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Intrinsically disordered linkers provide multi-domain proteins with degrees of
conformational freedom that are often essential for function. These highly dynamic
assemblies represent a significant fraction of all proteomes, and deciphering the
physical basis of their interactions represents a considerable challenge. Here we
describe the difficulties associated with mapping the large-scale domain dynamics
and describe two recent examples where solution state methods, in particular NMR
spectroscopy, are used to investigate conformational exchange on very different
timescales.
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Over the last four decades, X-ray crystallography, NMR and increasingly electron microscopy have
provided unique insight into the nature of functionally-essential interactions between a vast array of
biologically active molecules. This remarkable success has often overlooked the importance of the
molecular motions that are required for function, with structural biologists tending to focus their
attention on highly stable, high affinity biomolecular interactions. Proteins are however intrinsically
dynamic, they can exhibit conformational modes of vastly differing amplitudes, from local bond
fluctuations to folding/unfolding transitions, on timescales varying from femtoseconds to days.
Interactions between proteins are also often required to be weak, for example in signaling pathways
where efficiency and reversibility of information transfer are of key importance. The resulting focus
on interactions that are strong enough to allow structure determination in terms of a single set of
three-dimensional coordinates thus provides a distorted perspective on the interactome.

In order to fully understand the molecular basis of interactions between physiological partners
it is necessary to map the modulation of the free energy landscapes of the interacting molecules
throughout the interaction trajectory. This aim is the focus of considerable interest, requiring
experimental, theoretical and analytical development. For this reason solution state methods
have been increasingly used to actively investigate the nature of transient interactions between
biomolecules (Vaynberg and Qin, 2006; Sugase et al., 2007; Bashir et al., 2010; Salmon et al., 2011).

Such considerations are particularly relevant for a highly abundant class of proteins whose
physical characteristics are defined by their dynamic nature. The unexpected discovery that a high
fraction of eukaryotic, but also prokaryotic and viral genomes code for proteins domains whose
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functional state is natively unfolded (Dyson and Wright, 2005;
Uversky and Dunker, 2010), has imposed a new perspective
on our understanding of molecular recognition. In contrast to
folded proteins, the primary sequence of intrinsically disordered
proteins (IDPs) does not code for a single, energetically stable
fold, but occupies a flatter free-energy surface, spanning a
continuum of different conformations. The dynamic nature
of IDPs allows access to functional modes that are otherwise
inaccessible to folded proteins. For example, the dynamic
intrinsically disordered domains that fill the nuclear pore
(nucleoporins), exhibiting fast association and dissociation rates
with nuclear transport receptors, thereby facilitating highly
specific but rapid transport of cargoes into the nucleus via
a continuum of ultra-weak interactions (Milles et al., 2015).
Interactions between IDPs often show kinetics that are more
complex than simple two-state mechanisms, remaining dynamic
within the complex (Kragelj et al., 2015), exhibiting “fuzzy”
interactions that involve for example local conformational
funneling into partner-specific bound conformations (Schneider
et al., 2015), or involving transient, non-specific interactions to
enhance affinity (Fink, 2005; Dunker et al., 2008; Tompa and
Fuxreiter, 2008; Wright and Dyson, 2009; Van Roey et al., 2012;
Forman-Kay and Mittag, 2013; Kosol et al., 2013).

The specific subject of this mini-review concerns the large
family of proteins that comprise both folded and intrinsically
disordered domains. Multi-domain proteins are ubiquitous in all
studied interactomes (Vogel et al., 2004). They are characterized
by large-amplitude motions that play important roles in almost
every aspect of biomolecular function (Bahar et al., 2007; Smock
and Gierasch, 2009; Tzeng and Kalodimos, 2011; Mackereth and
Sattler, 2012). Such large-scale modes are often mediated by
intrinsically disordered linkers that define the conformational
freedom available to the different domains (Shamoo et al.,
1995; Ma et al., 2011). Solution-state approaches are essential
to probe the ensemble of conformational states sampled by
such complex macromolecules. In particular, nuclear magnetic
resonance (NMR), small-angle X-ray scattering (SAXS) and
single molecule Förster resonance energy transfer (FRET) can be
used to investigate the nature of the ensembles of interchanging
conformers present in solution (Baber et al., 2001; Margittai
et al., 2003; Bernadó et al., 2004, 2007; Henzler-Wildman et al.,
2007; Ryabov and Fushman, 2007; Boehr et al., 2009; Clore and
Iwahara, 2009; Bashir et al., 2010; Bernadó and Blackledge, 2010;
Bertini et al., 2010; Rambo and Tainer, 2010; Boura et al., 2011;
Mackereth et al., 2011; Rózycki et al., 2011; Camilloni et al., 2012;
Mackereth and Sattler, 2012; Rezaei-Ghaleh et al., 2013; Russo
et al., 2013; Hennig et al., 2014).

The highly dynamic nature of multi-domain proteins
necessitates the development of analytical approaches for the
interpretation of the available experimental data in terms
of representative ensembles. Although the description of the
available conformational space already represents a demanding
task, due to the risk of over-fitting, a second, equally formidable
requirement is the estimation of the populations of different
sub-states and, if possible, their rates of interconversion. The
time-scales of this dynamic exchange, and the conformational
dynamics that occur within different sub-states also define the

details of the analytical approaches that can be applied, rendering
the task yet more daunting.

Here, we will discuss the application of NMR, SAXS, and
single molecule FRET to the study of the conformational
sampling of two highly flexible multi-domain proteins, the
human U2AF65 protein that plays an essential role in the
spliceosome assembly (Banerjee et al., 2003; Wahl et al., 2009;
Mackereth et al., 2011), and the 627-NLS domain of the
PB2 segment of influenza polymerase (Tarendeau et al., 2008;
Delaforge et al., 2015). These two cases illustrate very different
exchange regimes, impacting the appropriate interpretation of
the experimental data.

NMR spin relaxation is potentially a very powerful means to
describe both local and global dynamics of macromolecules
in solution. Nevertheless, quantitative analysis of the
conformational space sampled by two domains relative to
each other is highly challenging (Baber et al., 2001; Wong
et al., 2009; Ryabov et al., 2012; Xia et al., 2013). More often,
paramagnetic relaxation enhancements (PREs) are used to detect
weakly populated close contacts between domains, for example
transient encounter contacts in protein-protein and protein-
nucleic acid complexes (Iwahara et al., 2004; Tang et al., 2006;
Volkov et al., 2006). The level of information can be enhanced
considerably if the paramagnetic center exhibits anisotropic
magnetic susceptibility, in which case pseudo-contact shifts
are induced that are sensitive to the distribution of distances
and orientations of vectors connecting the observed spins and
the electron spin, relative to the susceptibility tensor. Under
such conditions, or when dissolved in a dilute liquid crystalline
solution, residual dipolar couplings (RDCs) can also be measured
to provide information about the distribution of orientations of
the structured domains relative to each other (Tolman and Ruan,
2006; Salmon and Blackledge, 2015). In addition, SAXS reports
on the pairwise distribution functions of all conformations
averaged over the ensemble (Bernadó et al., 2007).

Phenomenologically, large levels of conformational disorder
are often manifest by the inability to interpret the experimental
data in terms of a single conformation, so that it becomes
necessary to invoke the presence of multiple conformations
present simultaneously in solution. Substantial efforts targeting
ensemble descriptions of flexible multi-domain proteins have
been directed toward using NMR and SAXS data to account
for this conformational heterogeneity. As mentioned above, care
must be exercised in order to avoid over-fitting and to introduce
some estimate of uncertainty of populations and representative
conformers in the ensemble descriptions. Examples of recent
analytical approaches include an estimation of the maximum
occurrence of each possible protein conformation on the basis
of experimental NMR or SAXS data (Bertini et al., 2007,
2010; Ravera et al., 2014), or weighted-ensemble selection
from molecular dynamics (MD) simulation or available crystal
structures (Yang et al., 2010; Francis et al., 2011; Russo et al.,
2013). Conformational space can also be sampled using replica
exchange MD (Sgourakis et al., 2007; Wu et al., 2009; Terakawa
and Takada, 2011; Knott and Best, 2012; Narayanan et al., 2012;
Zhang et al., 2012; Mittal et al., 2013; Wang et al., 2013) using the
experimental data as constraints to guide ensemble distributions
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FIGURE 1 | Electrostatic interactions dominate the conformational equilibrium populated by the multi-domain splicing factor U2AF65. (A) Comparison
between fitted (blue) and experimental (red) data. Upper left panel—PRE intensity ratios, lower-left panel, RDCs, top right panel SAXS, middle right panel active χ

2,
lower right panel cross validated χ

2, both with respect to ensemble size. (B) Cartoon description of RRM1 and RRM2 domains, connected by the 32 amino-acid
flexible linker. (C) Position of the previously determined closed (2YH0-blue) and open (2YH1-green) conformations of RRM1 relative to RRM2 (Mackereth et al., 2011).
(D–I) Representation of the accessible (prior) conformational sampling of RRM2 compared to RRM1 on the basis of statistical coil sampling of the linker (D,F,H) and on
the basis of experimental data (E,G,I). (D,E)—Centre-of-mass representation, (F,G)—2D projections onto XY and XZ planes (in Å) with populations (derived from 100
Monte Carlo simulations; χ

2/N≈1, red/blue highly/weakly populated. “+” indicates center-of-mass of RRM1; closed and open circles 2YH0 and 2YH1, respectively,
(H,I)—3D density maps (5% population contour showing the probability of the center of mass position averaged over the ensemble) of RRM2 distribution with respect
to RRM1, showing occlusion of the acidic patch on the surface of RRM1 in the experimental distribution that is not present in the prior sampling, demonstrating that
the experimental data require a redistribution of sampling. (Reprinted with permission from Huang et al., 2014. Copyright 2014 American Chemical Society).

that reproduce the experimental data on average (Im et al., 2012;
Cavalli et al., 2013; Roux and Weare, 2013). Alternatively rigid-
body modeling can be used to develop representative ensembles
of conformers (Deshmukh et al., 2013).

Conformational sampling can be achieved with high efficiency
using restraint-free Monte-Carlo approaches, exploiting for
example statistical coil models to describe the backbone dihedral
angle distributions of the inter-domain linker. The nature of
the intrinsic conformational equilibrium can then be examined
by generating representative ensembles of conformers, using
an adaptation of the ASTEROIDS approach for ensemble
representations of intrinsically disordered systems (Nodet et al.,
2009; Salmon et al., 2010; Ozenne et al., 2012; Guerry et al., 2013).
Comparison with the experimental data is then used to identify
sub-ensembles of conformers that, in combination, represent
the Boltzmann distribution in solution. Ensemble descriptions
of highly disordered systems are faced with two problems;
identification of representative conformational states, and
determination of their relative populations. ASTEROIDS uses
a genetic algorithm to identify combinations of conformational
states that when considered together reproduce the experimental
data within estimated experimental uncertainty. Different
conformers (i) have populations given by pi = 1/n where n
is the number of conformers in the ensemble. Populations are
not optimized, so that if a given state requires a higher weight
to fulfill experimental data, additional conformers with similar
characteristics will be present. The optimal number of structures
necessary to reproduce the complexity of the experimental
data can be estimated by cross-validation of independent

experimental data that are not used in the analysis (Salmon et al.,
2010; Guerry et al., 2013; Huang et al., 2014). The single-step
selection of ASTEROIDS avoids additional optimization of the
weights of specific conformers, and is therefore compatible with
robust statistical analysis allowing estimation of the confidence
levels of both conformation and population.

This approach was adapted to map the free-energy landscape
of the RNA Recognition Motifs RRM1 and RRM2 domains of
the U2AF65 protein. The two RRMs are connected by a flexible
linker and adopt multiple domain arrangements as indicated
by a combined analysis of PRE, RDC and SAXS data (Huang
et al., 2014). The analysis reveals a heterogeneous ensemble
of states dominated by highly populated, but very different
relative positions of RRM1 and RRM2, despite the fact that these
conformations are not strongly represented in the unrestrained
ensemble of states. These conformations were found to resemble
previously proposed “closed” and “open” states (Madl et al.,
2010; Simon et al., 2010; Mackereth et al., 2011; Hennig et al.,
2015), where the latter corresponds to the RNA-bound form of
the protein (Figure 1), supporting the role of conformational
selection from the free-state ensemble as a driving force
of this interaction (Mackereth et al., 2011; Mackereth and
Sattler, 2012). “Open” and “closed” conformations were found
to lie within a continuous density of states, indicating that
transition could occur between these states without invoking
large conformational jumps. Inspection of the nature of the
interacting surfaces dominating the ensemble suggested that
the “closed” state was stabilized by electrostatic interactions.
This prediction was supported by an observed weakening of
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transient contacts in this interface, as detected by a reduction of
distinctive PREs with increasing ionic concentration, providing
an independent support for the nature of the solution state
ensemble that is derived uniquely from experimental data.

In the latter example the experimental data are assumed
to report on an ensemble of conformations that are in rapid
exchange with respect to the difference in NMR chemical shifts,
RDCs and PREs. In effect this assumes that all conformations
exchange on timescales faster than or equal to tens of
microseconds. Interpretation of the experimental data calculated
for each independent sub-state can then be averaged to assess
the ability of the ensemble to reproduce the experimental data.
This exchange regime will not always be respected, for example
in the case of strong interactions between domains, where high
activation energies of dissociation may result in much slower
exchange between states. Such an exchange regime was recently
studied in the 627-NLS multi-domain component of Influenza A
polymerase.

The viral RNA polymerase complex is made up of three
separate proteins, PA (acidic protein), and PB1 and PB2
(basic proteins 1 and 2) that are imported into the host
nucleus following translation to assemble into new polymerase
heterotrimers that further catalyze viral RNA replication and

transcription. PB2 enters the nucleus by binding to Importin
α (Impα) via its C-terminal domain, termed the 221 amino-
acid 627-NLS domain (Tarendeau et al., 2008; Kuzuhara et al.,
2009) containing a nuclear localization signal (NLS) peptide. The
627-NLS domain is of particular interest, as a large proportion
of mutations characterizing adaptation of avian viruses to
human hosts are located on its surface (Tarendeau et al.,
2008; Mehle and Doudna, 2009). Crystal structures of 627-
NLS have been determined, in isolation from both avian and
human forms of Influenza (Tarendeau et al., 2008), and more
recently in the context of the entire polymerase complex (Pflug
et al., 2014), in all cases exhibiting effectively identical compact
conformations. This conformation was, however, incompatible
with binding of the NLS domain to Impα, suggesting that large-
scale conformational rearrangement of either 627-NLS or Impα
would be necessary for successful interaction (Boivin and Hart,
2011).

A recent NMR study (Delaforge et al., 2015) of 627-
NLS unambiguously revealed the presence of a more complex
conformational equilibrium in solution, with approximately
twice as many peaks present in the 1H-15N TROSY spectrum
as expected, and one set of peaks exhibiting the same chemical
shifts as the 627 and NLS domains in isolation. This spectrum

FIGURE 2 | Large Scale Conformational Dynamics Control Influenza Polymerase PB2 627-NLS domain Binding to Importin α. (A) The first evidence that
the 627-NLS domain of influenza polymerase PB2 subunit samples two conformations in solution is provided by the 15N-1H correlation spectrum that exhibits two
sets of peaks in solution (gray), one set corresponds to resonance positions of either the free 627 (green) or the free NLS (red) domains, suggesting that the
two-domain protein exchanges between open and closed forms in solution. (B) This exchange is temperature dependent, with increasing population of the open form
at higher temperatures as shown in this example showing two peaks reporting on the environment sensed by T569 in the two (open and closed) forms of the protein.
The majority of peaks show such behavior, with a large range of 15N and 1H shifts between the two forms. (C) Chemical exchange saturation transfer (CEST) of seven
resolved peaks, showing “dips” reporting on the open and closed forms of the protein. (D) CEST profiles provide information about population, exchange rates and
structure, and simultaneous analysis of all spectra in (C) allows for the determination of enthalpic and entropic contributions to the equilibrium thermodynamics. (E)
SAXS of the complex suggests localization of the 627 domain in the vicinity of the C terminus of Importin α. (F) smFRET also shows that 627-NLS exhibits domain
dynamics in the free form, and demonstrated that only the open form remains in the bound form equilibrium (concentration of titrated Importin is shown in the panels).
Large-scale domain dynamics are therefore essential for binding to Importin α. (Reprinted with permission from Delaforge et al., 2015. Copyright 2015 American
Chemical Society).
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is characteristic of slow exchange (in this case kex = 30 s−1

at 15◦C) between a closed form of the protein (the crystalline
conformation) and a previously uncharacterized open form
where the two domains retain their secondary and tertiary
structure, but dislocate, and evolve independently of each other
(Figure 2). One set of peaks therefore report on the ensemble of
conformations that are in fast exchange, while the other set of
peaks report on the closed state that is stabilized by a tripartite
salt bridge implicating highly conserved basic and acidic amino
acids in the interface between the 627 and NLS domains, and
in the 13-amino acid inter-domain linker. The linker becomes
flexible upon dislocation, and, as in the case of the U2AF65
RRM1-RRM2 domains, provides the degrees of freedom required
for the large-scale domain dynamics characterizing the open
form.

Single molecule FRET can also be used to probe the
distance distribution and inter-domain dynamics of the two
folded domains of 627-NLS. Two populations reporting on
the open and closed forms are again observed. The estimated
timescale of the different motional modes, characterized by fast
interconversion within the open state (τex < 50µs) and slow
interconversion between the open and the closed states (τex >

20ms) also confirms the similarity of the closed state to the crystal
conformation, showing negligible rapidmotion, and the presence
of significant fast domain dynamics in the open state, in good
agreement with the NMR analysis.

Exchange between open and closed conformations of 627-NLS
was characterized using NMR lineshape analysis and Chemical
Exchange Saturation Transfer (CEST), revealing a strong
temperature dependence, ranging from 10 to 100 s−1 over the
range 5–30◦C, with the population of the open form increasing
significantly from predominantly closed at 5◦C (p = 0.2) to
approximately equal populations at 30◦C. Small angle X-ray
and neutron scattering data were also measured over the entire
temperature range, resulting in very good agreement between
expected population-weighted scattering curves from open and
closed ensembles and the experimentally determined populations
from NMR exchange analysis. Simultaneous analysis of CEST
data from multiple different sites throughout the protein as a
function of temperature, using an Eyring relationship, provides
unique insight into the thermodynamics of the temperature-
dependent equilibrium. The activation energy of opening and
closing is dominated by enthalpic contributions, while the
open state exhibits both entropic and enthalpic contributions
compared to the closed state, suggesting additional non-specific
non-bonding interactions between the surfaces, as in the case of
RRM1/RRM2. Characterization of the temperature-dependence
of the equilibrium is of functional interest because viral
replication involves adaptation from the warmer bird intestine
to the cooler human respiratory system (Massin et al., 2001).
Comparison of the temperature dependence of reconfiguration
dynamics of 627-NLS from human and bird-adapted proteins is
currently underway in our laboratories.

The physiological interaction between 627-NLS and Impαwas
also investigated using solution methods. The population of the
closed form of the protein disappears upon interaction, as shown

using single molecule FRET, with the open form maintaining the
characteristics of fast distance fluctuations between the attached
dyes and therefore suggesting fast inter-domain dynamics in the
bound state. Although SAXS measurements of the complex also
indicate flexibility of 627 with respect to Impα when bound to
NLS, they also reveal that the 627 domain is localized primarily
in the vicinity of the C terminus of Impα, possibly stabilized by
interactions with the 34 amino acid long intrinsically disordered
C terminal tail of Impα.

These observations strongly suggest that while the closed form
is known to be necessary for function within the polymerase-
RNA complex (Pflug et al., 2014), the open form of 627-NLS is
required for interaction with Impα. Interestingly, mutation of
R650A in the 627 domain removes the possibility of forming
the salt bridge, resulting in suppression of the closed form
in solution. This same mutation was independently shown
to abrogate polymerase activity in the nucleus, while still
allowing for nuclear import (Kirui et al., 2014), substantiating
our model whereby the open-form mediates nuclear import.
Further structural investigations of different forms of the RNA
polymerase complex suggest that an open 627-NLS may also play
additional roles in remodeling the polymerase structure during
the viral cycle (Hengrung et al., 2015; Thierry et al., 2016).

The two studies described above demonstrate the functional
importance of large-amplitude dynamics mediated by the
intrinsically disordered linker peptides in multi-domain
assemblies. In both cases the analysis suggests a role for
conformational selection from an intrinsic pre-existing
equilibrium in the interaction with physiological partners.
Both studies show how solution-state approaches can be used
to understand the role of complex dynamic conformational
equilibria in biomolecular function and, more specifically, that
these mechanisms could not be understood without a detailed
description of the ensemble of states sampled in solution.
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