:' frontiers

In Molecular Biosciences

PERSPECTIVE
published: 12 August 2015
doi: 10.3389/fmolb.2015.00047

OPEN ACCESS

Edited by:
Kris Pauwels,
Vrije Universiteit Brussel, Belgium

Reviewed by:

Elena Papaleo,

University of Copenhagen, Denmark
Sreenivas Chavall,

MRC Laboratory of Molecular Biology,
UK

*Correspondence:

Franca Fraternall,

Randall Division of Cell and Molecular
Biophysics, King’s College London,
New Hunt’s House, Guy’s Campus,
London SE1 1UL, UK
franca.fraternali@kcl.ac.uk

Specialty section:

This article was submitted to
Structural Biology,

a section of the journal

Frontiers in Molecular Biosciences

Received: 31 May 2015
Accepted: 29 July 2015
Published: 12 August 2015

Citation:

Lu H-C, Chung SS, Fornili A and
Fraternali F (2015) Anatomy of protein
disorder, flexibility and disease-related
mutations. Front. Mol. Biosci. 2:47.
doi: 10.3389/fmolb.2015.00047

Anatomy of protein disorder,
flexibility and disease-related
mutations

Hui-Chun Lu’, Sun Sook Chung ™2, Arianna Fornili*? and Franca Fraternali'*

" Randall Division of Cell and Molecular Biophysics, King’s College London, London, UK, ? Department of Haematological
Medicine, King’s College London, London, UK, ° School of Biological and Chemical Sciences, Queen Mary University of
London, London, UK

Integration of protein structural information with human genetic variation and pathogenic
mutations is essential to understand molecular mechanisms associated with the
effects of polymorphisms on protein interactions and cellular processes. We investigate
occurrences of non-synonymous SNPs in ordered and disordered protein regions
by systematic mapping of common variants and disease-related SNPs onto these
regions. We show that common variants accumulate in disordered regions; conversely
pathogenic variants are significantly depleted in disordered regions. These different
occurrences of pathogenic and common SNPs can be attributed to a negative selection
on random mutations in structurally highly constrained regions. New approaches in the
study of quantitative effects of pathogenic-related mutations should effectively account
for all the possible contexts and relative functional constraints in which the sequence
variation occurs.

Keywords: non-synonymous SNPs, protein disorder, order-disorder propensity, disease-related mutations, protein
flexibility

Introduction

Because of the intrinsic complexity of biological systems, reductionist approaches have traditionally
been used that concentrate on carefully chosen sub-systems. The availability of complete
genome sequences and large (but incomplete) collections of biomolecular structures at atomic
resolution favors large-scale computational approaches to investigate multiple components and
their interactions (Lu et al., 2013). The undisputed relationship between protein-coding elements
and their protein products has dominated the field of genomics/proteomics research in the past and
the relationship between structure and function has been widely investigated.

Large-scale studies have been performed on how disease-related mutations may disrupt
protein functions and ultimately regulate the function of biological systems (Studer et al., 2013).
Mutations are classified as “loss of function,” “gain of function,” or “neutral” according to
their effect on protein function. These effects can be mediated by alterations of the protein
stability induced by the mutation (Yue et al., 2005; Studer et al., 2013). The impact of SNPs on
protein function and structural stability has been extensively studied at the level of the single
protein (Yue et al.,, 2005; Schuster-Bockler and Bateman, 2008; Wang et al., 2012; Nishi et al,,
2013; Studer et al., 2013; Yates and Sternberg, 2013; Scharner et al., 2014) and a number of
predictors have been developed to evaluate the impact of SNPs on individual proteins (Thomas
and Kejariwal, 2004; Capriotti et al., 2005; Bromberg and Rost, 2007; Adzhubei et al.,, 2010;
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Reva et al., 2011; Al-Numair and Martin, 2013; Shihab et al.,
2013; Pires et al., 2014; Yates et al., 2014). With the intention
to expand the single protein structure-function paradigm, the
interplay between Protein Protein Interactions (PPI) networks,
structures, and disease mutations has been explored by several
groups (see reviews Lu et al., 2013; Yates and Sternberg, 2013)
and reference therein, Kelley et al., 2015; Mosca et al., 2015).
Particularly the crucial role of interfaces in modulating the
effects of pathogenic variation in binding and signaling (Stefl
et al., 2013; Yates and Sternberg, 2013) has been generally
accepted. In recent years additional findings have contributed
to further expanding classical structure-function approaches:
firstly, the widely recognized importance of non-coding elements
(Necsulea and Kaessmann, 2014; Ling et al., 2015) (not discussed
here) and the enrichment of SNPs in these (Consortium,
2012; Kircher et al., 2014); secondly, the role of unstructured
regions, intrinsically disordered elements and flexibility in
protein function versatility (Uversky, 2013; Dunker et al., 2015;
Wright and Dyson, 2015). Even in the absence of intrinsic
disorder, there is growing evidence that conformational flexibility
is important in regulating protein-protein interactions (Dobbins
et al., 2008; Stefl et al., 2013; Uversky, 2013). This effect has also
been shown for proteins that have multiple partners (hubs) and
are essential in protein-protein communication and signaling.
Hubs promiscuous binding sites have been demonstrated to
display specific dynamical properties, pre-existing in the isolated
state of the individual protein, allowing for polyvalent partner
binding (Fornili et al., 2013). In any case, quantification of
the occurrence of SNPs in disordered and flexible protein
regions is a complex task, because different shades of disorder
have been identified as playing a role in protein function
stability and binding (Uversky et al., 2014; Wright and Dyson,
2015 and references therein). One particularly interesting case
is represented by mutations related to disorder-to-order (D-
O) transitions; there are often associated to post-translational
modifications or with defense mechanisms to protect proteins
from toxic aggregation and oxidative stress (Winter et al,
2008) and therefore may result in a stronger impact on the
protein functional role. Consequently, order/disorder-sensitive
descriptors of the specific chemico-physical environment in
the vicinity of the observed variant are needed to evaluate
rigorously the relationship between disorder and disease-related
mutations.

We aim to contribute to this debate by exploring and
quantifying in a systematic way the relationship between
order/disorder and the occurrence of common variants (dbSNP:
common variations from the 1000 Genomes project, Sherry et al.,
2001), disease-related SNPs (OMIM: Mendelian genetic diseases,
Hamosh et al., 2005) and cancer-related SNPs (COSMIC, Forbes
et al.,, 2011). To this end we decompose the protein sequences
anatomically in folded domain regions, unfolded-disordered
(intra-domain) regions and inter-domain disordered regions and
calculate the enrichment/depletion of SNPs in each of these
regions. These comparisons based on mapping SNPs on static,
crystallographic structures, represent a first step in quantifying
the different roles played by the two (ordered vs. disordered)
environments in which a common or pathogenic mutation

may occur. We also explored scenarios of mutual effects of
mutations in ordered regions on the disorder content within
that domain. We discuss two cases of hubs that are strongly
involved in cancer: BRAF (Haling et al., 2014; Thevakumaran
et al., 2015) and JAK2 (Bandaranayake et al., 2012), both
with phenotypic pathogenic mutations occurring in ordered
regions and affecting the disorder content of distal sites in the
domain.

Results

Dearth of Disease-Related SNPs in Inter-domain
Disordered Regions

The relative enrichment of SNPs in the dissected disordered
regions of the protein have been analyzed by comparing three
different classes of SNPs: (a) the common variants from the 1000
Genomes project (dbSNP) (Sherry et al.,, 2001), (b) the genetic-
disease variants from OMIM (Hamosh et al., 2005), and (c) the
COSMIC cancer-related SNPs (Forbes et al., 2011). Details on the
enrichment/depletion measures are given in the Section “Strategy
for the investigation of disordered regions and SNPs occurrence.”

The outcome of our analysis is presented Figure 1B and the
barplots relative to each region are colored according to the
scheme in Figure 1A. The results for dbSNP data are reported as
a comparison of the observed human variation in the analyzed
regions vs. the pathogenic mutations observed for OMIM and
COSMIC data. To our knowledge, this is the first time that such a
comparison is presented. The results have been statistically tested
(see Strategy section) and the p-values of the comparison tests
between the distributions are annotated with stars to show their
significance (see Figure 1 legend for clarification).

The most striking difference amongst all data lies in the
opposite behavior observed for INTER-domain disordered
regions (INTER-Dom DRs, red) in dbSNP vs. OMIM and
COSMIC data (enrichment vs. depletion, respectively). The
reasons for such trend can be ascribed to the fact that common
variations usually do not occur in structurally and functionally
constrained regions but rather accumulate in disordered regions,
particularly inter-domain ones. These are usually more flexible to
allow the orientation of protein domains and binding multiplicity
(Fong and Panchenko, 2010). Conversely, an opposite trend is
observed for the INTRA-domain ordered regions (INTRA-Dom
OR, light green) of dbSNP vs. the disease-related INTRA-Dom
OR plots. For both the disease-related OMIM (Figure 1B, center)
and COSMIC (Figure 1B, right) datasets, there is clear evidence
that pathogenic mutations are enriched in ordered domain
regions. These are the fragile sites that once mutated can cause
a functional impairment of the protein either by destabilizing
the fold (Studer et al, 2013), or by affecting structurally
important regions for partner binding and consequent signaling
activity (Yates and Sternberg, 2013). The enrichment in INTER-
Dom disordered regions vs. INTRA-Dom ordered regions
is particularly pronounced for the OMIM dataset, but also
significantly important for the COSMIC data. The difference in
the relative order/disorder populations of the two datasets might
be related to the fact that mutations with Mendelian inheritance
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FIGURE 1 | Analyses of non-synonymous single nucleotide
polymorphisms (SNPs) in intra-domain ordered regions, intra-domain
disordered regions and inter-domain disordered regions. (A) Scheme
of protein regions. A protein contains (intra—)domain regions (dashed
boundary line) and inter-domain regions. Domain regions contain ordered
regions (INTRA-Dom ORs; light-green squares) and disordered regions
(INTRA-Dom DRs; dark green zigzag line). Inter-domain regions are
predominantly disordered (INTER-Dom DR; red zigzag line). (B) SNP
frequency analysis. The propensity of SNPs P(SNP) to occur in each region

B dbSNP OMIM COSMIC
0 0s
I
S [ T oo] T — —
¥ § §
7 INTRADomOR INTRA.DomDR INTER-Dom DR INTRA-Dom OR  INTRA-Dom DR INTER-Dom DR 07 INTRADomOR INTRA-Dom DR INTER-Dom DR
C
N(Proteins) = N(SNPS) | [NTRA-Dam OR —
dbSNP subset 5,504 148,828 58,486 9,255 48,402
<L>(region) £ SEM . ‘ 268+3 36+1 182+4
OMIM subset 700 3138 2,013 213 344
<L>(region)  SEM 355413 5245 167+10
COSMIC subset 5422 102,972 46,870 6,253 26,458
<L>(region) + SEM 26844 3641 180+4

was calculated using Equation 1. Average propensity values are reported as
relative entropies log(P(SNP)). Error bars were estimated using bootstrap
re-sampling with 10,000 replicates. Stars denote the alpha levels of the test
statistics (*p < 0.05; **p < 0.001). (C) Number of SNPs mapped onto
different protein regions. The number of NnsSNPs in each class and the
average lengths of the protein regions are listed together with the standard
error of the mean (SEM). The column “N(proteins)” contains the number of
proteins selected for the study of a SNP class, while column “N(SNPs)”
reports the total number of SNPs mapped onto the reference proteins.

are potentially more harmful to the protein than some of the
passenger mutations observed in cancer.

Our results support previous studies that compared
differences in “natural” mutations from dbSNP and disease-
associated OMIM data (De Beer et al.,, 2013). The difference
in order vs. disorder propensities observed in our study is
therefore an additional discriminant in evaluating the mutability
of proteins.

Examples of Intra-domain Mutations and Effects
on Disorder Occurrence

In a number of recent studies it has been reported that
disordered regions harbor pathogenic mutations (Iakoucheva

et al., 2002; Uversky et al., 2008; Babu et al., 2011; Hu et al,,
2011; Pajkos et al, 2012; Vacic and Iakoucheva, 2012; Vacic
et al, 2012). Some of these observations referred to SNPs
in segments involved in D-O transitions, but as we observed
a clear dearth of pathogenic mutations in INTER-domain
disordered regions (INTER-Dom DRs), we decided to investigate
the occurrence of SNPs in INTRA-Dom DRs in more detail.
A particularly interesting case is the mutual effect of intra-
domain pathogenic mutations and disorder observed within
the domain, even at sites distant from the original mutation.
We found such examples in BRAF and JAK2 kinases, which
are involved in cancer pathologies (Vogelstein and Kinzler,
2004).
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We previously studied the BRAF V600E mutation that
destabilizes the inactive conformation of the BRAF kinase and
consequently induces ERK activation (Satoh et al., 2012; Lu et al,,
2013). The V600 residue is in a cluster of hydrophobic residues
with Phe468, therefore the presence of a negative charge (residue
E) will be disruptive for this cluster, resulting in destabilization of
the inactive conformation. Interestingly, introducing the V600E
mutation in the BRAF protein kinase domain increases the
INTRA-Dom DRs prediction, as shown in the table (Figure 2A)
and the plot (Figure 2B). By running the DISOPRED?2 predictor
for the V600E mutant, one can observe an increase in the span of
the predicted disordered region found in a distal site (607-611).
Notably, the predicted disorder region span was not affected by
mutations found within the INTRA-Dom DRs (yellow residues
in Figure 2A for BRAF). These findings suggest that, besides
destabilizing the hydrophobic cluster, the V-E substitution in
the kinase domain (Pkinase_Tyr(PF07714)) might also have
an effect on the INTRA-Dom disorder content by unwinding
the downstream loop, as shown in the wild type 3D structure
(4MNE_B) (Haling et al., 2014) (Figure2B and Figure SI).
This could in turn affect the ligand-binding region (structure
4WO5_A) (Thevakumaran et al., 2015), with a possible impact
on the binding affinity.

The mutation V600E has been studied in detail by
sophisticated enhanced sampling methods (Marino et al., 2015)
and one of the main consequences of the pathogenic variant
highlighted in this study is reflected the enhancement of
the active-to-inactive state barrier and the increased flexibility
(disorder) of the activation loop (region 602-612). These
combined effects result in keeping the kinase in an active
state and therefore favor phosphorylation to occur. This study
supports the idea that an accurate descriptions of the structure,
dynamics, and energetics of the protein and its mutated states
are necessary to extract molecular fingerprints that rationalize
the impact of pathogenic vs. commonly occurring mutations.
Interestingly, in recent times the tendency of BRAF in adopting
permanently an active state not detectable by current structure
has been highlighted as one of the paradigmatic cases for
which the currently adopted strategies for structure-based drug
discovery may be ineffective (Holderfield et al., 2014).

Long-range effects of mutations on domain-disorder content
are partially observed also for the V617F SNP of the JAK2 kinase,
a mutation mostly observed in leukaemias. Our predictions
indicate that this mutation leads to an extension of the INTRA-
Dom DRs, (Bandaranayake et al., 2012) as shown in the table
(Figure S2D) and the plot (Figure S2E).

The changes of disorder probability between the wild type
sequences (BRAF and JAK2) and those with the cancer driver
SNPs (V600E and V617F, respectively) have been predicted by
five different methods which include highly ranked methods
in CASP10 (Monastyrskyy et al., 2014) such as DISOPRED3,
PrDOS, Biomine_MFDp and a recent method using backbone
dynamics, DynaMine (Cilia et al., 2014) (Figures S2, S4). The
results do not show a strict consensus in the boundaries and in
the absolute differences of disorder content, this can be ascribed
to the different algorithms used. However, most of the methods
predict an increase of the disorder probability in the mutation

distal regions we observe for BRAF that the cancer driver
mutation is at the periphery of the kinase binding site and in an
ordered region, while the non-driver mutations mostly occur in
the disordered regions. The two locations seem to be correlated
in the sense that the observed change in the driver mutation alters
the disorder content of the other mutation loci. This may be
ascribed to correlated dynamical couplings between disordered
and ordered regions within the same protein domain that may
lead to an enrichment of pathogenic variants in flexible and less
structured regions. This long-range coupling is an indirect and
probably down-tuned mutational effect on the protein function,
which may result in a higher acceptance of the mutation in these
regions.

Strategy for the Investigation of Disordered
Regions and SNP Frequencies

Data Set Preparation

A data set of human proteins, using UniProt accession
identifiers as reference, was generated by mapping SNPs onto
experimentally resolved 3D structures of proteins. Native and
homologous structures were identified by running NCBI-
BLAST (version 2.2.294) (Camacho et al., 2009) against the
PDB sequence library. Homologues were accepted above the
30% sequence identity threshold. Non-synonymous SNPs were
retrieved from the dbSNP database (build 141) (Sherry et al.,
2001), germ-line disease-related SNPs were extracted from the
“Online Mendelian Inheritance in Man” (OMIM) database
(version July 2014) (Hamosh et al., 2005) and somatic cancer-
related SNPs were taken from the “Catalog of Somatic Mutations
in Cancer” (COSMIC) database (version July 2014) (Forbes et al.,
2011). Only the proteins having a native/homologous structure
and SNP information were selected, yielding a reference data set
comprising 5587 proteins.

Definition of Protein Domains and Disordered
Regions

The selected proteins were assigned with domain definitions and
disordered region predictions. For each protein sequence of the
reference data set as query, the HMM sequence aligner HMMER3
(Finn et al.,, 2011) was used to search against the Pfam domain
sequence library (Pfam-A.hmm version 26.0) (Punta et al., 2012)
and to assign the matched PFAM domain definition to the query
protein, given the alignment E-value was smaller than le-3.
Disordered regions of the selected proteins were predicted using
the DISOPRED program (Ward et al., 2004). The combination
of domain definitions and disordered region predictions leads
to three distinct regional classes (Figure 1A): (1) intra-domain
ordered region (INTRA-Dom OR), (2) intra-domain disordered
region (INTRA-Dom DR), and (3) inter-domain disordered
region (INTER-Dom DR).

SNPs Enrichment Analysis
We computed the regional enrichment/depletion of SNPs as
propensities P(SNPregion) by normalizing the relative regional
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FIGURE 2 | Example of changes in disordered regions (DRs)
conferred by SNPs in distant ordered regions. (A) Disorder prediction by
DISOPRED2 of wild type (WT) and mutated sequence segments (600-615) of
BRAF. Each column is labeled with the specific SNP used for DR prediction
and contains the confidence scores of the DISOPRED2 prediction involving
raw scores of disorder probability and their filtered scores with parentheses.
The residues in DRs are annotated with (*) asterisks and colored in blue.

A
position|  BRAF_wT |INRAAGGINN]  veoor | HNNNSE0E G N GG oS T
600 |V .0.008(0.018) V . 0.009 (0.019) E . 0.008 (0.025)| V . 0.012(0.020) V . 0.006 (0.021) V . 0.013(0.026)| V . 0.003 (0.015) V . 0.008 (0.016) V . 0.007 (0.019)
601 |K .0.012(0.025) K . 0.014 (0.026) K . 0.014 (0.031) K . 0.017 (0.028) K . 0.011(0.026) K . 0.016(0.030) K . 0.006 (0.021)| K . 0.013 (0.022) K . 0.013 (0.027)
602 |S .0.018(0.033) S . 0.020(0.035) S . 0.019(0.037) S . 0.019(0.037) S . 0.016(0.034) S . 0.024(0.038) S . 0.010(0.028)| S . 0.017 (0.030) S . 0.019 (0.037)
603 |R .0.047(0.038) R . 0.049(0.039) R . 0.083(0.042) R . 0.061 (0.040) R . 0.063(0.039) R . 0.070(0.043) R . 0.032(0.032)| R . 0.039(0.034) R . 0.040 (0.042)
604 |W . 0.043(0.041)W . 0.046 (0.042)) W . 0.057 (0.048) W . 0.060 (0.042)|W . 0.066 (0.045)W . 0.080 (0.048)W . 0.033 (0.035)|W . 0.041 (0.037)|W . 0.046 (0.043)
605 |S .0.070(0.045) S . 0.076(0.047)| S * 0.151(0.055) S . 0.090 (0.046) S . 0.133(0.049) S . 0.161(0.051)[ S . 0.072(0.039)[ S . 0.067 (0.041) S . 0.081 (0.047)
606 |G .0.137(0.050)|G * 0.141(0.053)| G * 0.235(0.058)|G * 0.136 (0.052) G * 0.194 (0.054)| G * 0.214 (0.057)| G . 0.139(0.045) G . 0.125(0.046){G * 0.141 (0.054)
607 |S *0.187(0.060) S * 0.202(0.062) S * 0.222 (0.068)| P * 0.208 (0.061) S * 0.196 (0.063)| S * 0.216 (0.065)| S * 0.167 (0.054) S * 0.154 (0.054)| S * 0.198 (0.066)
608 |H *0.242(0.065)| H * 0.259 (0.067) H * 0.271 (0.066) H * 0.269 (0.065) R * 0.223 (0.063) L * 0.242(0.065) H * 0.223(0.057) H * 0.218(0.057)|H * 0.290 (0.069)
609 |Q *0.328(0.065) Q * 0.326(0.067) Q * 0.267 (0.064) Q * 0.331 (0.065) Q * 0.284 (0.061)| Q * 0.305 (0.06) | R * 0.283(0.055)| Q * 0.287 (0.057) Q * 0.374 (0.069)
610 |F *0.257(0.064) F * 0.261(0.065) F * 0.211 (0.062)| F * 0.236 (0.063) F * 0.219 (0.061)| F * 0.188 (0.061) F * 0.209 (0.055) S * 0.223 (0.058)[ F * 0.275 (0.069)
611 |E *0.146(0.062) E * 0.155(0.062) E * 0.127(0.059)[ E * 0.123 (0.058) E * 0.122(0.061)| E * 0.099 (0.058)| E * 0.124(0.053) E * 0.136 (0.056) D * 0.142 (0.065)
612 |Q .0.172(0.051) Q . 0.166 (0.052)|Q * 0.145 (0.053) Q . 0.125 (0.046) Q . 0.155 (0.051)Q . 0.115 (0.048) Q . 0.139 (0.044)|Q . 0.162 (0.046)|Q . 0.173 (0.051)
613 |L .0.113(0.048) L . 0.113(0.049) L . 0.092(0.049) L . 0.085 (0.044) L . 0.100(0.048) L . 0.082(0.045) L . 0.096(0.043) L . 0.106 (0.044) L . 0.102 (0.048)
614 |S . 0.067(0.049) S . 0.067 (0.050) S . 0.049 (0.046) S . 0.055 (0.046) S . 0.069 (0.046) S . 0.048 (0.044) S . 0.059 (0.043)| S . 0.062 (0.045)[ S . 0.059 (0.051)
615 |G . 0.042(0.045) G . 0.039(0.045) G . 0.031(0.040)|G . 0.033(0.043) G . 0.039(0.041) G . 0.035(0.039)| G . 0.036(0.039) G . 0.042(0.041) G . 0.031(0.047)
B
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Amino acid position

SNPs within the sequence segment 600-615 are colored in yellow. (B) Plot
of the DISOPRED2 filtered confidence scores of the BRAF WT and mutated
sequences. The predicted behavior of VEOOE (red line) is distinct from that of
the BRAF WT sequence (thick black line). The horizontal blue line indicates
5% of filter threshold of the method. The inset shows the 3D structure of the
BRAF kinase domain (4MNE_B, cyan cartoon), the location of residue V600
(yellow licorice) and the predicted disordered positions (light green spheres).

frequency with the relative frequency over the total protein length
(Equation 1).

(N(SNPS)region/lengthregion)

1
(N(SNPS)pmtein/lengthp M

P(SNPregion) =

rotein)

These propensities are plotted in Figure 1B as relative entropies
log(P(SNPregion)). A relative entropy of zero indicates a regional
frequency equal to the background frequency (denominator),
positive values indicate relative enrichment and negative values
correspond to relative depletion. All SNPs (from dbSNP, OMIM,
and COSMIC) were mapped onto the protein sequences: 5504
of 5587 proteins were mapped with SNPs from dbSNP, 700

of 5587 with SNPs from OMIM and 5422 of 5587 with SNPs
from COSMIC. SNPs from each database were further classified
into different classes by mapping their positions onto the
corresponding protein regions (INTRA-Dom OR SNPs, INTRA-
Dom DR SNPs, and INTER-Dom DR SNPs). The number of
SNPs in the different classes and the mean lengths of the regions
are given in Figure 1C.

Statistical Evaluation

To obtain an estimate of the uncertainty associated with the
propensity calculations and to reduce biases incurred by the
protein selection procedure, we used a bootstrapping method
(R function boot()) to create random re-sampled subsets of the
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reference data set. 10,000 independent subsets were generated
of the SNPs propensities within each pre-defined protein
regional class (INTRA-Dom OR SNPs, INTRA-Dom DR SNPs,
and INTER-Dom DR SNPs) and the mean of each subset
was computed. The distributions of the resampled means are
by normally distributed, as expected (Figure S4). Confidence
intervals at the 95% level were calculated from the bootstrap
distributions. The statistical significance of differences between
propensity distributions was calculated by Student’s ¢-test on the
confidence intervals (Wolfe and Hanley, 2002). The statistical
analyses were performed using R (R Core Team, 2014).

Conclusions and Perspectives

We performed a large-scale statistical analysis of the relationship
between protein disorder and disease-related mutations. We
report that both genetic-disease variants from OMIM and cancer-
related SNPs from COSMIC are depleted in disordered regions
compared to common human variation. This is in line with the
fact that mutations in highly constrained regions of the protein
are more likely to be disruptive or deleterious. This is why
mutations in ordered states of proteins (domains, ligand-binding
sites, PPI sites) have been investigated quite in detail in the last
years.

We offer here a starting and objective point to discriminate
between completely ordered regions, disordered regions
occurring in ordered domains, and inter domain predicted
disordered segments. We observe and quantify the result of
the mapping of available SNPs data onto a large set of human
proteins and their close homologs. From this study a number of
interesting cases can be extracted for functional validation and
close investigation of the dynamical role played by the disorder
content.

New perspectives in the field can be explored from this
starting point, as the more complicate cases in which flexibility
and/or disorder play a direct role in the protein function
have not yet been fully elucidated. Particularly complex are
the cases where flexible residues modulate protein binding
and promiscuity (Fornili et al., 2013) and disorder-to-order
causing mutations (Vacic and Takoucheva, 2012; Dunker et al.,
2015). These more “dynamically” driven processes are difficult
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