity of prokaryotes was

assessed using the Simpson index. A significant test of alpha

diversity was conducted via the Wilcoxon test (Wilcoxon, 1945).

Beta diversity was evaluated using non-metric multidimensional

scaling (NMDS) analysis via the vegan package (version 2.6-4), and

the significance test between different groups was conducted using

analysis of similarity (ANOSIM) via the phyloseq package (version

1.42.0) (Clarke and Green, 1988; McMurdie and Holmes, 2013;

Oksanen et al., 2022). Differential abundance analysis (DAA) was

performed using ANCOM-BC (version 1.0) (Lin and Peddada,

2020). Centered log-ratio (CLR) transformation and Pearson

correlation were used to analyze the correlation between

cyanobacteria and chlorophyll a concentration (Aitchison, 1982;

Rodgers and Nicewander, 1988). Data visualization was conducted

using ggplot2 (version 3.5.0) (Wickham, 2016). When plotting the

composition of the prokaryotic community, taxa with an average

relative abundance <1% across groups were grouped into “Others”.

This approach was also used in DAA and correlation analysis

between cyanobacteria and chlorophyll a concentration to

minimize interference from low-abundance taxa. Given the

marine environment, all taxa annotated as freshwater species

were labeled with the “-like” suffix to suggest close relatives of

marine environments.
2.5 Metagenomic analysis

For raw sequencing data, Readfq V8 (https://github.com/lh3/

readfq) and Bowtie2 (version 2.2.4) were used for quality control

and host contamination removal, respectively (Langmead and

Salzberg, 2012). Clean reads were assembled into contigs using

MEGAHIT (version 1.2.9; parameters: –min-count 2 –k-list

21,33,55,77,99,127 –min-contig-len 1000) (Li et al., 2015, 2016).

To obtain more functional genes and more precise taxonomy

annotation of functional genes, single-sample binning and co-

binning were performed with BASALT (version 1.0.0; parameters:

–max-ctn 10 –min-cpn 50 –mode continue) to obtain metagenome-

assembled genomes (MAGs) (Qiu et al., 2024). Specifically, co-

binning was conducted based on the clustering result of sourmash

(version 4.8.8) (Brown and Irber, 2016). Samples clustered into the

same group were co-binned together to recover more MAGs. MAGs

were dereplicated at an average nucleotide identity (ANI) of 95%

using dRep (version 3.4.5) (Olm et al., 2017). The completeness and

contamination of MAGs were assessed again using CheckM

(version 1.2.2) (Parks et al., 2015). 202 MAGs with completeness

> 50% and contamination < 10% were retained for downstream

analysis. The data preprocessing results are detailed in

Supplementary Table 1. Taxonomic annotation of MAGs was

conducted using GTDB-Tk (version 2.3.2), and the result was

t r an s l a t e d in t o NCBI t a xonomy c l a s s ifi c a t i on v i a

gtdb_to_ncbi_majority_vote.py (v0.2.1, https://github.com/
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Ecogenomics/GTDBTk) (Chaumeil et al., 2019, 2022). Taxonomic

annotation of contigs was conducted via MEGAN6 (version

6.24.20) against the NCBI nt database (downloaded on June 10,

2022) and megan-nucl-Feb2022.db (https://software-ab.cs.uni-

tuebingen.de/download/megan6/) (Huson et al., 2016; Sayers

et al., 2022). Coding DNA Sequences (CDS) of contigs and

MAGs were predicted using Prokka (version 1.14.6), followed by

functional annotation against the KEGG database (version 106.0)

using KofamScan (version 1.3.0) (Seemann, 2014; Aramaki et al.,

2019). CDS and predicted protein sequences were clustered at 95%

sequence identity using CD-HIT (version 4.8.1) (Li and Godzik,

2006; Fu et al., 2012). To evaluate the microbial demand for

nitrogen and phosphorus in different experimental groups,

relative gene abundance related to the uptake and utilization of

environmental nitrogen and phosphorus was analyzed. Transcript

per million (TPM) was calculated using CoverM (version 0.7.0)

with parameters: contig –mapper bwa-mem –min-read-percent-

identity 0.95 –min-read-aligned-percent 0.75 -m tpm (Li and

Dewey, 2011; Wagner et al., 2012; Li, 2013; Aroney et al., 2025).

For phylogenetic tree construction, multiple sequence alignment

(MSA) was first constructed using MUSCLE (version 5.1), followed

by trimming of MSA using trimAl (version 1.4) with “-automated1”

parameter (Capella-Gutiérrez et al., 2009; Edgar, 2022). Finally, the

phylogenetic tree was constructed using IQ-TREE (version 2.2.0.3)

with the parameter: -m MF (Nguyen et al., 2015). The base R (R

version 4.2.3) and ggplot2 (version 3.5.0) packages were used for

data visualization (Wickham, 2016; R Core Team, 2023).
3 Results

3.1 Nitrogen limitation controls the primary
productivity in seawater near Sanmen
Island

Phased variations were observed in nitrate, nitrite, and silicate

concentrations in the in situ environment. Nitrate and nitrite

concentrations remained relatively low before 06:00 on July 20 but

increased significantly after 10:00 (p-value < 0.001), while the silicate

concentration exhibited the opposite trend (Figure 2A). After

sampling clustering using nitrate, nitrite, and silicate concentrations

(see Methods), nine samples collected from 22:00 July 18 to 06:00 July

20 (L1822, L1902, L1906, L1910, L1914, L1918, L1922, L2002, L2006)

were grouped as Phase 1, while eight samples from 10:00 July 20 to

14:00 July 21 (L2010, L2014, L2018, L2022, 2102, L2106, L2110,

L2114) were grouped as Phase 2 (Figure 2B). Significant differences

(p-value < 0.01) were observed between Phase 1 and Phase 2 for

nitrite, nitrate, and silicate concentrations, strengthening the

rationality of grouping (Figures 2C–E). The concurrent increases in

pH, dissolved oxygen, and chlorophyll a are consistent with enhanced

photosynthetic activity and primary productivity during Phase 2

(Hamdhani, 2024). The silicate depletion in Phase 2 may indicate that

diatoms made a significant contribution to primary productivity.

Phosphate and ammonia concentrations were below the detection

limit of the instrument (Figure 2A). In the incubation experiment,
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urea addition alone or combined with KH2PO4 enhanced primary

productivity. Chlorophyll a concentration in the Blank group ranged

from 2.1997 to 3.1007 mg/L, while in the N group, they rose to

between 5.3352 and 12.1482 mg/L, demonstrating that urea addition

enhanced primary productivity. In the P group, chlorophyll a

concentration remained almost unchanged compared to the Blank

group, with a slight decrease in average value (Supplementary

Table 2). The NP group yielded substantially higher chlorophyll a

concentrations (16.0793-21.2664 mg/L), suggesting NP co-addition

further improved the primary productivity than N addition alone.

These results indicate that coastal surface seawater near Sanmen

Island exhibited serial nitrogen-phosphate co-limitation, dominated

by nitrogen limitation.
3.2 Distinct microbial diversity and
composition patterns between groups

At the phylum level, Bacteroidota, Cyanobacteria, and

Proteobacteria were the most abundant prokaryotes (Figures 3A,

B). In situ observations showed that Cyanobacteria consistently

dominated the prokaryotic community, while Actinobacteriota

showed a significant increase in relative abundance in Phase 2 (q-

value < 0.001) (Figure 3A; Supplementary Table 3). At the genus

level, Synechococcus_CC9902 had the highest relative abundance,

whereas Cyanobium_PCC-6307-like significantly increased in

Phase 2 (q-value < 0.001), suggesting an ecotype transition

between Phase 1 and Phase 2. Low-abundance taxa (Others)

initially increased in Phase 2 but rapidly declined thereafter

(Figure 3C). In the incubation experiment, Cyanobacteria did not

always dominate the prokaryotic community. In the P group, the

mean relative abundance of Bacteroidota and Proteobacteria both

exceeded that of Cyanobacteria (Figure 3B). Additionally,

Unclassified Saprospiraceae displayed higher mean abundance in

the P group compared to the other three groups (Figure 3D). Unlike

in the in situ environment, Cyanobium_PCC-6307-like remained at

low relative abundance (<1.5%) across all groups (Figure 3D).

For in situ samples, a significant difference in prokaryotic

diversity was observed between Phase 1 and Phase 2. The

diversity (Simpson index) of prokaryotes was significantly higher

in Phase 2 compared to Phase 1 (p-value < 0.05) (Figure 4A).

NMDS analysis also confirmed distinct clustering between Phase 1

and Phase 2 (Significance < 0.05) (Figure 4B). In the incubation

experiment, the Blank, N, and NP groups exhibited larger

fluctuations in diversity index, whereas the P group maintained

relatively stable values and had the highest mean Simpson

index (Figure 4C).
3.3 Contrasting microbial responses to
urea and phosphate addition

The addition of urea promoted the utilization potential of

nutrients by autotrophic microorganisms. In both the N and NP

groups, the relative gene abundances of ferredoxin-nitrite reductase
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(nirA), ferredoxin-nitrate reductase (narB), alkaline phosphatase D

(phoD), urease (ureABCDEFG), phosphate transport system

(pstSCAB), phosphonate transport system (phnC, phnD, phnE),

nitrate/nitrite transporters (NRT2, narK, nrtP, nasA), phosphate
Frontiers in Microbiomes 06
starvation-inducible proteins (phoH, phoL), urea transport system

(urtABCDE), phosphonate dehydrogenase (ptxD), Trk/Ktr system

potassium uptake proteins (trkA, trkG, trkH, ktrA, ktrB, ktrC, ktrD),

and potassium/hydrogen antiporter (cvrA, nhaP2) derived from
FIGURE 2

Variations in nutrient concentrations in the in situ environment (A) Grouping result of the in situ samples based on nitrate, nitrite and silicate
concentrations (B) The horizontal axis represents the coordinate projection of data on a specific dimension (Dir1). The 17 vertical lines at the bottom
of the B panel represent the projection of 17 in situ samples on Dir1, ordered left to right as: L2022, L2018, L2106, L2102, L2114, L2014, L2110,
L2010, L1922, L1918, L2006, L1822, L1902, L1906, L1914, L1910, L2002; Wilcoxon test results of nitrate (C), nitrite (D) and silicate (E) concentrations
between Phase 1 and Phase 2. “***”p-value < 0.001, “****”p-value < 0.0001.
frontiersin.org

https://doi.org/10.3389/frmbi.2025.1655960
https://www.frontiersin.org/journals/microbiomes
https://www.frontiersin.org


Liu et al. 10.3389/frmbi.2025.1655960
cyanobacteria increased. In contrast, this phenomenon was not

observed in the P group. Instead, the abundances of the above-

mentioned genes derived from cyanobacteria decreased slightly in

the P group, indicating that the competitiveness of cyanobacteria in

the P group decreased (Figure 5 and Supplementary Table 4). Urea

addition stimulated cyanobacteria to enhance their transport and

utilization potential of dissolved inorganic nitrogen (DIN), urea,

DIP, and phosphonate, thereby increasing primary productivity.

The phosphate transport system substrate-binding protein (pstS), a

key component of the phosphate transport system, was found to be

upregulated under phosphorus starvation (Willsky and Malamy,

1980; Ames, 1986; Hussein et al., 2020). In the N group, the relative

gene abundance of cyanobacterial pstS increased, indicating a

higher potential demand for phosphorus by cyanobacteria. This

result also supports the notion that the nutrient limitation pattern

in the seawater environment of Sanmen Island is dominated by the

serial nitrogen limitation.

The addition of phosphate enhanced the potential of

heterotrophic bacteria to compete for nitrogen and phosphorus.

Chlorophyll a concentration did not increase in the P group, nor

did the abundances of cyanobacterial genes relate to nitrogen and

phosphorus transport and utilization. However, in the P group,

heterotrophic bacteria exhibited an enhanced potential for nutrient

competition under phosphate stimulation. Compared with the
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Blank group, the relative gene abundances of alkaline

phosphatases (phoA, phoB), alkaline phosphatase D (phoD),

urease (ureABCDEFG), phosphate transport system (pstSCAB),

phosphate transport system protein (phoU), phosphonate

transport system (phnC, phnD, phnE, phnF, phnK), phosphate-

Na+ symporter (yjbB), phosphate starvation-inducible proteins

(phoH, phoL), phosphate regulon sensor histidine kinase (phoR),

phosphate regulon response regulator (phoB), nitrate/nitrite

transport system (nrtA , nasF, cynA, nrtB, nasE, cynB),

phosphonate dehydrogenase (ptxD), Trk/Ktr system potassium

uptake proteins (trkA, trkG, trkH, ktrA, ktrB, ktrC, ktrD), KUP

system potassium uptake protein (kup), potassium-dependent

mechanosensitive channel (mscK, kefA, aefA), inward rectifier

potassium channel (IRPC), voltage-gated potassium channel (kch,

trkA, mthK, pch), and glutathione-regulated potassium-efflux

system ancillary protein KefG (kefG) derived from heterotrophic

bacteria, mainly Rhodobacterales and Maricaulales, increased in the

P group. Among these genes, nitrate/nitrite transport system related

genes and some phoD genes also increased in the NP group, while

other genes remained at the same level or decreased

(Supplementary Table 4). In contrast, the abundances of the

above genes derived from heterotrophic bacteria decreased in the

N group, indicating that the heterotrophic competition for nutrients

was weaker in the N group.
FIGURE 3

Prokaryotic community structure of the in situ environment (A, C) and the incubation experiment (B, D) at the phylum level (A, B) and other
taxonomic levels (C, D).
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4 Discussion

Studies on marine eutrophication confirm that increases in

nitrogen levels can significantly boost algal growth, potentially

triggering harmful algal blooms (Lan et al., 2024). Urea has

gained recognition as a significant nitrogen source for marine

phytoplankton, including the picocyanobacteria Synechococcus

(Solomon et al., 2010). The ability of marine microorganisms to

utilize urea through urease enzymes provides them with a

competitive advantage in nitrogen-limited environments,

contributing to their ecological success in coastal waters

(Dyhrman and Anderson, 2003; Mulholland and Lee, 2009).

While nitrogen is often the primary limiting nutrient in marine

systems, phosphorus plays a critical role in freshwater and can

significantly influence marine ecosystems, particularly in coastal

lagoons and estuaries with elevated phosphorus inputs from

agriculture and sewage (Sylvan et al., 2006; Elser et al., 2007;

Conley et al., 2009). Phosphorus limitation is less common in

marine systems but becomes more prominent when nitrogen

levels are already elevated, making freshwater-influenced marine

systems vulnerable to phosphorus-driven changes in community

structure (Sylvan et al., 2006; Elser et al., 2007). Heterotrophic

bacteria exhibit higher phosphorus demand compared to

autotrophic organisms, with their phosphate uptake accounting

for a substantial portion of total phosphate uptake in marine

environments (Cotner and Wetzel, 1992). This competitive
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advantage allows heterotrophic bacteria to thrive when phosphate

is added, potentially limiting the growth of primary producers like

cyanobacteria. These dynamics highlight the significance of

understanding phosphorus cycling and competition in influencing

microbial community structure and nutrient availability in

coastal ecosystems.

Daya Bay exhibits distinct nutrient limitation factors between

the inner and outer bay. Prior to China’s Reform and Opening-Up,

the inner bay was less impacted by human activities and showed

nitrogen limitation (Wang et al., 2004, 2008; Shi and Huang, 2013).

With subsequent coastal economic development and increased

anthropogenic influences, the limiting nutrient factor in the inner

bay shifted from nitrogen to phosphorus (Wang et al., 2004, 2008;

Shi and Huang, 2013; Guo et al., 2023). However, in areas less

affected by human activities, such as the bay mouth, nitrogen

remains the limiting element factor (Ma et al., 2023; Zhao et al.,

2025). The Pearl River Estuary and Daya Bay, located west and east

of Shenzhen, respectively, demonstrate different patterns of nutrient

limitation. In summer, the N/P ratio of surface water in the PRE

exhibits a “high at north and south, low in the middle” pattern,

which is significantly influenced by the Pearl River input and coastal

anthropogenic activities (Li et al., 2017; Ke et al., 2022). Although

Daya Bay also receives terrestrial runoff and human influence, their

impacts are relatively weaker and diluted by Guangdong coastal

upwelling (Han and Ma, 1988; Li et al., 1990; Zhang, 1992; Yang

and Tan, 2019). During summer, influenced by the southwest
FIGURE 4

Comparison of the alpha and beta diversity. The comparison of Simpson index (A, C), and NMDS analysis (B, D) of the in situ (A, B) and incubation
samples (C, D). “**”: p-value < 0.01.
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monsoon, Guangdong coastal upwelling invades Daya Bay (Han

and Ma, 1988; Li et al., 1990; Han and Ma, 1991; Zhang, 1992; Xu

et al., 2014; Yang and Tan, 2019). Given the relatively small

discharge from Daya Bay’s coastal rivers, the intensity of

Guangdong coastal upwelling primarily determines the spatial
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distribution pattern of nutrients in Daya Bay during summer

(Han and Ma, 1988; Li et al., 1990; Zhang, 1992; Yang and Tan,

2019). Therefore, the distribution pattern of nutrients in the surface

seawater of Daya Bay during summer may be different annually (Shi

and Huang, 2013; Wu et al., 2019; Yang and Tan, 2019; Yang et al.,
FIGURE 5

Taxonomic annotations and relative gene abundances of cyanobacterial ureC (A) and pstS (B). Urease subunit alpha (ureC) and phosphate transport
system substrate-binding protein (pstS) are marker genes for urea hydrolysis and phosphate transmembrane transport, respectively (Hung et al.,
2013; Abdo et al., 2022).
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2020; Zhou et al., 2024; Shi et al., 2025; Zhao et al., 2025). Sanmen

Island is located in the mouth of Daya Bay and experiences

additional influence from the Pearl River plume in summer (Ou

et al., 2009; Yang and Tan, 2019; Ma et al., 2025). Compared with

historical data, in situ environmental parameters showed

characteristics of “high temperature, low salinity, low DIN,

extremely low ammonia, and extremely low phosphate”, which

were distinct from previous data in Daya Bay but frequently in the

open sea side of the PRE (Shi and Huang, 2013; Li et al., 2017; Wu

et al., 2019; Yang and Tan, 2019; Yang et al., 2020; Tao et al., 2021;

Ke et al., 2022; Zhou et al., 2024; Shi et al., 2025; Zhao et al., 2025).

Therefore, during the observation, the marine environment around

Sanmen Island was likely predominantly influenced by the Pearl

River plume, with a relatively weak intrusion of Guangdong coastal

upwelling. Furthermore, the unique geographical position of

Sanmen Island makes it a potentially critical site for assessing the

relative strengths of the Pearl River plume and Guangdong

coastal upwelling.

The different response patterns of microorganisms to urea and

phosphate addition confirm the serial N limitation pattern in

surface seawater near Sanmen Island during summer. Due to the

extremely low phosphate concentration during in situ observation,

the nutrient limitation factor could not be directly calculated from

the DIN: DIP ratio. However, chlorophyll a concentrations

increased in the N group, with a higher increase in the NP group,

indicating the nutrient limitation pattern in Sanmen Island was

serial N limitation. A similar phenomenon was also observed in the

in situ observation, where the concentration of chlorophyll a

increased in Phase 2, coinciding with higher nitrate and nitrite

concentrations. In contrast, phosphate addition alone (P group) not

only failed to observe increased primary productivity but showed

slightly reduced chlorophyll a concentration. Since the relative

abundance of cyanobacteria did not show a significant correlation

with chlorophyll a concentrations (p-value > 0.05), suggesting the

chlorophyll a concentration was not only determined by

cyanobacteria (Supplementary Figure 2). Other phytoplankton

also contribute significantly to primary production, such as

diatoms. The significant decrease in silicate after the bloom

indicates diatoms play an important role in the increase in

chlorophyll a concentration. Therefore, the rise in chlorophyll a

concentration may reflect the combined contributions of

cyanobacteria, diatoms, and possibly other eukaryotic

phytoplankton. However, the increased relative abundance of

functional genes derived from cyanobacteria in both N and NP

groups confirms that urea addition promoted the growth of primary

producers (Supplementary Table 4). This provides genetic evidence

supporting the serial N limitation pattern observed in surface waters

near Sanmen Island during summer.

The bottle effect can alter microbial interactions. The “you

produce while I clean up” theory describes an interaction where

heterotrophic bacteria (e.g., Roseobacter) mineralize organic matter

and provide inorganic nutrients, which are then utilized by

autotrophs, such as cyanobacteria, for organic matter production

(Christie-Oleza et al., 2015). However, in all experimental groups,

the addition of exogenous nutrients only enhanced the nutrient
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uptake potential of microorganisms belonging to one nutritional

type of microorganism (autotroph or heterotroph). Even in N and

NP groups with higher primary productivity, the nutrient uptake

and utilization potential of heterotrophic bacteria were suppressed,

likely due to the bottle effect. Since the closed system had almost no

material exchange with the outside environment, nutrient supply

remained finite over time (Ionescu et al., 2015). As a result,

competition for limited resources between autotrophs and

heterotrophs inevitably reduced each other’s ecological niches

(Calvo-Dıáz et al., 2011; Ionescu et al., 2015). Notably, the

competitive potential of heterotrophic bacteria was inactivated in

the Blank group. Previous studies suggest heterotrophic bacteria

exhibit higher phosphorus demand (Biddanda et al., 2001; Makino

et al., 2003; Godwin and Cotner, 2015). Phosphate requirements

among marine heterotrophic bacteria vary greatly, with their

phosphate uptake accounting for 5% to over 90% of total

phosphate uptake in the marine environments, depending on the

study region (Faust and Correll, 1976; Harrison, 1983; Kirchman,

1994). Overall, heterotrophs dominate phosphate assimilation in

aquatic systems (Kirchman, 1994). Therefore, in the P group, the

addition of phosphate likely triggered the nutrient competition of

heterotrophic bacteria, while cyanobacteria were at a competitive

disadvantage due to the lack of available nitrogen sources. In fact,

the bottle effect also contributed to differences between the in situ

environment and the incubation experiment after the increase in

primary productivity. During the transition from Phase 1 to Phase 2

in the in situ environment, two phenomena occurred that were not

observed in the incubation experiment: an increase in DIN

concentration and a bloom of Cyanobium_PCC-6307-like. These

two phenomena were likely caused by the intrusion of an exogenous

water mass with higher DIN concentration and another strain of

cyanobacteria. This water mass passed through Sanmen Island and

mixed with the local water mass. The incubation buckets’ water

mass was isolated and therefore unmixed and unaffected.

The variation in relative gene abundances of potassium

transporter and potassium channel reflects the importance of

potassium ions (K+) in microbial survival. K+ is involved in many

physiological processes, such as microbial osmoregulation, pH

maintenance, and enzyme activation (Stautz et al., 2021). Trk/Ktr

system is one of the three primary bacterial K+ transporter systems

(Tanudjaja et al., 2023). In N and NP groups, the relative abundance

of cyanobacterial Trk/Ktr genes increased, indicating that the

potential demand of cyanobacteria for K+ was stimulated by urea

addition rather than by the exogenous supply of K+. In contrast to

Trk/Ktr, the potassium/hydrogen antiporter mediates K+ efflux and

helps bacteria adapt to alkaline environments (Plack and Rosen,

1980; Radchenko et al., 2006). Given the pH increase in N and NP

groups, the increase in relative abundance of potassium/hydrogen

antiporter genes derived from cyanobacteria suggests their

enhanced potential to alleviate intracellular alkalization stress

induced by seawater alkalinization. In the P group, when

heterotrophic bacteria (mainly Alphaproteobacteria) gained

competitive advantage, the relative abundance of their genes

related to K+ uptake and efflux increased (Supplementary

Table 4). Overall, regardless of K+ addition, or whether
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cyanobacteria or heterotrophic bacteria were stimulated,

microorganisms with competitive advantage exhibited enhanced

potential for both K+ uptake and efflux (Supplementary Table 4).

Considering the important role of K+ in maintaining cellular

homeostasis, preserving the capacity for K+ equilibrium is

indispensable for microbial survival (Stautz et al., 2021).

Unclassified Cryomorphaceae and NS4_marine_group had the

potential to serve as predictors of eutrophication in the in situ

environment. Unclassified Cryomorphaceae and NS4_marine_group

belong to Flavobacteriales, which have the ability to degrade and utilize

algae-derived organic matter, with their abundance showing strong

correlations with eutrophication (DeLong et al., 1993; Teeling et al.,

2012; Fontanez et al., 2015). In other coastal environments, such as

Cam Ranh Bay in Vietnam and the Gulf of Trieste in the northern

Mediterranean, NS4_marine_group was identified as a significant

predictor of eutrophication or algal blooms, showing strong

associations with ammonia and phosphate concentrations (Kolda

et al., 2020; Kopprio et al., 2021; Tsang et al., 2021; Celussi et al.,

2024). In the first two samples of Phase 2 (L2010 and L2014), the

relative abundances of Unclassified Cryomorphaceae and

NS4_marine_group increased simultaneously with those of

Cyanobium_PCC-6307-like, followed by rapid declines. Although

object genes derived from Flavobacteriales didn’t dominate in the

incubation experiment, the relative gene abundances of phoD and yjbB

increased in the P and NP groups, indicating greater potential for

phosphorus acquisition and utilization (Martinez et al., 1996; Clark

et al., 1998; Luo et al., 2009; Motomura et al., 2011). Therefore, in the in

s i tu environment , Unclass ified Cryomorphaceae and

NS4_marine_group responded to the bloom of primary productivity,

exhibiting a temporary increase in relative abundance.

Cyanobacteria have the potential to promote seawater

alkalization through urea decomposition. As dominant primary

producers in the ocean, cyanobacteria can utilize urea as a nitrogen

source (Esteves-Ferreira et al., 2018; Veaudor et al., 2019; Dıéz et al.,

2023; Li et al., 2023). Urease catalyzes urea hydrolysis to produce

ammonia, which could increase environmental pH (Collier et al.,

2009; Carlini and Ligabue-Braun, 2016; Veaudor et al., 2019; Li et al.,

2023). Urease subunit alpha (ureC) is widely used as a representative

gene due to its crucial role in urease activity (Reed, 2001; Abdo et al.,

2022). In the incubation experiment, both the abundance of ureC

genes derived from Synechococcus and seawater pH increased in N

and NP groups (Supplementary Tables 2, 4). Previous studies have

confirmed that under acidification conditions, Synechococcus strains

utilizing urea showed significantly enhanced survival when

exogenous urea was provided, whereas ureC-mutant strains

exhibited reduced tolerance to acidification stress (Li et al., 2023).

Although Synechococcus were not directly exposed to acidification

conditions in the incubation experiment, the increase in ureC relative

gene abundance and seawater pH in N and NP groups suggests their

potential to reduce ocean acidification.

It should be noted that due to the geographical location of

Sanmen Island and the variable inter-annual and seasonal

dynamics of these transitional waters, the conclusion of Sanmen

Island’s nutrient limitation pattern derived from this study, which

focused on one site at one season, may not be applicable throughout
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Daya Bay or across different years and seasons. In addition, due to

experimental biases in DNA extraction and sequencing, eukaryotic

sequences are exceedingly rare in the sequencing dataset. Therefore,

to ensure the reliability of downstream analyses, we excluded

eukaryotic sequences. In this study, the absence of eukaryotic

sequences limited the exploration of drivers contributing to

primary productivity. In future research, the inclusion of eukaryotic

sequences will provide a more comprehensive understanding of

biogeochemical cycles in transitional water mass.
5 Conclusion

In the summer season, as represented by transitional waters off

Sanmen Island, the nutrient limitation pattern is characterized by

serial nitrogen limitation. The addition of urea enhanced the

potential of cyanobacteria to uptake and utilize nutrients,

stimulating the bloom in primary productivity. This stimulatory

effect was more pronounced under the co-addition of urea and

phosphate. In contrast, phosphate addition alone not only failed to

increase primary productivity but also increased the competitive

potential of heterotrophic bacteria for nutrient acquisition, thereby

exacerbating resource competition and constraining the ecological

niche of cyanobacteria.
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Capella-Gutiérrez, S., Silla-Martıńez, J. M., and Gabaldón, T. (2009). trimAl: a tool
for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics.
25, 1972–1973. doi: 10.1093/bioinformatics/btp348

Carlini, C. R., and Ligabue-Braun, R. (2016). Ureases as multifunctional toxic
proteins: A review. Toxicon. 110, 90–109. doi: 10.1016/j.toxicon.2015.11.020

Celussi, M., Manna, V., Banchi, E., Fonti, V., Bazzaro, M., Flander-Putrle, V., et al.
(2024). Annual recurrence of prokaryotic climax communities in shallow waters of the
North Mediterranean. Environ. Microbiol. 26, e16595. doi: 10.1111/1462-2920.16595

Chaumeil, P. A., Mussig, A. J., Hugenholtz, P., and Parks, D. H. (2019). GTDB-Tk: a
toolkit to classify genomes with the Genome Taxonomy Database. Bioinformatics. 36,
1925–1927. doi: 10.1093/bioinformatics/btz848

Chaumeil, P. A., Mussig, A. J., Hugenholtz, P., and Parks, D. H. (2022). GTDB-Tk v2:
memory friendly classification with the genome taxonomy database. Bioinformatics. 38,
5315–5316. doi: 10.1093/bioinformatics/btac672

Christie-Oleza, J. A., Scanlan, D. J., and Armengaud, J. (2015). You produce while I
clean up”, a strategy revealed by exoproteomics during Synechococcus-Roseobacter
interactions. Proteomics. 15, 3454–3462. doi: 10.1002/pmic.201400562

Clark, L. L., Ingall, E. D., and Benner, R. (1998). Marine phosphorus is selectively
remineralized. Nature. 393, 426–426. doi: 10.1038/30881

Clarke, K. R., and Green, R. H. (1988). Statistical design and analysis for a 'biological
effects' study. Mar. Ecol. Prog. Ser. 46, 213–226. doi: 10.3354/meps046213

Collier, J. L., Baker, K. M., and Bell, S. L. (2009). Diversity of urea-degrading
microorganisms in open-ocean and estuarine planktonic communities. Environ.
Microbiol. 11, 3118–3131. doi: 10.1111/j.1462-2920.2009.02016.x

Conley, D. J., Paerl, H. W., Howarth, R. W., Boesch, D. F., Seitzinger, S. P., Havens, K.
E., et al. (2009). Controlling eutrophication: nitrogen and phosphorus. Science. 323,
1014–1015. doi: 10.1126/science.1167755

Cotner, J. B., and Wetzel, R. G. (1992). Uptake of dissolved inorganic and organic
bphosphorus compounds by phytoplankton and bacterioplankton. Limnol. Oceanogr.
37, 232–243. doi: 10.4319/lo.1992.37.2.0232

de Baar, H. J. W. (1994). von Liebig's law of the minimum and plankton ecology
(1899-1991). Prog. Oceanogr. 33, 347–386. doi: 10.1016/0079-6611(94)90022-1

DeLong, E. F., Franks, D. G., and Alldredge, A. L. (1993). Phylogenetic diversity of
aggregate-attached vs. free-living marine bacterial assemblages. Limnol. Oceanogr. 38,
924–934. doi: 10.4319/lo.1993.38.5.0924
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Huson, D. H., Beier, S., Flade, I., Górska, A., El-Hadidi, M., Mitra, S., et al. (2016).
MEGAN community edition - interactive exploration and analysis of large-scale
microbiome sequencing data. PloS Comput. Biol. 12, e1004957. doi: 10.1371/
journal.pcbi.1004957

Hussein, F. B., Venkiteshwaran, K., and Mayer, B. K. (2020). Cell surface-expression
of the phosphate-binding protein PstS: System development, characterization, and
evaluation for phosphorus removal and recovery. J. Environ. Sci. 92, 129–140.
doi: 10.1016/j.jes.2020.02.016

Ionescu, D., Bizic-Ionescu, M., Khalili, A., Malekmohammadi, R., Morad, M. R., de
Beer, D., et al. (2015). A new tool for long-term studies of POM-bacteria interactions:
overcoming the century-old Bottle Effect. Sci. Rep. 5, 14706. doi: 10.1038/srep14706

Katoh, K., Misawa, K., Kuma, K., and Miyata, T. (2002). MAFFT: a novel method for
rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res.
30, 3059–3066. doi: 10.1093/nar/gkf436

Ke, S., Zhang, P., Ou, S., Zhang, J., Chen, J., and Zhang, J. (2022). Spatiotemporal
nutrient patterns, composition, and implications for eutrophication mitigation in the
Frontiers in Microbiomes 13
Pearl River Estuary, China. Estuar. Coast. Shelf Sci. 266, 107749. doi: 10.1016/
j.ecss.2022.107749

Kirchman, D. L. (1994). The uptake of inorganic nutrients by heterotrophic bacteria.
Microb. Ecol. 28, 255–271. doi: 10.1007/BF00166816
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