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The high-throughput acquisition of metabolome data is greatly anticipated for the

complete understanding of cellular metabolism in living organisms. A variety of analytical

technologies have been developed to acquire large-scale metabolic profiles under

different biological or environmental conditions. Time series data are useful for predicting

themost likely metabolic pathways because they provide important information regarding

the accumulation of metabolites, which implies causal relationships in the metabolic

reaction network. Considerable effort has been undertaken to utilize these data for

constructing a mathematical model merging system properties and quantitatively

characterizing a whole metabolic system in toto. However, there are technical difficulties

between benchmarking the provision and utilization of data. Although, hundreds of

metabolites can be measured, which provide information on the metabolic reaction

system, simultaneous measurement of thousands of metabolites is still challenging.

In addition, it is nontrivial to logically predict the dynamic behaviors of unmeasurable

metabolite concentrations without sufficient information on the metabolic reaction

network. Yet, consolidating the advantages of advancements in both metabolomics and

mathematical modeling remain to be accomplished. This review outlines the conceptual

basis of and recent advances in technologies in both the research fields. It also highlights

the potential for constructing a large-scale mathematical model by estimating model

parameters from time series metabolome data in order to comprehensively understand

metabolism at the systems level.

Keywords: biochemical systems theory, bottleneck ranking indicator, dynamic simulation, mathematical model,

metabolic reaction network, metabolome, sensitivity analysis, time series data

INTRODUCTION

Systems biology has become an important research field to fully understand the complex
metabolism of cells in living organisms in toto (Kitano, 2002a,b; Aderem, 2005; Kirschner, 2005).
It involves numerous techniques including -omics to systematically identify, analyze, control,
and design metabolic systems (Ukai and Ueda, 2010) at gene, transcript, protein, and metabolite
levels. Among the -omics, metabolomics is one of the newest -omics sciences (Rochfort, 2005;
Preidis and Hotez, 2015). The metabolome, which is affected by changes in the transcriptome
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and proteome, is considered to be downstream in the layer
of multi-omics. It is also most directly related to the visible
phenotype of biological systems. A complete understanding
of metabolism through use of metabolome data is greatly
anticipated. This involves the development of high-throughput
analytical instruments to provide a wide range of metabolic
profiles along with the improvement of data processing
techniques to accurately identify or annotate metabolites from
mass spectra and precisely measure their quantities in a living
cell (Fiehn, 2002; Weckwerth, 2003; Bain et al., 2009). This
information can then be implemented to advance intuitive
and functional concepts for designing and engineering ideal
metabolic systems.

An assortment of statistical methods have been developed and
utilized to identify correlations or differences amongmetabolome
data of biological samples. Nevertheless, novel strategies are
required to systematically elucidate the regulatory mechanisms
of metabolites in greater detail. Time series metabolome data
is suited for this task. Time series data of the response of a
metabolic system to internal and/or external stimuli contain
important information of different aspects of the dynamic
characteristics (Voit, 2013) of the metabolic system regardless
of the type of organism. For example, time series metabolic
data were used to elucidate regulatory mechanisms of respiratory
oscillations of yeast (Murray et al., 2007) and their adaptation
to temperature stress (Strassburg et al., 2010). Time series
metabolome data were also used to understand adaptation
mechanisms of plants to cold (Espinoza et al., 2010), salinity
(Kim et al., 2007), dehydration (Urano et al., 2008), and thermal
stress such as to heat- and cold-shocks (Kaplan et al., 2004).
In humans, time series metabolome data were collected to
determine metabolic profile responses of stored red blood cells
to hypoxia (Kinoshita et al., 2007), which included monitoring
ATP levels, as well as to validate mathematical models of dynamic
characteristics and behaviors of erythrocyte metabolism (Nishino
et al., 2013). Time series data is not only useful for validating
simulated metabolic behaviors predicted from a mathematical
model generated using enzyme kinetics, but these data are
also a powerful component for directly generating a kinetic
model to systematically understand metabolic behaviors and
characteristics of a metabolism of interest. Kinetic models can be
used to further predict possible unknown regulatory mechanisms
controlling a metabolic pathway.

An overview of mathematical modeling using metabolome
data is illustrated in Figure 1. In general, the workflow begins
with sampling biological data consisting of simultaneously-
acquired metabolic profiles. The profiles are processed and
utilized for constructing a mathematical model, which can be
exploited to analyze metabolic systems as well as to design
an optimal system of interest. In this review, we address the
basic concepts of advancements in both metabolomics and
mathematical modeling. We review the methods for metabolome
analyses and nature of metabolome data (Section Nature of
Metabolome Data) as well as current mathematical modeling
approaches (Section Current Status of Modeling Metabolic
Reaction Networks), and then describe the procedures to
construct a kinetic model from those data (Section Kinetic

Models from Time Series Metabolome Data) and use it for
system analysis (Section Systems Analysis). Finally, we pinpoint
the potential of combining mathematical techniques to construct
a large-scale dynamic model for further understanding of
biological systems.

NATURE OF METABOLOME DATA

A living cell contains thousands of metabolites, which differ
greatly in their chemical property and abundance (Luca and
Pierre, 2000; Griffin and Shockcor, 2004; Prescher and Bertozzi,
2005); therefore, no single analytical instrument is suitable to
measure all metabolites (Saito and Matsuda, 2010; Weckwerth,
2011). A combination of different high-throughput instruments,
including nuclear magnetic resonance (NMR) spectroscopy,
and gas chromatography (GC), liquid chromatography (LC),
or capillary electrophoresis (CE) coupled to mass spectrometry
(MS), is required to analyze a whole metabolome (Villas-Boas
et al., 2005; Pan and Raftery, 2007).

In most cases, analytical procedures to generate metabolome
data start with sample preparation, which includes quenching
and metabolite extraction (Fukushima and Kusano, 2013).
Sample preparation methods are important because they have
an effect on the coverage and content of metabolites that can
be analyzed (Vuckovic, 2012). Depending on the metabolites-of-
interest and instruments used, sample preparation may include
derivatization to chemically modify compounds to produce
derivatives which have properties suitable for analysis. The
spectra and intensities of metabolites are then acquired using
suitable instruments. These data are pre-processed to determine
the quantity and identity of metabolites. Core technologies for
detection can be classified into two types: non-targeted and
targeted methods for top-down and bottom-up approaches,
respectively (Bain et al., 2009; Hiller et al., 2009).

Non-targeted methods generally aim to identify as many
metabolites as possible in a biological sample at once. The
identification of metabolites involves instruments (Dunn et al.,
2012; Fuhrer and Zamboni, 2015; Sèvin et al., 2015) to detect
spectra, i.e., patterns representing the distribution of ions
by mass-to-charge ratio (m/z), across wide coverage ranges.
Spectra are subsequently pre-processed for base-line correction,
peak detection, and peak alignment (Lommen, 2009; Lommen
and Kools, 2012) to appropriately identify peaks and mass
spectra (Tsugawa et al., 2015) as well as annotate metabolites
(Matsuda et al., 2009; Horai et al., 2010). Although non-targeted
methods have an advantage in covering a greater percentage
of the metabolome, they usually provide only qualitative data.
Accordingly, the application of data from non-targeted methods
is usually subject to statistical analysis to normalize data
by the original mass of the sample and/or by an internal
standard to reduce the influence of experimental factors on
the data set (Summer et al., 2007). These data can be used
to investigate correlations among metabolite intensities due to
different environmental conditions (Wechwerth et al., 2004),
the existence of metabolites in mutants compared to wide-
type specimens (Jonsson et al., 2005; Kim et al., 2015), and
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FIGURE 1 | Outline for mathematical modeling using metabolome data. The workflow includes metabolomics approaches for acquiring and processing

metabolic data from biological samples as well as mathematical approaches for constructing and analyzing mathematical model to design an optimal system.

for multivariate comparative analysis of metabolic phenotypes
(Tikunov et al., 2005).

In contrast to non-targeted methods, targeted methods detect
specific metabolites (Badawy et al., 2008; Sawada et al., 2009;
Kato et al., 2012); however, targeted methods can be applied
to analyze hundreds of metabolites in a semi-quantitative or
quantitative manner (Shulaev, 2006). Targeted methods provide
quantitative data in absolute concentrations typically by using
stable isotope-labeled standard compounds (Birkemeyer et al.,
2005). Isotope labeling also permits the quantification of cell
fluxomes through metabolic flux analysis (You et al., 2014).
Both absolute metabolite concentrations and rates of flux are
potential components for building a large-scale mathematical
model, which can reveal dynamic associations of metabolites in
an entire metabolic system. However, isotope labeling-assisted
metabolomics is costly and isotope-labeled compounds are
limited. Consequently, most studies, wherein large-scale targeted
metabolomics were performed, report metabolic abundances
in relative concentrations, or peak intensities rather than
in absolute concentrations. Although, both non-targeted and
targeted analyses can be used to determine a large number
of metabolic profiles at once, it does not necessarily indicate
the detection and measurement of all metabolites in a
particular metabolic pathway. This presents a challenge for
constructing precise mathematical models, which typically
require absolute concentrations of all metabolites in a specific
pathway.

CURRENT STATUS OF MODELING
METABOLIC REACTION NETWORKS

Mathematical models permit the investigation of metabolic
characteristics and behaviors, including of regulatory
mechanisms and responses to internal and external
environments, to comprehensively understand metabolism.
Table 1 tabulates methods commonly used for mathematical
modeling. Model types vary from large-scale qualitative models,
such as topological and stoichiometric models, to small-scale
quantitative models, such as kinetic models (Hartmann and
Schreiber, 2015; Novere, 2015). As the stoichiometric and kinetic
models seem to have a potential to handle large-scale dynamic
systems, they will be discussed in more details.

Stoichiometric modeling typically uses a static model based
on the assumption of steady-state; therefore, it does not
require kinetic information and can handle a large-scale
system. A well-known stoichiometric model is genome-scale
metabolic reconstruction using flux balance analysis (Orth
et al., 2010; Palsson, 2015). It is a constraint-based model
using linear programming to optimize metabolic fluxes based
on stoichiometric coefficients of each reaction throughout the
entire metabolic network; it principally requires only steady-
state absolute concentrations for optimization. Genome-scale
metabolic reconstruction is straightforward and can be used
for the prediction of cellular phenotypes, analysis of biological
network properties, as well as metabolic engineering (McCloskey
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TABLE 1 | Currently common methods for mathematical modeling.

Model types/Theories Fundamental Equations Applications Limitations

Topological

models/Centrality (Ma and

Zeng, 2003)

C (x) = n−1
∑

y∈U,y 6=x
d(x,y)

C(x), closeness centrality of node x;

d(x,y), distance between node x and

node y; U, set of all nodes; n, node

number in the network

- Large-scale qualitative model - Only topological information

- No dynamic properties

Stoichiometric models/Flux

balance analysis (Palsson,

2015)

S · v = 0

S, stoichiometric matrix;

v, vector of fluxes

- Large-scale model with quantitative

prediction

- Elementary flux modes as alternative

(Schuster et al., 1999)

- Steady-state assumption

- No dynamic properties

Petri net models (Baldan

et al., 2010)

N = (P, T, F)

N, elementary net; P, places; T,

transitions; F, flow relations

- Qualitative and quantitative information

with quantitative predictions and

dynamic behavior

- Poor knowledge of kinetic

parameters

Kinetic models/Mass action

kinetics (Horn and Jackson,

1972)

rf =
∑m

i=1 kiAi

rf , rate equations; ki , molecularities of

Ai ; Ai , reactants or metabolite

concentrations

- Detailed quantitative description with

quantitative predictions and dynamic

behavior

- Simple formulations

- Small to medium-scales

- Lack of information on regulatory

mechanisms

Kinetic

models/Michalis-Menten

kinetics (Bajzer and Strehler,

2012)

v = VmaxS
KM+S

v, reaction rate; S, substrate

concentration; Vmax, maximum rate

achieved by the system; KM,

substrate concentration at which the

reaction rate is half of Vmax

- Detailed quantitative description with

quantitative predictions and dynamic

behavior

- Parameters directly taken from

experiments

- Small-scale model

- Complicated equations

- Requirement of information on

kinetic parameters in details

Kinetic models/Lin-log

model (Wu et al., 2004)

vi

J0
i

=
ei

e0
i

(

1+
∑n+m

j=1 ε0
ij
ln

(

Xj

X0
j

))

Xj , metabolite concentrations; vi ,

reactions; J0
i
, fluxes; ε0

ij
, reference

elasticity; ej , reference level of

enzyme activity

- Detailed quantitative description with

quantitative predictions and dynamic

behavior

- Related to metabolic control analysis

- Small to medium-scale model

- Requirement of approximated

kinetic parameters

- Systems close to steady-state

Kinetic models/Metabolic

control analysis (Kacser and

Burns, 1973; Heinrich and

Rapoport, 1974)

CJ0
ij

=
e0
j

J0
i

·

(

dJi
dei

)0
;

εx0
ik

=
x0
k

v0
i

·

(

∂vi
∂xk

)0

CJ, flux control coefficient; Ji , fluxes;

ej , enzyme level around reference

(quasi) steady-state; εx , elasticities;

xk , metabolite concentrations; vi ,

reaction rates

- Detailed quantitative description with

quantitative predictions and dynamic

behavior

- Quantification of changes in metabolic

variables including fluxes and

concentrations

- Small to medium-scale model

- Requirement of approximated

kinetic parameters

- Systems close to steady-state

Kinetic models/Biochemical

systems theory (Savageau,

1969)

S-system:
dXi
dt

= αi
∏n
j=1 X

gij
j

− βi
∏m
j=1 X

hij
j

GMA-system:
dXi
dt

=
∑p

j=1 αij
∏n
k=1 X

gijk
k

−

∑q
j=1 βij

∏m
k=1 X

hijk
k

Xi , metabolite concentrations; αi , βi ,

rate constants of total influxes and

effluxes;αij , βij , rate constants of

influxes and effluxes; gij (gijk ), hij (hijk ),

kinetic orders of influxes and effluxes

- Detailed quantitative description with

quantitative predictions and dynamic

behavior

- Less number of parameters comparing

to Michalis-Menten kinetics

- Simplification

- Small to medium-scale model

- Requirement of approximated

kinetic parameters
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et al., 2013). Thus, it has been applied in the analysis of various
organisms, including Escherichia coli (Edwards and Palsson,
2000; Orth et al., 2011), Saccharomyces cerevisiae (Herrgård et al.,
2008), Arabiodopsis thaliana (Poolman et al., 2009; de Oliveira
Dal’Molin et al., 2010; Mintz-Oron et al., 2012), and humans
(Thiele et al., 2013).

In contrast, kinetic modeling, which generates a dynamic
model, requires kinetic rate equations, and model parameters to
provide detailed quantitative description, quantitative prediction
and dynamic behaviors. These requirements make kinetic
modeling more complicated and limit its application to only
small-scale systems. Dynamic models can be classified into two
classes: stochastic and deterministic (Puchalka and Kierzek, 2004;
Shmulevich and Aitchison, 2009). Stochastic or probabilistic
models incorporate randomness or uncertainty to characterize
the performance of a system, and use values generated from
probability distributions rather than a fixed unique value. In
contrast, deterministic models capture the collective behaviors
of the elements constituting the network. Again, they require a
set of variable states uniquely determined by parameters using
optimization methods and experimental data.

Recent efforts have been made to implement dynamic
characteristics into genome-scale reconstruction models in order
to consider the entire dynamic system. The common approach to
observe dynamic characteristics is to use dynamic flux balance
analysis (dFBA). For example, dFBA has been used to link a
Monod kinetic model and genome-scale flux balance analysis to
analyze the dynamic metabolism of environmentally important
bacterium (Feng et al., 2012). Although this method cannot
offer a fully dynamic state, it can still provide pseudo-dynamic
characteristics to predict directions of metabolic fluxes with
changes in gene expression or enzyme activities. Alternatively,
genome-scale metabolic reconstruction models can also be
integrated with in vivo metabolome data via the differential
biochemical Jacobian (Nägele et al., 2014) to define a metabolic
interaction matrix. The differential Jacobian is calculated using
a metabolic reaction matrix and covariance of metabolome
data. It combines dynamic modeling strategies with large-scale
steady state profiling approaches without explicit knowledge of
individual kinetic parameters. The Jacobian might permit design
parameter optimization strategies for ODE-based kinetic models
of metabolic systems in the near future.

KINETIC MODELS FROM TIME SERIES
METABOLOME DATA

Kinetic models comprise two components: symbolic formulas
of model equations and numerical values of model parameters.
Most model equations are expressed as ordinary differential
equations (ODEs) of various forms (Table 1), such as linear
approximations, enzyme kinetic rate laws using Michaelis-
Menten kinetics (Bajzer and Strehler, 2012), linear-logarithmic
approximations (Hatzimanikatis and Bailey, 1996; Visser and
Heijnen, 2002), and power-law equations based on metabolic
control analysis (MCA; Kacser and Burns, 1973; Heinrich
and Rapoport, 1974) or biochemical systems theory (BST;

Savageau, 1969; Voit, 2000). Regardless of the chosen format
of model equations, numerical values determining metabolite
concentrations and reaction rates are required. This involves
inverse problems using experimental data (or results) to calculate
model parameters (or causes). Since experimental data contain
not only a wealth of information but also biological variation
and analytical errors, parameter estimation from actual biological
data remains a challenging task, which usually represents a
bottleneck in the modeling process (Voit, 2012).

Parameter Estimation
Typical approaches for estimating parameter values include
determining enzymatic kinetic rates through in vitro enzymatic
assays (bottom-up) or indirectly estimating from metabolic time
series data (top-down). The bottom-up method is a conventional
method in which each model parameter is experimentally
determined and then integrated into a final model. It has been
applied to several organisms; however, it requires considerable
time and financial support to conduct experiments to obtain
parameter values of every individual reaction.

As an alternative and with the aim of constructing kinetic
models using limited data sets and requiring less time, theoretical
researchers have proposed new algorithms for simultaneously
estimating model parameters using only time series data of
metabolite concentrations. In general, parameter values are
determined by minimizing an objective function measuring
the difference between experimental data (time series data)
and model predictions (predicted data). Various optimization
algorithms to find global or local optima were previously
reviewed in detail (Mendes and Kell, 1998; Chou and Voit,
2009). Standard optimization methods for global optimization
in metabolic modeling include genetic algorithms (Michalewicz,
1994), evolutionary programming (Fogel et al., 1992), and
simulated annealing (Corana et al., 1987), whereas those for
local optimization include Newton-Raphson (Press et al., 2002,
2007) for linear least-squares analysis and Levenberg-Marquardt
(Levenberg, 1944; Marquardt, 1963; Gavin, 2011) for non-
linear least-squares analysis. Both global and local optimization
algorithms have their advantages and disadvantages. In short,
most global optimization algorithms search for the global
minimum across all inputs, which require a set of functions,
boundaries, constraints, and high computational costs. Local
optimization algorithms search only for the local minimum but
are computationally less expensive. Some researchers have even
reduced these constraints to the no free lunch theorem in search
and optimization (Wolpert and MacReady, 1997), claiming that
there is no perfect algorithm that can guarantee a solution
in a reasonable time and space unless the model equations
and experimental data are optimally suited to solve a problem.
Consequently, although various tools for kinetic modeling have
been used (Alves et al., 2006), selecting an optimization method
still depends on data characteristics, types of model equations, or
even the preferences and experiences of the modeler.

The fewer the number of model parameters, parameter
estimation becomes simpler and more accurate. Several research
groups have been working on the development of mathematical
approaches to reduce the number of parameters in parameter
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estimation by taking advantage of the simplification of S-system
formulation (approximate power law representation) within
biochemical systems theory (BST). Numerous approaches to
estimate parameter values using S-system formulation together
with time series data of metabolic concentrations have been
proposed. This includes alternative regression (Chou, 2006),
automated procedure (Marino and Eberhard, 2006), Newton flow
(Kutalik et al., 2007), automated smoother for decoupling (Vilela
et al., 2007), neutral (Vilela et al., 2009), two-phase dynamic
(Jia et al., 2011), estimation of dynamic flux profiles (Chou and
Voit, 2012), Newton-Raphson (Iwata et al., 2014), and PENDISC
method (Sriyudthsak et al., 2014a). In addition, approximate
estimation methods for large-scale analysis include coarse (Iwata
et al., 2013) and U-system (Sriyudthsak et al., 2014b) approaches,
which were proposed for predicting coarse metabolic parameters,
including those of unmeasurable metabolites.

In general, these optimization algorithms perform well with
training data generated in silico with low noise. Unfortunately,
biological data is characterized by high variance from both
biological variation and analytical errors. In addition, larger-sized
models involve the estimation of more parameters. The majority
of metabolome data are also reported in relative concentration
units, which sometimes result in problems when balancing
the absolute amounts and stoichiometry of parameter values.
Ultimately, a useful model must be able to reproduce biological
observations before being used to predict different biological
scenarios. Thus, a reasonable number of model equations and
model parameters are required, even though a compromise
between model accuracy and model size remains a challenge.

SYSTEMS ANALYSIS

Once a given metabolic reaction system has been described using
a mathematical model, systems analysis can be performed to
characterize the following characteristics of the reaction network.

Eigenvalues
The stability and oscillatory behavior of a system is usually
identified by means of eigenvalues, which are originally a special
set of scalars associated with a linear system of equations. The
same concept can be employed for nonlinear systems expressed
by differential equations describing the time rate of change
in metabolite concentrations. In this case, a steady state is
commonly used as an operating point to approximately linearize
the systems. The eigenvalues are the roots of the characteristic
equations derived from the differential equations under a
steady state assumption. In general, n differential equations
for metabolite concentrations provide the same number of
eigenvalues. The eigenvalue is generally a complex number with
real and imaginary parts, which can reveal at least four different
network behaviors. First, if all the real parts are negative, the
nominal steady state is locally stable and the system will return
to steady state following small perturbations. Second, if at least
one imaginary part is nonzero, metabolite concentrations may
oscillate under certain conditions. Third, if the absolute value
of the ratio of maximum to minimum values of the real parts,
i.e., stiffness ratio, is very large, metabolite concentrations vary

at significantly different rates, and some may require very long
times to reach steady state (Shiraishi and Savageau, 1992c).
For example, if the stiffness ratio is > 104, the system is
judged to be stiff (Shiraishi and Savageau, 1992a), which makes
it difficult to numerically solve relevant differential equations.
Fourth, the absolute value of the minimum value of the real
parts can be approximately regarded as the rate constant of
a first-order reaction and therefore can be expressed in units
of time. Consequently, the reciprocal of the value provides an
approximate time at which all metabolite concentrations return
to the previous steady state following perturbations (it would
take about three-folds of the estimated time until all metabolite
concentrations sufficiently return to steady state).

Steady State Sensitivity
The sensitivity of a reaction network at steady state is an
essential measure to characterize the reaction network. BST
defines several kinds of sensitivities (logarithmic gain, rate-
constant sensitivity, and kinetic-order sensitivity) (Shiraishi and
Savageau, 1992a,b,c,1993; Savageau, 2009). The most important
and commonly used sensitivity value is the logarithmic gain,
which expresses the percentage change of a dependent variable
(metabolite concentration Xi and flux Vi) in response to the
infinitesimal percentage change of an independent variable
(enzyme activity Yj). The equations for metabolite concentration
and flux are:

L(Xi,Yj) =

(

∂Xi

∂Yj

)∗ Y∗
j

X∗
i

, L(Vi,Yj) =

(

∂Vi

∂Yj

)∗ Y∗
j

V∗
i

(1)

where, the ∗ symbol indicates that results are evaluated at
the nominal steady state. A larger absolute logarithmic gain
value indicates that the dependent variable is more strongly
affected by the independent variable. A positive value of L(Xi,Yj)
indicates that the dependent variable (metabolite concentration)
at a new steady state achieved by a change in an independent
variable (enzyme activity) takes a value larger than that at
the previous steady state, whereas a negative value indicates
the opposite response. The software, COSMOS (Shiraishi
et al., 2014), performs calculations of steady-state metabolite
concentrations, transformations of differential equations with
various types of flux expressions into those with power-law
flux expressions in S-system or GMA-system form (Table 1),
and calculations of logarithmic gains and eigenvalues with
high accuracy. It achieves high accuracy by implementing the
complex-step method (Lyness and Moler, 1967), by which
numerical derivatives can be calculated to 14–16 significant
digits of accuracy in double precision. Thus, all calculated values
are reliable even when the number of differential equations is
very large. Moreover, COSMOS can find steady-state metabolite
concentrations accurately, even for a large-scale system, by
first numerically solving differential equations until metabolite
concentrations do not change remarkably and then using those
values as initial estimates in root-finding iterations.

Dynamic Sensitivity
When there is no steady state or when there exists a steady state
but the objective is to observe and analyze the dynamics of a
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system, metabolite concentrations that vary with time must be
considered. In these cases, steady state sensitivities can no longer
be calculated. Hence, time-varying sensitivities, i.e., dynamic
sensitivities (dynamic logarithmic gains), must be calculated
(Shiraishi et al., 2005, 2009; Sriyudthsak et al., 2015). The first
step of this calculation is to partially differentiate the differential
equations for metabolite concentrations with an independent or
dependent variable of interest in order to obtain the differential
equations for sensitivities, i.e., sensitivity equations (Dickinson
and Gelinas, 1976). This mathematical operation is laborious
and mistakes are trivial to make especially when the system is
large. This problem can be overcome by utilizing the function of
symbolic differentiation in the commercially available software,
Matlab, or the open-source software, Python together with
SymPy package. On the other hand, if one can utilize highly
accurate numerical methods, it is possible to develop software
without being constrained by the above software. SoftCADS
(Shiraishi et al., 2009) is one such software for calculating
dynamic sensitivities with high accuracy, which achieves its
accuracy through a combination of highly-accurate numerical
differentiation methods (Shiraishi et al., 2007) and Taylor-
series methods (Shiraishi et al., 2011). The sensitivity equations
are automatically derived from the differential equations for
metabolite concentrations and the sensitivities can always be
obtained with reliable accuracy.

Bottleneck Ranking Indicator (BR
Indicator)
When there is an enzyme reaction that strongly restricts the
formation of a desired product in a reaction network (i.e., when
there is a bottleneck enzyme), the productivity of the desired
product may be augmented by increasing the activity of the
bottleneck enzyme. Identification of the bottleneck enzyme is
necessary for this purpose. The BR indicator expresses the degree
of the “bottleneck” and can be used to identify the bottleneck
enzyme (Sriyudthsak and Shiraishi, 2010a,b,c;Sriyudthsak et al.,
2015). The BR indicator is calculated by:

L(Xi(t),Yj)Xi(t) =

(

∂Xi(t)

∂Yj

)

Yj. (2)

Larger absolute values of the BR indicator indicate that the
relevant enzyme indirectly restricts the formation of the desired
product more strongly. The absolute values of BR indicators are
ranked to determine which enzyme represents the bottleneck.
The effectiveness of the BR indicator has been demonstrated
in penicillin V and ethanol fermentation (Sriyudthsak and
Shiraishi, 2010a,b,c). When microbial cells grow or a reactor
is operated at non-steady state, the ranking of enzymes and
therefore the designation of the bottleneck enzyme may vary
with time (Sriyudthsak and Shiraishi, 2010a; Sriyudthsak et al.,
2015).

Network Prediction
Metabolome data may also be used for the discovery of unknown
metabolic pathways and their regulatory mechanisms. Rather
than dealing with model construction, this deals with network

analysis (Fukushima et al., 2014), which include correlation and
causation networks. Metabolic profiles from different biological
conditions can be used to build a correlation network, whereas
the profiles of time series metabolic data can be utilized to
generate a causation network. The correlation structure which
is typically built by statistical methods using discrete data links
the elements or nodes (i.e., metabolites) by their relations or
edges (i.e., enzymatic reactions) of the metabolic networks.
The correlation allows us to decrease the actual dimensionality
of the system and qualitatively generate a probable network
without comprehensive understanding of enzymatic reactions.
For example, a system dynamics can be extracted from
experimental time-series data using Takens theorem (Broomhead
and King, 1986). In the case of large-scale metabolome data, the
sample data obtained on different measurement scales can be
processed using principal component analysis (Giuliani et al.,
2004). Correlation network (Steuer et al., 2003) can also be
visualized to understand relations among metabolites.

On the other hand, causation network links metabolites on
the basis of their causal relationships. Two common approaches
for generating a causal network are dynamic Bayesian network
inference and Granger causality approaches for short and
long length of time series data (Zou and Feng, 2009). More
specific approaches, which combine mathematical and statistical
approaches such as BST-loglem (Sriyudthsak et al., 2013a,b), were
also proposed to predict metabolic pathways together with their
regulatory mechanisms.

CHALLENGES AND FUTURE
PERSPECTIVES

Regardless of past progress, there are still major challenges
regarding the advantages and weaknesses of metabolomics
integration and mathematical modeling. From our point of view,
two major keystones that remain to be tackled are (1) the
development of hybrid mathematical approaches for predicting
a probable unknown pathway or regulatory mechanism from
available metabolome data and (2) the integration of multilayer-
omics data into large-scale kinetic models for designing optimal
metabolic systems.

For the former issue (1), a challenge lies in the fact that
there are thousands of metabolites inside of a cell, whereas
metabolomics and mathematical modeling can usually handle
hundreds of metabolites and it is, therefore, difficult to precisely
predict which metabolite has an effect on a specific reaction
pathway. A mathematical model in current approaches often
gives several candidates for key regulatory metabolites, so that
we still needs trial-and-error experiments in laboratory to narrow
down the candidates on the basis of knowledge-based, but not
data-driven, hypotheses. Thus, hybrid mathematical approaches
combining existing and novel algorithms are expected to solve
the issue.

For the latter issue (2), a significant challenge is the systematic
integration of large-scale multilayer-omics data to understand
metabolism not as a static system but as a dynamic one
by capturing the dynamic behaviors and characteristics of all
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components inside a cell. Currently, it is possible to obtain
metabolome, proteome, and transcriptome data. However, the
systematic integration of those data by mathematical modeling
approaches is still difficult. The selection of a suitable model type
to deal with this circumstance has been long debated. A small-
scale quantitative kinetic model can provide a detailed regulatory
mechanism but only be applicable to a specific pathway. In
contrast, a large-scale qualitative static model can offer the
correlations among metabolites in a large-scale system but not
clarify the detailed mechanism and dynamic behaviors. Thus,
instead of selecting either approach exclusively, an improvement
in a hybrid approach is desired for the construction of a large-
scale kinetic model as well as the modeling of a multilayer-
omics (or trans-omic) network, through the integration of
the metabolome, proteome, and transcriptome (Yugi et al.,
2014). It is anticipated that large-scale kinetic models for
handling a trans-omic network would ultimately provide a
holistic perspective with much greater insights into complex
metabolic systems (Horgan and Kenny, 2011) to design and
engineer the metabolism of a whole cell. An appropriated model

will permit the precise prediction of dynamic behaviors and
provide enormous possibilities for simulating entire cellular
metabolisms, before practically exploiting the information to
practical applications. Improved approaches to be established
will pave the ways to computationally design an entire cellular
metabolism and to simulate the behaviors, functions, and
mechanisms of its components, like we can design a car and
simulate the functions in each compartment.
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