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The diversity of the installed sequencing and microarray equipment make it increasingly
difficult to compare and analyze the gene expression datasets obtained using the different
methods. Many applications requiring high-quality and low error rates cannot make
use of available data using traditional analytical approaches. Recently, we proposed
a new concept of signalome-wide analysis of functional changes in the intracellular
pathways termed OncoFinder, a bioinformatic tool for quantitative estimation of the
signaling pathway activation (SPA). We also developed methods to compare the gene
expression data obtained using multiple platforms and minimizing the error rates by
mapping the gene expression data onto the known and custom signaling pathways.
This technique for the first time makes it possible to analyze the functional features of
intracellular regulation on a mathematical basis. In this study we show that the OncoFinder
method significantly reduces the errors introduced by transcriptome-wide experimental
techniques. We compared the gene expression data for the same biological samples
obtained by both the next generation sequencing (NGS) and microarray methods. For
these different techniques we demonstrate that there is virtually no correlation between
the gene expression values for all datasets analyzed (R2 < 0.1). In contrast, when the
OncoFinder algorithm is applied to the data we observed clear-cut correlations between
the NGS and microarray gene expression datasets. The SPA profiles obtained using
NGS and microarray techniques were almost identical for the same biological samples
allowing for the platform-agnostic analytical applications. We conclude that this feature of
the OncoFinder enables to characterize the functional states of the transcriptomes and
interactomes more accurately as before, which makes OncoFinder a method of choice for
many applications including genetics, physiology, biomedicine, and molecular diagnostics.
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INTRODUCTION
The complex machinery of intracellular signaling determines the
cell fate by governing all the most important processes includ-
ing growth, differentiation, proliferation, migration, survival, and
death. The molecular modeling of intracellular signaling path-
ways has been underway for more than two decades (Kholodenko
et al., 1999; Hanahan and Weinberg, 2000). During that time a
plethora of regulatory cascades have been discovered and cata-
loged (Nikitin et al., 2003; Mathivanan et al., 2006; Elkon et al.,
2008; Bauer-Mehren et al., 2009; Haw and Stein, 2012; Nakaya
et al., 2013). Each of these cascades contains dozens to hundreds
of different types of molecules, mainly genomic DNA-encoded
gene products. The information on the architecture of the signal-
ing pathway can be used for the mathematical analysis of signal

transduction process (Nikitin et al., 2003; Mathivanan et al., 2006;
Elkon et al., 2008; Bauer-Mehren et al., 2009; Haw and Stein,
2012; Nakaya et al., 2013; Yizhak et al., 2013).

This information has resulted in the accumulation of the
large collections of public gene expression datasets includ-
ing the Gene Expression Omnibus (GEO) (http://www.ncbi.
nlm.nih.gov/geo/), Stanford Microarray Database (http://smd.

stanford.edu/), Cancer Genome Atlas (https://tcga-data.nci.nih.

gov/), EBI ArrayExpress (http://www.ebi.ac.uk/arrayexpress/),
mAdb (https://madb.nci.nih.gov/), and the many commercial
repositories providing analytical services. However, until very
recently, these data repositories did not include pathway-based
quantitative evaluation of the functional changes between dif-
ferent biological samples. Additionally, there were no technical
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possibilities to analyze large-scale signalome signatures in
high-throughput gene expression data.

Recently, we developed a set of bioinformatics algorithms
and tools collectively called the OncoFinder (Buzdin et al.,
2014), which encompasses the molecular signaling databases and
enables performing the quantitative analysis of the signalome
changes. This method digests the high throughput transcriptomic
data and provides molecular signaling pathway activation (SPA)
fingerprints for the individual samples.

The major distinction and novelty of the OncoFinder method
is its unique algorithm that quantifies perturbations for each sig-
naling pathway. This makes it possible to quantitatively estimate
the extent of each SPA in a given sample relative to the control
sample or a set of control samples (Buzdin et al., 2014).

In this study, we compared different gene expression datasets
generated for the same biological samples using two different
experimental techniques, next generation sequencing (NGS) and
microarray hybridization. We showed that there is generally a
very weak correlation between the initial NGS and microar-
ray gene expression data. However, applying the OncoFinder
method results in identifying pathway activation profiles that
are highly correlated between the NGS and microarray datasets.
We conclude that the OncoFinder algorithm efficiently removes
errors introduced by the different experimental methodolo-
gies and yields accurate results that can be effectively used
for various applications in biology, medicine and molecular
diagnostics.

According to the International Aging Research Portfolio
(http://www.agingportfolio.org/), over six billion dollars in gov-
ernment funding were spent on research projects involving
microarray systems for gene expression analysis since 1993
(Zhavoronkov and Cantor, 2011) and resulted in tens of thou-
sands of publications. And while the emerging NGS systems are
providing for more-data rich and error-prone RNA sequencing
methods, there is a significant installed base of the microarray
systems generating new gene expression data sets. The high cor-
relation of the pathway activation profiles of gene expression
data from the same biological samples between the microarray
platforms as well as NGS equipment presents the opportunity
to compare the many microarray datasets generated over the
past decades with the data sets obtained using the new NGS
platforms.

RESULTS AND DISCUSSION
Recently, we proposed a new concept of signalome-wide anal-
ysis of functional changes in the intracellular pathways termed
OncoFinder (Buzdin et al., 2014) and developed a bioinformatic
instrument for quantitative estimation of SPA. The underlying
algorithm of OncoFinder converts the results of transcriptome
profiling into a quantitative and qualitative signalome profile,
which characterizes the states called pathway activation strength
(PAS), for each signaling pathway under investigation. The infor-
mation is processed based on the “low-level” transcriptomic data
represented by the aggregate of the so-called case-to-normal ratio
values, CNRn, i.e., the ratio of the expression levels of a gene n in
the investigated sample (e.g., of an individual pathological tissue
sample) to a control (e.g., average value for group of the healthy

tissue samples). The major distinction of our algorithm compared
to other related approaches (Yizhak et al., 2013), is that it deals
with the functional annotation of the gene product and its role in
the individual pathway (e.g., activator or repressor of the signal
transduction through the pathway). The absolute value of PAS is
characterized by the degree of functional changes in the regula-
tion of a signaling pathway, and the positive or negative sign of
PAS indicates whether it is up- or down-regulated, respectively
(Buzdin et al., 2014).

This algorithm was applied to the analysis of various human
tissues and cell types (Buzdin et al., 2014; Vishnyakova et al.,
in press) including hematologic cancers (Spirin et al., 2014)
and validated (Buzdin et al., 2014) on the previously established
“low-level” kinetic protein interaction model of the EGFR path-
way activation (Kuzmina and Borisov, 2011). While genetics of
aging and longevity are complex, the knowledge base is rapidly
increasing (Moskalev et al., 2014), cancer is related to aging
(Blagosklonny and Campisi, 2008) and anti-cancer agents may
act as geroprotectors (Blagosklonny, 2012) and geroprotectors
may provide be used in cancer prevention (Blagosklonny, 2013).
The ability of the OncoFinder algorithm to perform the cross-
platform comparison of the gene expression data resulted in the
first proposal to use PAS in aging research for screening and
ranking of the geroprotective drugs (Zhavoronkov et al., 2014).

In this study, we aimed to investigate whether the OncoFinder
algorithm may be applied to minimize the error rates in gene
expression data obtained using different experimental meth-
ods. We extracted the matching large-scale transcriptomic data
obtained using the different experimental platforms for the same
biological samples. Using the GEO repository of gene expres-
sion data (http://www.ncbi.nlm.nih.gov/geo/), we were able to
extract three datasets corresponding to the simultaneous NGS
and microarray profiling of the same human tissue samples. One
of these datasets, GSE36244 represented human hepatocarcino-
mal HepG2 cells treated with benzopyrene, and the data were

Table 1 | Transcriptomic data deposited in the GEO database that

were used for the current study.

Dataset ID Origin Case samples vs.

control samples

Experimental

platforms

GSE36244 HepG2 cells Treated vs.
untreated with
benzopyrene

Affymetrix human
genome U133 Plus
2.0 arrays and
illumina genome
analyzer sequencer

GSE41588 HT-29 cells Treated vs.
untreated with 5-
aza-deoxy-cytidine

Affymetrix human
genome U133 Plus
2.0 arrays and
illumina genome
analyzer sequencer

GSE37765 Lung adeno-
carcinoma

Tumor samples vs.
matched samples
of normal tissue

Agilent 1M CNV
arrays and illumina
genome analyzer
sequencer
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obtained by hybridization on the Affymetrix Human Genome
U133 Plus 2.0 arrays and using the Illumina Genome Analyzer
sequencing engine (van Delft et al., 2012). In the next dataset,
GSE41588, published by another group of the authors (Xu et al.,
2013) the same two experimental platforms were utilized for
probing gene expression of the human colon cancer cell line HT-
29 treated with 5-aza-deoxy-cytidine. Finally, the third dataset
GSE37765 (Kim et al., 2013) included the information obtained
using the Agilent 1M CNV arrays and the Illumina Genome
Analyzer platform for the human female lung adenocarcinoma
and for the normal lung samples. The overview of input data is
presented in Table 1.

To apply the OncoFinder technique for signalome analysis
of these datasets, we interpreted the untreated cell culture sam-
ples for the datasets GSE36244 and GSE4158, and healthy lung
samples for the dataset GSE37765 to been the “normal” or control
states.

Next, for each dataset we compared the transcriptomic signa-
tures obtained by the NGS and microarray hybridization plat-
forms. All the microarray data were quantile normalized. For
further normalization of the transcription data to the control
samples, we calculated the case-to-normal ratio (CNR). When
comparing the normalized expression logarithms between the
NGS and microarray expression data, we detected virtually no
correlation for all the datasets under investigation, as reflected by
the low correlation coefficients generally less than 0.1 for most of
the samples (Figure 1, Table 2). These results suggest that there is
a huge gap between the microarray and NGS expression data for
all the investigated experimental platforms.

In contrast, for the OncoFinder-processed data and PAS we
detected clear-cut correlations between the NGS and microar-
ray gene expression datasets (Figure 1, Table 2). The correlation
coefficients for PAS were significantly greater than for the CNR
and varied in the interval 0.49–0.89 with a single outlier of 0.21.

FIGURE 1 | Clouds of values obtained using the RNA next-generation

sequencing vs. RNA microarray analysis methods. Upper row (A,B): cell
replica 1, 24 h after BaP treatment from the HepG2 cells, dataset GSE36244
(van Delft et al., 2012). Middle row (C,D): treatment with 5 µM of 5-Aza and

cell replica 1 from the HT-29 cells, dataset GSE41588 (Xu et al., 2013). Lower
row (E,F): sample P8 from the lung adenocarcinoma dataset GSE37765 (Kim
et al., 2013). Left column (A,C,E): values of decimal logarithmic CNR for each
gene. Right column (B,D,F): values of PAS.
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Table 2 | Correlation coefficients between values obtained using the RNA microarray analysis and RNA sequencing methods for the HepG2

cells dataset GSE36244 (van Delft et al., 2012), HT-29 cells dataset GSE41588 (Xu et al., 2013), and lung adenocarcinoma dataset GSE37765

(Kim et al., 2013).

Sample Transcriptome level Signalome level

(logarithmic CNR for different genes) (PAS value for different pathways)

GSE36244, 24 h after BaP treatment Replica 1 0.35 0.49

Replica 2 0.10 0.47

Averaged over 2 samples above 0.22 0.49

GSE41588, 5 µM of 5-Aza Replica 1 0.16 0.89

Replica 2 0.049 0.88

Replica 3 0.047 0.80

Averaged over 3 samples above 0.082 0.87

GSE37765 P1 0.18 0.79

P3 0.098 0.75

P4 0.12 0.80

P5 −0.029 0.21

P8 0.043 0.80

Averaged over 5 samples above 0.068 0.77

This finding evidences that the PAS calculation algorithm pro-
duces significantly more congruent results compared to the initial
gene expression signatures between the microarray and NGS
datasets.

Importantly, both NGS and microarray hybridization strate-
gies may produce a large number of errors through the stages
of RNA purification, library preparation and amplification,
hybridization and sequencing, and finally mapping and anno-
tation of the reads and reading the array (Chalaya et al., 2004;
Buzdin and Lukyanov, 2007; Shugay et al., 2014). It is hard to
identify the errors and to find out what type of experimen-
tal assay provides more accurate data for each individual gene.
It is important to minimize the errors in the transcriptomic
data and, theoretically, quantitative real-time PCR might pro-
vide a solution as a reference gene expression measure. However,
existing PCR platforms do not allow for making high through-
put, transcriptome-scale experiments. Our approach makes it
possible to surmount this obstacle as, unlike the original data,
the outgoing PAS values are highly congruent among the NGS
and microarray data. This effect of the OncoFinder algorithm
is most likely due to its cumulative nature. The PAS value is
formed by the addition of multiple individual members each
representing a gene product involved in the pathway. The con-
centration of each individual gene product can be measured with
an error, which is seen when untreated NGS vs. array data are
compared, but a combination of a large number of these concen-
tration members into a signalome-oriented network apparently
diminishes an overall error, as reflected by the good correlation
records.

We conclude that this feature of PAS makes it possible
to more accurately measure the changes in the functional
states of the cellular/tissue transcriptome and interactome
across the many microarray and NGS platforms, which
makes OncoFinder a method of choice for many applica-
tions including genetics, physiology, biomedicine, and molecular
diagnostics.

MATERIALS AND METHODS
SOURCE DATASETS
Gene expression data used in this study were downloaded
from the GEO repository of transcriptomic information (http://
www.ncbi.nlm.nih.gov/geo/). The following datasets were used:
GSE36244 (van Delft et al., 2012) where transcriptomes were
from HepG2 cells treated with benzopyrene (four samples for the
treated and four for the untreated cells); GSE37765 (Kim et al.,
2013) where female normal lung and lung adenocarcinoma sam-
ples were tested (six samples for the normal and 6 for the cancer
samples), and GSE41588 (Xu et al., 2013) where HT-29cells were
treated with 5-aza-deoxy-cytidine (six samples for the treated and
three for the untreated cells).

For the dataset GSE36244 the two transcriptome datasets were
generated from the Illumina Genome Analyzer IIx sequencer
and also from the Affymetrix Human Genome U133 Plus 2.0
GeneChip arrays. We took untreated HepG2 cells as the controls
for further calculations. The GSE41588 data set was generated
from both the Illumina sequencing platform and the Affymetrix
Human Genome U133 Plus 2.0 arrays. For this dataset the
untreated HT-29 cells were used as the controls. For the third
dataset, GSE37765 (Kim et al., 2013), the data were obtained from
the Illumina Genome Analyzer IIx sequencer and the Agilent 1M
CNV microarray hybridization device. The normal lung samples
were used as the controls.

The signalome knowledge base developed by SABiosciences
(http://www.sabiosciences.com/pathwaycentral.php) was used to
determine structures of intracellular pathways, which was used
for the computational algorithm OncoFinder exactly as described
previously (Buzdin et al., 2014; Spirin et al., 2014; Zhavoronkov
et al., 2014).

Functional annotation of gene expression data
We applied the OncoFinder algorithm (Buzdin et al., 2014)
for the functional annotation of the primary microarray and
NGS genome-wide expression data and for the calculation of
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the regulatory SPA scores. The extracted raw microarray expres-
sion data were quantile normalized (Bolstad et al., 2003). Our
approach to the transcriptome-wide gene expression analysis
applies processing of these results with the signalome knowledge
base developed by SABiosciences (http://www.sabiosciences.com/
pathwaycentral.php). Our algorithm utilizes a scheme that takes
into account the overall impact of each gene product in the sig-
naling pathway but ignores its position in the pathway graph. The
formula used to calculate the PAS for a given sample and a given
pathway p is as follows:

PSp =
∑

n

ARRnp · BTIFn · lg (CNRn)

Here the case-to-normal ratio, CNRn, is the ratio of expression
levels for a gene n in the sample under investigation to the same
average value for the control group of samples. The Boolean flag
of BTIF (beyond tolerance interval flag) equals zero when the CNR
value has passed simultaneously the two criteria that demark the
significantly perturbed expression level from essentially normal.
The first criterion is the expression level for the sample lies within
the tolerance interval, where p > 0.05. The second criterion is the
discrete value of ARR (activator/repressor role) equals to the fol-
lowing fixed values: −1, when the gene/protein n is a repressor
of pathway excitation; 1, if the gene/protein n is an activator of
pathway excitation; 0, when the gene/protein n can be both an
activator and a repressor of the pathway; 0.5 and −0.5, respec-
tively, if the gene/protein n is rather an activator or repressor of
the signaling pathway p, respectively. The results for the 90 path-
ways were obtained for each sample (listed in the Supplementary
file 1). Statistical tests were done using the R software package.
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