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The local separation of duplex DNA strands (strand opening) is necessary for

initiating basic transactions on DNA such as transcription, replication, and homologous

recombination. Strand opening is commonly a stage at which these processes are

regulated. Many different mechanisms are used to open the DNA duplex, the details of

which are of great current interest. In this review, we focus on a few well-studied cases

of DNA replication origin opening in bacteria. In particular, we discuss the opening of

origins that support the theta (θ) mode of replication, which is used by all chromosomal

origins and many extra-chromosomal elements such as plasmids and phages. Although

the details of opening can vary among different origins, a common theme is binding of

the initiator to multiple sites at the origin, causing stress that opens an adjacent and

intrinsically unstable A+T rich region. The initiator stabilizes the opening by capturing

one of the open strands. How the initiator binding energy is harnessed for strand opening

remains to be understood.

Keywords: replication origins, DNA melting, bacterial origins, lambda origin, plasmid origins

INTRODUCTION

A remarkable feature of double stranded DNA (dsDNA) is its ability to undergo denaturation,
whereby its strands can be completely separated into single strands, and renaturation, whereby
the two complementary strands can be annealed back to form dsDNA. In vitro, DNA can undergo
denaturation or renaturation simply in response to a change in salt concentration, temperature, pH
or the presence of mild reagents such as formamide (Inman, 1966; Westmoreland et al., 1969). The
reversibility of strand separation is the basis of hybridization techniques such as Southern blotting
and PCR.

Strand opening usually refers to situations where the stability of duplex DNA is altered locally
and for a limited period by DNA binding proteins. Complementary strands of DNA are most
stable in the double helical B-form as modeled by Watson and Crick. Opening of the strands is
thus energetically unfavorable. Active processes are involved in making the opening site-specific,
and of significant length and duration so that the downstream events become feasible. In the
case of replication initiation, the immediate downstream event is the loading of the replicative
helicase. The helicase enlarges the opening and mediates loading of the primase and the replisome
machinery that are required for duplicating the DNA (Bell and Kaguni, 2013).

Among different origins, the structure and the process of strand opening vary significantly, but
there are several commonalities (Bramhill and Kornberg, 1988b; Figure 1). Common elements
include: (1) The presence of multiple initiator protein binding sites (9-mers) within the origin.
The binding of the initiator allows site-specific opening, which enables helicase loading. (2)
The presence of A+T-rich DNA sequences (13-mers) within the origin where the opening
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initiates. A stretch of ∼20 bp A+T-rich region (called a DNA
unwinding element, or DUE) is common within replication
origins, most likely due to the fact that A+T-rich regions are
easier to melt than G+C rich sequences (Inman, 1966; Kowalski
and Eddy, 1989). (3) Remodeling (bending/folding/stretching)
of origin DNA upon initiator binding, which is often facilitated
by additional binding of nucleoid associated proteins (NAPs,
e.g., HU; Stenzel et al., 1987; Hwang and Kornberg, 1992a;
Dorman, 2009). (4) A requirement for the DNA to be negatively
supercoiled, which is an under-wound and unstable state, that
can make the DNA prone to opening but not open enough for
helicase loading (Bramhill and Kornberg, 1988a). (5) Opening at
DUE resulting from its intrinsic instability, and stress from DNA
remodeling and negative supercoiling (Bowater et al., 1991).
(6) Stabilization of the open state by the single stranded DNA
(ssDNA) binding activity of the initiator, which captures one
specific single strand of the open DNA so that the other is
available for helicase loading. It is worth emphasizing that in
vivo the aggregate of the A+T rich DUE, NAPs and negative
supercoiling are not enough, and that the initiator binding to
the origin provides an essential contribution to the energetics
of opening. Additional regulatory factors are usually involved
to modulate the frequency and timing of opening. Below we
elaborate on the core features of opening for a few specific origins.

OPENING OF AN AAA+ PROTEIN
CONTROLLED ORIGIN, ORIC, OF
ESCHERICHIA COLI

The opening of the E. coli origin, oriC, has been studied in the
most depth. The opening was demonstrated in vitro at a time
when DNA replication could be separated into discrete stages,
with each step dependent on the previous one: initiator binding
to the origin, strand opening at DUE, loading of the helicase,
and finally, loading of the primase and the rest of the replisome
(Figure 1; Bramhill and Kornberg, 1988b; O’Donnell, 2006). The
ability to delineate the replication initiation process into discrete
stages revealed that origin opening is not only a critical first step,
but also a key replicon-specific event, as the players in subsequent
steps seem common to all replicons.

Decades of genetic, biochemical and structural studies have
generated a wealth of information on the structure-function
relationship of the E. coli initiator, DnaA. DnaA is a highly
conserved initiator protein in bacteria with structural similarity
to initiators in the other domains of life (Giraldo, 2003).
DnaA belongs to the AAA+ superfamily of ATPases (Neuwald
et al., 1999) and has four domains (Ozaki and Katayama, 2009;
Figure 2A): An N-terminal domain for homo-oligomerization
and interactions with other replication related proteins, a non-
conserved linker domain between the N-terminal domain and
the large AAA+ domain for binding and hydrolyzing ATP,
and a C-terminal DnaA binding domain (DBD) containing a
helix-turn-helix (HTH) motif and a proximal basic loop for
specific binding to dsDNA (Erzberger et al., 2002). The AAA+
domain mediates ATP dependent DnaA oligomerization that is
independent of the N-terminal domain, which allows the AAA+

domain to bind to ssDNA (Duderstadt et al., 2011). DnaA thus
uses two different domains to bind to ds- and ss-DNA. DnaA
has several binding sites in oriC. The organization of the sites
and their interactions with DnaA are complex (Leonard and
Grimwade, 2010). Models have been proposed to explain how
these interactions may give rise to strand opening, as we discuss
below.

Formation of Nucleoprotein Complexes at
oriC of E. coli
DnaA binds through its C-terminal HTH motif to dsoriC at
eleven 9-mer sites (Figure 2B). The three high affinity sites (R1,
R2, and R4, Kd< 20 nM) remain bound throughout the cell cycle,
and have equal affinity for DnaA-ATP and DnaA-ADP (Nievera
et al., 2006). Binding to the remaining sites requires cooperative
interactions with DnaA bound to the high affinity sites, withmost
requiring higher concentrations of DnaA-ATP. Binding to these
weaker sites is cell-cycle specific and peaks immediately before
the time of initiation, when the DnaA-ATP concentration reaches
a maximum (Kurokawa et al., 1999; Nievera et al., 2006).

Two NAPs, Fis and IHF, regulate the timing of DNA-ATP
binding. When bound to oriC, Fis inhibits saturation of DnaA-
ATP binding to the weaker sites. Upon release of Fis, IHF
binding facilitates saturation of binding (Ryan et al., 2004).
These studies indicate that saturation of binding is a highly
regulated process in the cell cycle, and is achieved by controlling
the DnaA-ATP concentration. The increase in the DnaA-ATP
concentration promotes oligomerization of DnaA-ATP from R4
to C3, which is believed to cause dissociation of Fis from its
site that overlaps C3 (Rozgaja et al., 2011). Fis dissociation is
believed to remove the steric barrier to IHF association, although
the exact mechanism remains to be determined (Kaur et al.,
2014; Leonard and Grimwade, 2015). The involvement of NAPs
suggests the presence of long range interactions in the formation
of nucleoprotein complexes at oriC. The importance of the
relative distances between DnaA binding sites and their helical
phasing is also suggestive of higher order structure formation
(Woelker and Messer, 1993). Neither Fis nor IHF are essential
in vivo or for replication in vitro; they are, however, required
for regulating replication initiation in the cell cycle (Ryan et al.,
2004). IHF can efficiently substitute for HU in vitro, indicating
redundancy in NAPs requirement in vivo (Hwang and Kornberg,
1992a).

In addition to the eleven 9-mer sites, oriC contains three
repeating 13-mer sequences that comprise the DUE, to which
DnaA-ATP binds (Figures 1, 2; Speck andMesser, 2001). The 13-
mers have adenine methylation sites, which, when methylated,
are expected to favor strand separation (Gotoh and Tagashira,
1981). DnaA binding to DUE most likely requires the DUE to
be single stranded, although initial binding may occur on dsDUE
(Figure 3A; Duderstadt et al., 2011). The binding is mediated
through the AAA+ domain of DnaA oligomers (Ozaki et al.,
2008; Duderstadt et al., 2011). These details were obtained from
X-ray crystallographic structures of N-terminal deleted DnaA
from thermophilic bacteria (Erzberger et al., 2002; Ozaki et al.,
2008). The DNA-protein and protein-protein contacts seen in
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FIGURE 1 | Biochemical steps leading to initiation of replication from the E. coli origin, oriC. The figure is adapted from (Bramhill and Kornberg, 1988a) with

permission from the publisher. The initiator DnaA initially binds to the 9-mers (R sites), and then saturates the origin in the presence of ATP and HU. Under favorable

reaction conditions (high ATP, negative supercoiling, 38◦C, appropriate concentration of HU), the region with three 13-mers (DUE) opens. The opening allows loading

of the DnaB-DnaC complex (the helicase and the helicase loader), and subsequently the rest of the replisome to initiate and complete duplication of the

minichromosome. Note that (i) the entire process can be achieved with purified components (Kaguni and Kornberg, 1984; Bramhill and Kornberg, 1988a); (ii) the top

strand of the open region contacts the DnaA-ATP bundle, which stabilizes the open complex; (iii) DnaA-ATP binding to oriC can be achieved at <1 µM concentrations

of ATP, whereas the opening requires mM concentrations of ATP, most likely for reasons other than DNA binding (Saxena et al., 2015); (iv) The DNA spiral (“writhing”)

shown surrounding the DnaA-ATP bundle is left-handed. Current evidence suggests it to be right-handed, which is more logical in terms of opening (Erzberger et al.,

2006); and (v) HU stimulates opening, and helps to localize it to 13-mers, but is not essential (Bramhill and Kornberg, 1988a).

crystals are also functionally significant in E. coli (Ozaki et al.,
2008; Duderstadt et al., 2011).

Several important key findings have emerged from structural
studies. Whereas DnaA-ADP is monomeric, DnaA-ATP is
oligomeric (Erzberger et al., 2002, 2006; Ozaki et al., 2008;
Ozaki and Katayama, 2012). The oligomerization is dependent
on ATP, which bridges neighboring DnaA protomers at the
interface between neighboring subunits by making contact with
the Walker A and B motifs of one subunit and a conserved
arginine (“arginine finger”) of the neighboring subunit through
its γ-phosphate. The involvement of the γ-phosphate explains
whyDnaA-ADP fails to oligomerize.Mutating the arginine finger
abolishes ATP-dependent binding of DnaA to oriC and initiation
activity. Thus, oligomerization appears to be the mechanism to
allow sequential binding to weak dsDNA sites and to the DUE
(Cheng et al., 2015).

Models for Opening at oriC
DnaA-ATP in the crystal and in solution is a polymeric, right-
handed spiral filament, which affords a ready explanation for how
it could facilitate opening: Wrapping of DNA around a right-
handed spiral is the same as introducing positive supercoils that
could spontaneously induce compensatory negative supercoils in
the adjoining DNA (Erzberger et al., 2006; Zorman et al., 2012).
Although the negative supercoils can diffuse out of the origin,
their proximity to wrapped DNA and propensity for melting

render them more likely to be absorbed by unwinding of the
DUE (Bowater et al., 1991; Polaczek et al., 1998). In this scenario,
the wrapping of dsDNA around DnaA not only generates the
unwinding force but also helps to confine the unwinding within
the DUE. A stronger barrier to supercoil diffusion out of the
A+T-rich DUE is suggested by the finding that the open state of
DUE is quite stable in the absence of helicase loading in vitro and
in vivo (Odegrip et al., 2000). Capturing one of the single strands
by the AAA+ domain of DnaA oligomers as found in co-crystals
could be a straightforward way to retain the DUE in the open
state (Duderstadt et al., 2011).

DnaAmay also directly open dsDUE (Figure 3A). This model
is based on the structural similarities of ssDNA in complex with
DnaA-ATP or RecA-ATP, and the biochemical evidence that
DnaA can unwind short stretches of dsDNA (Duderstadt et al.,
2011). RecA can transfer a single strand to homologous dsDNA
(Shibata et al., 2001). Although cocrystals of DnaA-ATP with
dsDNA are yet to be obtained, such structures were obtained
with the archaeal initiator, Cdc6/Orc1, which is an AAA+ protein
with significant homology to DnaA (Giraldo, 2003). The archaeal
initiator was found to distort dsDNA, and DnaA also bends DNA
upon binding (Schaper andMesser, 1995). Thus, similar to RecA,
DnaA oligomers may initially contact dsDUE and distort the
region enough to initiate ssDUE binding.

Structural studies indicate two distinct states of DnaA-ATP
for ds- and ss-DNA binding. For contact with dsDNA, the
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FIGURE 2 | (A) The four domains of DnaA. (B) Map of oriC showing several DnaA binding sites that were identified subsequent to the 9-mers shown in Figure 1. The

figure is adapted from (Rozgaja et al., 2011) with permission from the publisher. Three of the 9-mers are high-affinity R sites (R1, R2, and R4) that bind DnaA-ADP and

DnaA-ATP with nearly equal affinity and they remain bound throughout the cell cycle. The remaining sites R5, τ1, τ2, I1-I3, and C1-C3 are present in two phased

arrays and preferentially or exclusively bind to DnaA-ATP, except for R5 which binds both DnaA-ADP and DnaA-ATP, as other R sites do (McGarry et al., 2004;

Kawakami et al., 2005; Rozgaja et al., 2011). [Note that DnaA binding site R3 is not shown. The identification of R3 could have been a misinterpretation of binding to

C2 and C3, which overlap with R3 (Rozgaja et al., 2011)]. Upon accumulation of DnaA-ATP, the R1 and R4 sites nucleate sequential binding of DnaA to the two

arrays. The DnaA oligomer extension could displace Fis (orange trapezoid), possibly removing some steric hindrance to IHF binding (blue trapezoid; Kaur et al., 2014).

C-terminal HTH domains of DnaA oligomers stick out of the
spiral and are free to contact dsDNA as it wraps around the spiral
from the outside (Figure 3A). For contact with ssDNA, the HTH
domain collapses on the AAA+ domain of the partner protomer
and can no longer contact dsDNA. The interaction between
the collapsed HTH domain and the AAA+ domain is required
for oligomerization-mediated ssDNA binding, origin opening,
and initiation in vivo (Duderstadt et al., 2010). In other words,
the HTH domain also contributes to DnaA oligomerization.
What triggers the HTH domain to change its conformation
from an extended to a collapsed state in DnaA oligomers
is not understood. Another study suggested that ds- and ss-
DNA binding can occur simultaneously on the same DnaA-
ATP oligomer (Ozaki and Katayama, 2012; Figure 3B). When
DUE sequences were provided as single-stranded oligos together
with a DUE-deleted dsoriC fragment, the oligos could contact
specific pore residues of the DnaA-ATP spiral. Mutating the
contacting residues (V211A and R245A) prevented DUE binding
and opening. Although it remains to be resolved whether the
ds- and ss-DNA binding occur with separate or the same DnaA
molecules, it is clear that DnaA oligomerization is important for
origin opening and ssDNA binding. The importance of DnaA
oligomerization has also been demonstrated in Bacillus subtilis
(Scholefield et al., 2012).

Weak DnaA binding sites are clustered into two phased arrays
that are oriented opposite to each other (Rozgaja et al., 2011;
Figure 2B). The wrapping model appears inconsistent with this

finding, because the handedness of wrapping is expected to be
opposite for the two arrays and the torsional stress generated
by wrapping of one array would be neutralized by wrapping of
the other. However, the contribution of the two arrays to stress
may not be equivalent. The DUE proximal array may be more
important and can suffice for the opening. In fact, the deletion of
the DUE distal array from oriC does not affect viability, and can
achieve DUE opening, ssDNA binding and some DnaB loading
in vitro (Stepankiw et al., 2009; Ozaki and Katayama, 2012). The
DUE distal array becomes crucial during rapid growth and is
required for enhancing helicase loading both in vitro and in vivo
(Weigel et al., 2001; Stepankiw et al., 2009). Some elements of
oriC might not be essential but they are there for improving its
efficiency.

Regulation of oriC Opening
So far, we have discussed the importance of DnaA-ATP in
regulating the opening, and the involvement of NAPs in this
process. There are also other regulatory proteins that influence
the opening by controlling DnaA interactions with oriC. Many
of these regulators interact with the N-terminal domain of
DnaA and modulate its oligomerization activity. Proteins HU
and DiaA promote oligomerization and unwinding by DnaA
(Hwang and Kornberg, 1992a; Chodavarapu et al., 2008a;
Keyamura et al., 2009). There are also N-terminal domain
binding proteins L2 and Dps that impede oligomerization
and origin opening (Chodavarapu et al., 2008b, 2011). These
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FIGURE 3 | (A) A “two-state DnaA assembly model” for origin opening based

primarily on crystallographic studies (Duderstadt et al., 2010). The figure is

adapted from the authors’ paper with permission from the publisher. The oriC

regions where DnaA-ATP binds to DUE or to dsDNA are shown in different

colors. In one state, the domain IV of DnaA stays extended and accessible for

dsDNA binding. The binding initiates at the high-affinity sites and spreads to

lower affinity sites with the increased availability of DnaA-ATP, as in Figure 2.

Upon encountering the DUE, DnaA domain IV collapses on the AAA+ domain

and becomes inaccessible for dsDNA binding. In this state, the AAA+ domain

is used for ssDNA binding. The authors also considered the possibility that

DnaA may initially bind to DUE when it is still ds (the right lower panel). (B) A

“ssDUE recruitment model” based primarily on biochemical studies (Ozaki and

Katayama, 2012). The figure is an adaptation from the authors’ paper with

permission from the publisher and shows DnaA without domains I and II. In

this model, recruitment of one of the single strands of the DUE occurs by

DnaA binding simultaneously to both DUE and dsDNA. The authors also

considered that separate DnaA molecules bound to ss- or ds-DNA may

interact with each other in DUE recruitment (not shown). The models in (A) and

(B) both involve DnaA oligomerization and different DnaA domains for ss- and

ds-DNA binding. The recruitment model incorporates additional features

known to be important for opening: IHF binding, additional oligomerization

through the N-terminal domain in organizing the open complex (not shown),

and a spacer DNA between the DUE and R1 that is not bound by DnaA. The

latter feature indicates that DnaA may not form a continuous spiral from

dsDNA to the DUE as in (A).

N-terminal domain activities help in timing replication during
the cell cycle and in maintaining replication synchrony during
rapid growth, but are not essential for origin opening. Indeed,
several studies have concluded that the essential role of the
N–terminal domain is in the loading of the helicase (Sutton
et al., 1998; Sharma et al., 2001; Speck and Messer, 2001;
Simmons et al., 2003). However, DnaA cannot be loaded to low-
affinity sites without an intact N-terminal domain, which would
imply an essential role of the domain in opening (Miller et al.,
2009). These apparent contradictions highlight the importance
of clarifying the role of the N-terminal domain-mediated
oligomerization.

There are also regulators that can indirectly control the
opening of the DUE. Some regulators, such as SeqA and IciA,
bind directly to the DUE and prevent opening by interfering with
DnaA binding (Hwang and Kornberg, 1992b; Lu et al., 1994).
SeqA also prevents DnaA binding to some of the low affinity sites
that have overlapping SeqA binding sites (Nievera et al., 2006).

Several other regulators control the DnaA-ATP level. These
regulators have been reviewed comprehensively elsewhere, and
will not be discussed here (Katayama et al., 2010; Skarstad and
Katayama, 2013). Finally, for unknown reasons, transcription is
required for replication initiation (Skarstad et al., 1990). The act
of transcription elongation induces negative supercoiling of the
upstream DNA. An appropriately oriented promoter may thus
help origin opening by increasing negative supercoiling. This is
further discussed below.

OPENING OF THE BACTERIOPHAGE
LAMBDA ORIGIN BY TRANSCRIPTIONAL
ACTIVATION

In phage lambda (λ), DNA replication has been extensively
studied and is fairly well-understood. Before the days of
cloning, the small size of the phage genome (about 50 kb, one
1/100th the size of the E. coli chromosome) made physical
manipulation possible, allowing isolation and characterization of
intact replication intermediates. This led to the first unambiguous
demonstration that replication starts from a unique origin,
and that two replication forks proceed from the origin in
opposite directions (bidirectional replication), as was conceived
in the replicon model (Jacob et al., 1964; Inman and Schnös,
1971).

Genetic characterization of lambda replication has provided
quite a few alternate strategies for replication initiation. For
example, instead of DnaA as the initiator, two phage-encoded
initiators, the O and P proteins, are used (Ogawa and Tomizawa,
1968). The initiation depends on transcription within or nearby
the origin region (Dove et al., 1969). A more remarkable finding
was the discovery of three chaperone proteins in E. coli (DnaJ,
DnaK, and GrpE) and their participation in replication initiation
(Georgopoulos and Herskowitz, 1971; Saito and Uchida, 1977;
Friedman et al., 1984). In vitro studies with purified components
reproduced the salient features of the system as determined in
vivo: bidirectional replication, and requirements for transcription
and chaperone proteins (Learn et al., 1993). We elaborate on
these features in the context of our general scheme of origin
opening.

The minimal region that retains the replication characteristics
of the entire genome is contained within 2.4 kb (λdv, Figure 4).
It comprises a promoter PR and four genes cro, cII, O, and P
that are transcribed from PR (Matsubara, 1981). The origin (oriλ)
maps within the O gene and transcription from PR activates
the origin, in addition to its role in providing the mRNA for O
and P synthesis. oriλ contains nearly perfect inverted repeats of
a 19-bp sequence that bind O protein dimers (Grosschedl and
Hobom, 1979; Moore et al., 1979; Tsurimoto and Matsubara,
1981). The initiator binding repeats of the origin were given a
special name, iterons (Moore et al., 1979). O binding to oriλ
in a negatively supercoiled DNA causes a significant structural
change that includes the opening of the neighboring 40 bp A+T
rich region (Dodson et al., 1986; Schnos et al., 1988). The iteron
DNA is bent in solution and bends further upon O binding, and
it has been proposed that the “free energy of bending is trapped
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FIGURE 4 | Genetic map of the region required for λ replication. A

plasmid carrying the region marked λdv can replicate autonomously in E. coli.

The region includes an operator/promoter (ORPR), which can be repressed by

either cI or Cro protein. The three genes, cro and the initiators O and P,

constitute an operon under ORPR control. The origin, oriλ, maps within the O

gene and requires activation by transcription from PR. When PR is repressed,

suppressor mutations that can activate the origin create new promoters (c17,

riC5b), which are not repressed by cI or Cro and are expressed constitutively.

The expanded map of oriλ shows four inverted repeats (inverted arrows) for

binding of O protein dimers followed by a 40 bp long A+T rich region.

in the oriλ-O complex” (Zahn and Blattner, 1987). The opening
is dependent on negative supercoiling and binding of O protein
copies to each of the multiple iterons.

In vitro studies suggest that additional proteins are involved
in stabilizing the opening to allow loading of the host-encoded
helicase, DnaB. As in oriC, the initiation of λ replication is
separated into several stages. The formation of the oriλ-O
complex is the initial stage, followed by the formation of oriλ-O-
P-DnaB, oriλ-O-P-DnaB-DnaJ and oriλ-O-P-DnaB-DnaJ-DnaK
complexes (Alfano andMcMacken, 1989a,b; Dodson et al., 1989).
All these complexes are functional as they support replication
when supplemented with the missing replisome components. In
the oriλ-O-P-DnaB complex, P plays matchmaker by binding
simultaneously to O and DnaB (Mallory et al., 1990; Osipiuk
et al., 1993). DnaB is kept inactive at this stage through
interaction with P, until chaperone proteins disassemble the
complex to activate the helicase (Mensa-Wilmot et al., 1989b;
Zylicz et al., 1989). The disassembly requires the ATPase activity
of DnaK. The chaperones thus participate in initiation after the
origin has opened.

O, P, and DnaB all harbor cryptic ssDNA binding activity
(Learn et al., 1997). Interactions between O and P, and between
P and DnaB, which suppress the intrinsic ssDNA binding activity
of DnaB, are all required to form a stable ssDNA-O-P-DnaB
complex. Both O and P of the complex contact the open DUE
and stabilize the initial open structure. O also stabilizes the P-
DnaB interaction, perhaps ensuring that DnaB is loaded only at
the O-bound origin.

Although the chaperones provide a crucial activation function
to the helicase, they do not control the efficiency of initiation or,
most likely, strand-opening; these are controlled by transcription
from the PR (Thomas and Bertani, 1964; Dove et al.,
1969). Hence, the repressors that control PR activity are the
regulators of replication. Within the minimal ∼2.4 kb replicon
(λdv), Cro serves as the repressor for PR, and in the intact

phage, repression is enforced by the cI protein (Matsubara, 1981;
Womble and Rownd, 1986). The two repressors bind to the
same operator (OR) sequences. In the prophage state, when
PR is repressed by cI, replication does not initiate even when
O and P are supplied in trans (Thomas and Bertani, 1964).
Mutations that activate replication under the above conditions
(Dove et al., 1969) were found to create new promoters that are
not controlled by cI (e.g., c17, Figure 4). This observation led to
the proposal that the λ origin requires activation by transcription.
The transcription requirement has also been confirmed in vitro
(Mensa-Wilmot et al., 1989a). In an RNA Polymerase dependent
purified system, addition of cI abrogates replication initiation,
but not in the presence of the c17 promoter. Later studies
showed that the promoter could be downstream and directed
away from the origin (e.g., riC5b, Figure 4), implying that
the origin region itself need not be transcribed (Furth et al.,
1982).

The finding that new promoters located on either side of oriλ
can activate the origin can be explained by the “twin supercoiled
domain” model, where a transcribing RNA polymerase generates
positive supercoils ahead of it and negative supercoils behind it
(Liu and Wang, 1987). A common feature of the new promoters,
regardless of whether they are ahead of or behind the origin, is
that they are all oriented for rightward transcription, similar to
PR. In other words, they are all disposed to increase negative
superhelicity of the origin region; this is straightforward in
the case of riC5b which is downstream of oriλ, but when the
promoter is upstream, as in the case of PR or c17, transcription
needs to proceed past the origin.

The requirement for transcriptional activation may be
indirectly tied to increasing negative superhelicity. Notably,
RNA polymerase is not required for in vitro λ replication
with purified proteins (Mensa-Wilmot et al., 1989b). In the
presence of HU, however, the purified system becomes dependent
on RNA polymerase and transcription (Mensa-Wilmot et al.,
1989a), which can sweep off HU from DNA. HU is known to
constrain (reduce) negative supercoils, which could inhibit origin
opening (Drlica and Rouviere-Yaniv, 1987; Mensa-Wilmot et al.,
1989a). The superhelical density of plasmids isolated from cells
appears adequate for replication in vitro but when it is reduced
by HU binding, the role of transcription becomes obligatory.
[Similarly, for oriC, transcription can activate replication under
some conditions but is not required when purified proteins are
used (Funnell et al., 1986)]. Transcription not only counters HU,
but also makes replication initiation bidirectional (Learn et al.,
1993). Without transcription, replication in the purified system
almost always initiates unidirectionally, although in vivo it is
primarily bidirectional (Schnos and Inman, 1970;Mensa-Wilmot
et al., 1989b). How transcription significantly improves the
frequency of bidirectional replication remains to be determined
(Learn et al., 1993). Transcription and negative supercoiling
may also contribute in additional ways (Szambowska et al.,
2011). The RNA polymerase β subunit makes a direct contact
with the O protein, and this interaction is stimulated by
negative supercoiling. Thus, lowering the energy required for
DNA strand separation may not be the only role of negative
supercoiling.
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OPENING OF ORIGINS IN PLASMIDS WITH
REPEATED INITIATOR BINDING SITES
(ITERONS)

The basic feature of the lambda origin, namely, an array of repeats
of replicon-specific initiator binding sites (iterons), can be found
in the origins of a large family of bacterial plasmids (Figure 5;
Chattoraj and Schneider, 1997). Unlike λ iterons, which bind
O dimers, plasmid iterons bind monomeric initiators, a feature
that is important for regulating replication, as discussed later.
Plasmid iterons are generally present in phase with the helical
repeat of B-DNA, and disturbing the phasing can inactivate the
origin (Brendler et al., 1997; Doran et al., 1998). The presence of
phased iterons indicates that the plasmid origins assume a higher
order structure, as appears to be the case for oriC and oriλ.

Apart from iterons, the plasmid origins have binding sites
for DnaA and a NAP, both of which are required for the origin
function. However, the AAA+ (ATPase) domain of DnaA is
not required for plasmid replication, suggesting DnaA plays a
less crucial role in plasmid replication than in chromosomal
replication (Lu et al., 1998; Sharma et al., 2001). Plasmid
replication is controlled instead by dimerization of plasmid
specific initiators (Paulsson and Chattoraj, 2006). Chaperones
are involved in plasmid replication, but unlike their role in
λ replication, they control the dimerization efficiency of the
initiator and are not involved in activation of the replicative
helicase (Wickner et al., 1991). In spite of these differences, the
origin opening mechanism is believed to follow the λ paradigm,
namely, distortion of the origin by initiator binding to the iteron
array with cooperation from DnaA and NAP binding, resulting
in opening the A+T rich region. However, unlike λ replication,

FIGURE 5 | Maps of iteron-bearing plasmids. The plasmid iterons are

mostly direct repeats, as opposed to the inverted repeats in oriλ. Two P1 maps

are shown, the top one being the wild type and the one below with the DnaA

binding sites (arrow heads) deleted and one of them moved next to the iterons.

Both of the origins are functional, indicating that the A+T rich region does not

have to be bounded by protein binding sites. In the RK2 plasmid, the A+T rich

region naturally lacks protein binding sites in one of its flanks. By contrast, the

R6K oriγ is bounded by DnaA sites, which most likely interact directly. pSC101

uniquely includes a par locus (about 200 bp away from the origin as indicated

by the line breaks), which binds gyrase and specifically changes the negative

superhelicity of the origin, and thereby enhances replication of the plasmid.

transcription is not known to be a requirement for in vivo
plasmid replication.

Origin opening has been studied in several of the iteron-based
plasmids, including P1 (Mukhopadhyay et al., 1993), F (Kawasaki
et al., 1996), RK2 (Konieczny et al., 1997), pSC101 (Sharma et al.,
2001), and R6K (Lu et al., 1998; Krüger et al., 2001). The roles of
the plasmid initiator (usually called Rep), DnaA and NAP vary
depending upon the plasmid. In plasmid P1, DnaA alone can
initiate opening, but it is greatly facilitated by the addition of
RepA (Mukhopadhyay et al., 1993). RepA alone is ineffective.
In plasmid F also DnaA alone can open the origin but neither
the initiator RepE nor the NAP (HU) alone can do so (Kawasaki
et al., 1996). Together, RepE and HU are efficient in opening.
Addition of DnaA further increases the efficiency of opening
and extends the open region. In plasmid RK2, Rep (TrfA) can
open if either HU or DnaA is present (Konieczny et al., 1997).
Opening by TrfA together with HU is significantly improved
when DnaA is also present. In pSC101, cooperation of DnaA,
RepA, and IHF is required to open the origin efficiently (Sharma
et al., 2001). All three, Rep (pi), DnaA and a NAP (IHF) are also
required to open oriγ of R6K (Krüger et al., 2001; Lu et al., 1998).
However, with a hyperactive variant of pi, DnaA and IHF are
not required, indicating that their roles are mostly facilitatory
(Krüger and Filutowicz, 2003). The general picture that emerges
is that although some opening might be seen without the full
complement of the three proteins, the efficiency and/or the extent
of the opening are usually different in such cases.

The above studies indicate a direct correlation between the
efficiency of origin opening and replication initiation. In P1 and
F, situations that increase or decrease initiation due to changes
in Rep or iteron concentration also correspondingly enhance or
reduce opening (Kawasaki et al., 1996; Park et al., 1998; Park
and Chattoraj, 2001; Zzaman and Bastia, 2005). In RK2, whose
DUE comprises 13-mer A+T rich repeats like the DUE of oriC,
changing their sequence, arrangement, or number reduces the
stability of the open DUE as well as the origin firing efficiency
(Rajewska et al., 2008; Wegrzyn et al., 2014). In pSC101, a
RepAmutant specifically defective in interactions with DnaA and
replication initiation is also defective in origin opening (Sharma
et al., 2001). In R6K, both the monomer and dimer forms of pi
bind and bend iterons almost equally, but only the monomer-
bound origins can open, which is the form that is proficient in
initiation (Krüger et al., 2001; Krüger and Filutowicz, 2003). As
mentioned earlier, the facilitators of opening of oriγ , IHF and
DnaA, are also required for initiation. The pi mutants that can
open without the facilitators are also hyperactive (copy-up) for
initiation. These results suggest that initiators control initiation
efficiency at the DNA-opening step (Krüger et al., 2001).

In plasmids RK2 and F, the initiators bind ssDUE, as we have
described for DnaA binding to oriC-DUE, and O and P binding
to oriλ-DUE (Wegrzyn et al., 2014). In iteron-bearing plasmids,
similar to oriC or oriλ, the A+T region is not always flanked by
protein binding sites that might prevent migration of the opening
away from the origin. Even in cases where the DUE is flanked
by DnaA and RepA binding sites, the DnaA binding sites can
be moved to the other end of the origin, so that the plasmid
origin nowmimics oriC or oriλ (P1 origin, Figure 5; Abeles et al.,
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1990; Park and Chattoraj, 2001). These results argue in favor
of active anchoring mechanisms. Indeed in RK2 and F, iteron-
bound initiators can bind simultaneously to an oligo from DUE,
as they can at oriC (Ozaki and Katayama, 2012; Wegrzyn et al.,
2014). While DnaA uses two different domains for binding to
ds- and ss-DNA, it is not known whether that is also the case for
plasmid initiators.

In many iteron-based plasmids, chaperones improve
initiator–iteron binding that leads to opening. This is in contrast
to their roles in λ, where the chaperones come into play
after origin opening. In plasmids, the chaperones increase the
availability of initiator monomers in a form that binds to iterons
(Wickner et al., 1991; Ishiai et al., 1994; Toukdarian et al., 1996;
Zzaman et al., 2004b). The increase in monomer results from
dimer dissociation in vitro and this results from refolding of
misfolded subunits that apparently reduces dimerization affinity
(Giraldo et al., 2003; Nakamura et al., 2007). The chaperones
could be either DnaK and its cohorts DnaJ and GrpE for P1
RepA (Wickner et al., 1991), F RepE (Ishiai et al., 1994) and
R6K pi (Zzaman et al., 2004b), or only ClpA for P1 RepA
(Wickner et al., 1994), or ClpB+DnaK+DnaJ+GrpE as for
RK2 TrfA (Konieczny and Liberek, 2002). Although replication
of these plasmids require the monomers, prevention of over-
replication requires the dimers (Paulsson and Chattoraj, 2006).
The chaperones thus play an important role in maintaining the
proper balance between the activator (monomer) and inhibitor
(dimer) forms of the initiators.

Origins of iteron-based plasmids are generally not dependent
on transcription. As in E. coli and λ replication, RNA polymerase
is not required for R6K and F replication when purified
components are used (Abhyankar et al., 2003; Zzaman et al.,
2004a). However, as in other systems, RNA polymerase has
been shown to play a beneficial role in pSC101 replication in
vivo. The plasmid has a locus, par, for gyrase binding that
increases negative supercoiling specifically at the plasmid origin
(Miller et al., 1990; Conley and Cohen, 1995). The supercoiling
and replication defects of 1par strains are suppressed by
transcription from a suitably positioned and oriented promoter
(Beaucage et al., 1991). These results are consistent with the
“twin supercoiled domain” model but also support the view
that superhelicity can be changed locally without changing the
overall superhelical density of the plasmid (Rahmouni andWells,
1989). The localized changes are believed to improve initiator
interactions with the origin and thereby its activity (Ingmer and
Cohen, 1993).

OPENING OF ColE1 PLASMID ORIGIN BY
FORMATION OF A PERSISTENT RNA-DNA
HYBRID

Replication initiation of plasmid ColE1 differs from that of the
replicons described above. ColE1 does not use a plasmid-encoded
initiator. Rather, initiation depends on the host RNA polymerase,
which synthesizes a non-coding RNA (RNA II) from a promoter
550 bp upstream of the origin. This serves to open the origin
and provides the primer for DNA synthesis (Figure 6). This

FIGURE 6 | Control of origin opening in plasmid ColE1. Two transcripts

(RNA I and RNAII) control opening of the origin. RNA II initiates and elongates

normally up to 550 nt, where it starts to form a persistent hybrid that increases

the size of R-loop from a normal size of 10 nt to more than 200 nt. The

hybridized RNA is degraded all but a few nt by RNase H, and this residual

hybridized RNA serves as the primer for DNA synthesis by Pol I, which

converts the unstable R-loop to a stable D-loop. The non-template strand of

the D-loop is then used for helicase loading. The hybridization of RNA I with

the 5′-end of RNA II (covering nt 2–110) negatively regulates replication by

changing the secondary structure of RNA II that thwarts persistent R-loop

formation, without which DNA synthesis is not primed.

diverges from the norm for bacterial replicons, where the primer
is synthesized by the primase, DnaG, which is brought to the
open origin by DnaB-DnaG protein-protein interactions (Bell
and Kaguni, 2013).

In transcription elongation, normally about 10 nt at the 3′-
end of transcripts stay hybridized to the template strand, forming
a three-stranded bubble called the R-loop. As new nucleotides
are added at the 3′-end, the hybridized nucleotides at the 5′-
end of R-loops leave the template strand, thereby maintaining
the size of the translocating R-loops. This canonical scenario
is maintained in the case of RNA II for the first 550 nt, after
which the RNA does not exit from the R-loop as new nucleotides
are added. The persistence of hybridized RNA causes the R-
loop to grow in size to even more than 200 bp. [Persistence of
RNA-DNA hybrid was also found in transcriptional activation
of oriC (Baker and Kornberg, 1988)]. RNase H then almost
completely degrades the RNA from the R-loop except for the
4 to 5 hybridized nucleotides at the 5′-end side. The residual
hybridized RNA suffices to serve as the primer to start DNA
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synthesis by DNA polymerase I (Pol I). In vivo, RNase H most
likely prevents the R-loops to expand much in length, which
needs to be at least 40 nt to allow helicase loading (Masukata
et al., 1987). The three stranded D-loop synthesized by Pol
I apparently provides sufficient opening for the helicase. The
open (D-loop) region does not have to be A+T rich in this
case because the opening is caused by DNA synthesis, not
from the intrinsic instability of the region. The D-loop is a
stable structure wherein the newly synthesized strand prevents
the non-template strand from hybridizing back to the template
strand.

Initiation is controlled by the prevention of persistent RNA-
DNA hybridization. A shorter RNA (RNA I) about 110 nt
long and fully complementary to the 5′-end of RNA II is
responsible for preventing R-loop expansion. RNA I and RNAII
are both constitutively synthesized. As their concentrations
increase with increasing plasmid copy number, hybridization
becomes increasingly significant. Hybridization changes the
secondary structure of RNA II that thwarts persistent R-loops
formation, and hence, priming.

In sum, although the initiation of ColE1 replication is
mechanistically distinct, it espouses the two features highlighted
here: the need for stabilizing the open state and the use of
the origin opening stage to control initiation. It should be
noted that in ColE1, transcription plays a direct and essential
role in initiation by providing the primer, whereas in other
cases transcription helps indirectly by increasing mainly negative
superhelicity and is not obligatory. Finally, the study of ColE1
replication provided the first example of control by a non-coding
antisense RNA, which is now recognized to be widespread in
biology (Tomizawa et al., 1981; Eguchi et al., 1991).

ORIGIN OPENING IN EUKARYOTES

The bacterial program of first opening the origin and then
loading two hexameric helicases sequentially for bidirectional
replication is not conserved in archaea and eukaryotes. In the
latter, both the helicases are loaded together as a double hexamer
to an unopened ds–origin (Bell and Kaguni, 2013). The loading
otherwise follows the basic bacterial paradigm: the helicase (a
hetero-hexamer,MCM2-7) in association with the helicase loader
Cdt1, is recruited to the origin bound by the initiator (ORC) as a
complex with another factor called Cdc6. The double hexamer
is loaded in the post-mitotic, early G1 phases of the cell cycle
in an inactive state and as a ring that encircles the ds-origin in
its central core. The helicase activation and strand separation
occur later in S-phase where the double hexamer is converted
to single hexameric rings, each encircling one single strand
for bidirectional movement. These major transitions require
S-phase kinases and several additional factors, the details of
which are under current investigation (Yardimci and Walter,
2014; Bochman and Schwacha, 2015; Petojevic et al., 2015).
Loading and activation of the helicase at different stages of
the cell cycle help to restrict initiation to only once per cell
cycle (Nguyen et al., 2001; Arias and Walter, 2007). Since
no new helicases can be loaded in S-phase, new origin firing

cannot happen either. Thus, although themechanisms of helicase
loading have been largely conserved, the mechanisms of helicase
activation and origin opening have diverged in different domains
of life.

CONCLUSIONS AND FUTURE
CONSIDERATIONS

Here we have provided a few examples of how bacterial
origins open, permitting loading of the replicative helicase.
As some opening is possible without initiators, it is likely
that the origin is inherently unstable (Gille and Messer, 1991;
Mukhopadhyay and Chattoraj, 1993; Polaczek et al., 1998).
Initiator binding pushes the propensity of opening over the
threshold. Of all the requirements for opening, the free energy
of negative supercoiling of the origin region appears to be
the most basic requirement (Miller et al., 1990). Many of the
facilitators of opening (e.g., transcription, NAPs, and pSC101par)
work through changing superhelicity of the origin region. The
activated state of supercoiled DNA facilitates changes of the DNA
structure, events that are less likely to occur with linear DNA.

Initiator multimerization appears to be a general contributor
to origin opening. This can allow wrapping of DNAwith initiator
and consequently changing the superhelicity of neighboring
DNA. DNA binding proteins usually bend the DNA, and
the initiators are no exception (Mukherjee et al., 1985;
Mukhopadhyay and Chattoraj, 1993; Schaper and Messer, 1995).
Stress from DNA bending can induce base-pair opening (Kahn
et al., 1994). [The NAP binding can also untwist DNA (Teter
et al., 2000)]. The opening by bending is initially local but
the unwinding may migrate. Reducing the number of initiator
binding sites in DNA generally makes the origin inefficient or
inactive, depending upon the degree of binding site reduction.

Multimerization is also involved in ssDNA binding, which
either stabilizes the open region or promotes actual unwinding
(or both; Figure 3A). What triggers the conformational switch in
initiators that allows them to bind ssDNA remains a challenging
question (Duderstadt et al., 2011). More structural studies of the
complexes are in order to get further insights into the opening
process. This is now a realizable goal given the recent progress
in cryo-EM (Merk et al., 2016). Even in the relatively clear case
of ColE1, the trigger that causes the RNA polymerase to start
forming persistent RNA-DNA hybrids when it encounters the
origin sequence remains speculative.

Although we have referred to the DUE simply as A+T rich,
the exact sequence of the region also matters (Hwang and
Kornberg, 1992b; Ozaki et al., 2008). In RK2, the A+T rich
region has 13-mers that bear partial homology to the E. coli 13-
mers, but they are not interchangeable (Kowalczyk et al., 2005).
In λ, the sequence of the A+T rich region is highly strand
asymmetric: almost all purines are in one strand (Schnos et al.,
1988). Paradoxically, such extreme asymmetric distribution of
purine and pyrimidines stiffens the DNA more than DNA with
more random sequences (Wells et al., 1970). In most cases, a
specific strand is captured in the open region (Mukhopadhyay
et al., 1993; Rajewska et al., 2008; Wegrzyn et al., 2014). Strand
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capture preference is also observed in experiments where the
single strands are supplied in trans (Ozaki et al., 2008; Rajewska
et al., 2008; Wegrzyn et al., 2014). A recent study has revealed a
repeating trinucleotide motif that is conserved in bacterial DUEs
and is required for origin opening (Richardson et al., 2016).

A recent study has provided a new insight into how
supercoiling-induced DNA opening of A+T rich sequences is
favored by G+C rich flanks (Vlijm et al., 2015). Such flanks are
found in A+T rich stretches of some replication origins but their
role has remained unclear (Brendler et al., 1991; Richardson et al.,
2016). G+C rich stretches were suggested to resist transmission
of torsional stress along the DNA (Skarstad et al., 1990). The
recent study suggests further that the G+C stretches because
of their stiffness resist (plectoneme formation) supercoiling
of under-wound DNA and thereby help to concentrate the
unwinding to A+T rich regions.

ATP not only plays an essential role in origin opening by
AAA+ initiators, it also plays a rather mysterious role in opening
origins where the initiators have no known ATP binding domain
or ATPase activity. For example, pi binding and bending are not
sufficient to open R6K oriγ without the presence of ATP (Krüger
and Filutowicz, 2003). ATP, although not required, enlarges
opening in RK2 even when a hyperactive mutant TrfA is used
in conjunction with the facilitators DnaA and HU (Konieczny
et al., 1997). Also at oriC, ATP requirements for DNA binding
and origin opening by DnaA can vary by orders of magnitude
(nM vs. mM; Figure 1; Bramhill and Kornberg, 1988a). A high

ATP concentration can cause a conformation change in DnaA
that appears likely to be required for opening (Saxena et al., 2015).

In closing, we prefer the view that the opening proceeds in
steps rather than by a highly cooperative transition (the two
models in Figure 3A). Initiator binding initiates the opening
and it is further enhanced by multimerization of the initiator,
facilitators like DnaA and NAPs (in plasmids) and by factors such
as the helicase loaders DnaC and λP that have ssDNA binding
activity. The opening by initiators alone may not be sufficient for
helicase loading. The involvement of multiple factors provides
multiple opportunities for regulation.
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