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All domains of life have ATP-dependent compartmentalized proteases that sequester

their peptidase sites on their interior. ATPase complexes will often associate with these

compartmentalized proteases in order to unfold and inject substrates into the protease

for degradation. Significant effort has been put into understanding how ATP hydrolysis

is used to apply force to proteins and cause them to unfold. The unfolding kinetics

of the bacterial ATPase, ClpX, have been shown to resemble a fast motor that traps

unfolded intermediates as a strategy to unfold proteins. In the present study, we sought

to determine if the proteasomal ATPases from eukaryotes and archaea exhibit similar

unfolding kinetics. We found that the proteasomal ATPases appear to use a different

kinetic strategy for protein unfolding, behaving as a slower but more processive and

efficient translocation motor, particularly when encountering a folded domain. We expect

that these dissimilarities are due to differences in the ATP binding/exchange cycle, the

presence of a trans-arginine finger, or the presence of a threading ring (i.e., the OB

domain), which may be used as a rigid platform to pull folded domains against. We

speculate that these differences may have evolved due to the differing client pools these

machines are expected to encounter.
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INTRODUCTION

Virtually every cellular process relies on properly regulated protein degradation. Bacteria, archaea,
and eukaryotes all have systems for targeted protein degradation (e.g., the ClpP protease in bacteria
and the 20S proteasome in archaea and eukaryotes). Both ClpP and the 20S proteasome are
capable of degrading unfolded proteins, but since their peptidase sites are sequestered on their
hollow interior with only small pores through which substrates can enter, these proteases are
not able to degrade folded proteins by themselves because they are too bulky to enter these
narrow translocation pores. In order to stimulate degradation of folded proteins, regulatory ATPase
complexes associate with the proteolytic complex and use the chemical energy fromATP hydrolysis
to unfold and inject the folded proteins into the proteases’ central chamber for degradation. While
much is understood about this process, we do not have a detailed molecular understanding of
how these different ATP-dependent machines engage with and forcibly translocate substrates for
selective protein degradation (Smith et al., 2006; Finley, 2009; Alexopoulos et al., 2012; Bar-Nun
and Glickman, 2012; Tomko and Hochstrasser, 2013; Mack and Shorter, 2016).
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To date some of the better characterized regulatory complexes
for the 20S proteasome are the heterohexameric 19S regulatory
particle in eukaryotes (which forms the 19S–20S, or “26S”
complex) and the homohexameric 19S homolog in archaea,
PAN (Proteasome Activating Nucleotidase). One of the most
extensively studied ClpP regulators is ClpX. In general, the
19S, PAN, and ClpX utilize ATP to: (1) bind and open the
gate of their respective protease (Grimaud et al., 1998; Smith
et al., 2005; Liu et al., 2006; Alexopoulos et al., 2013), (2)
recognize proper substrates (Thibault et al., 2006; Peth et al.,
2010; Smith et al., 2011; Kim et al., 2015), and (3) unfold and
inject them into their protease’s degradation chamber (Ortega
et al., 2000; Singh et al., 2000; Prakash et al., 2004; Zhang
et al., 2009; Erales et al., 2012). All three of these regulators are
members of the AAA+ superfamily (ATPases associated with
diverse cellular activities), but only PAN and the 19S ATPases
belong to the same AAA sub-clade, which also contain the
SRH region (Lupas and Martin, 2002). Due to the complexities
of generating ubiquitinated globular substrates that could be
degraded by the purified 26S proteasome, far more functional
studies have been done on PAN and ClpX, which only require the
presence of a small unfolded region (i.e., ssrA) to trigger substrate
degradation (Hoskins et al., 2002; Benaroudj et al., 2003).
Although they serve similar functions, ClpX and the proteasomal
ATPases may not exhibit similar mechanochemical translocation
mechanisms, which would not be unexpected since they each
belong to different sub-clades of the AAA+ family. Recent
functional studies suggest that they may also have different ATP-
hydrolysis characteristics. For example, evidence suggests that
ClpX hydrolyzes ATP in a semi-stochastic fashion (Sauer and
Baker, 2011), whereas the proteasomal ATPases appear to use an
ordered, sequential cycle with a specific “ortho” binding pattern
(binding to neighboring subunits) which is subject to expected
equilibrium binding considerations (Smith et al., 2011; Kim et al.,
2015). Additionally, function-critical allostery between subunits
is mediated by the proteasomal ATPase’s trans-arginine fingers
(Kim et al., 2015), which is lacking in ClpX (Kim and Kim, 2003).
These differences in the structure and hydrolysis patterns of
ClpX and the proteasomal ATPases suggest they may use distinct
mechanical strategies to unfold proteins.

Prior studies have shown that when ClpX is translocating
on a protein and encounters a stably folded domain (e.g.,
GFP) it will often stop and even slip backward before taking
another run at the folded domain. It’s thought that this can
occur over and over until spontaneous unfolding occurs after
which ClpX quickly translocates onto the unfolded domain,
trapping it, and preventing its refolding (Aubin-Tam et al.,
2011; Maillard et al., 2011; Nager et al., 2011; Iosefson et al.,
2015b; Rodriguez-Aliaga et al., 2016). ClpX may also perturb
the folded domain prior to trapping. This likely continues until
the whole domain is unfolded (Figure 1A). In this proposed
model ClpX seems to function at high velocity, whereby quick
trapping of unfolded intermediates (rather than brute force
unfolding) is the primary strategy used to unfold the domain.
Alternatively, one can think of this as a motor with high
velocity, but with low processivity when it encounters an obstacle
to translocation that causes slipping. Interestingly, the ATP

FIGURE 1 | Hexameric ATP-dependent proteases utilize energy from

ATP hydrolysis to unfold substrates. (A) Hexameric ATP-dependent

proteases (e.g., ClpX or the proteasomal ATPases) (1) recognize their protein

substrates and utilize energy from ATP hydrolysis to thread the protein through

their central pore to (2) translocate along the unfolded region of the protein

until they (3) reach a folded domain. (4) Less processive ATP-dependent

proteases have a tendency to slip once they reach a more tightly folded

domain, and if the ATP hydrolysis rates slow below a critical threshold they will

stall and even slip backward before taking another run at the folded domain.

(4′) More processive ATPases (or less processive ATPases after multiple runs

at the folded domain) are able to drive through these more tightly folded

domains to cause threading-induced unfolding of this protein domain, followed

by further translocation along the protein. (B) The ATP-dependent GFPssrA

substrate unfolding rate was measured in reaction buffer (see Materials and

Methods Section) including 200 nM GFPssrA, 50 nM PAN, 400 nM T20S, and

with and without saturating ATP (2 mM). Unfolding of GFPssrA was assessed

by quantifying the steady-state rate of fluorescence loss (ex/em: 485/510). (C)

GFPssrA unfolding kinetics were determined the same as in (A), but with

varying amounts of GFPssrA (from 0 to 10µM). (D) Summary of ATPase rates

with and without substrate for the proteasomal ATPases. ATPase rates for

PAN were determined at 2 mM ATP using a kinetic NADH-coupled assay, with

and without saturating GFPssrA (2µM). Error bars are standard deviations

from three independent experiments (n = 3).

hydrolysis rate of ClpX is ∼100–500 ATPs per minute in the
absence of substrate (Martin et al., 2005; Aubin-Tam et al.,
2011; Maillard et al., 2011; Nager et al., 2011; Baytshtok et al.,
2015; Iosefson et al., 2015a; Rodriguez-Aliaga et al., 2016),
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which is considerably faster than the ∼30–60 ATPs per minute
of the proteasomal ATPases (Hoffman and Rechsteiner, 1996;
Kraut et al., 2012; Kim et al., 2015). Consistent with this high
velocity, low processivity mechanism, ClpX has been shown to
exhibit a non-linear relationship with regard to its ATPase rate
and substrate unfolding rate, especially in more tightly folded
substrates (Nager et al., 2011). This is expected since at saturating
ATP concentrations ClpX is able to translocate at maximal rates
and trap unfolded intermediates, but when the ATPase rate is
slowed (by using lower ATP concentrations or by competing
with non-hydrolyzable ATPγS) the net translocation rate is also
slowed when the unfolded intermediates refold before ClpX can
trap them. Thus, at lower ATP hydrolysis rates ATP hydrolysis
becomes non-productive and ClpX continually slips on the
substrate without productive translocation (Figure 1A). This
model for ClpX translocation kinetics has also been supported
with single-molecule force experiments (Aubin-Tam et al., 2011;
Maillard et al., 2011; Iosefson et al., 2015b; Rodriguez-Aliaga
et al., 2016).

In the present study, we ask if the proteasomal ATPases have
translocation and unfolding kinetics that are consistent with
this model of ClpX, or if its structural and mechanochemical
differences allow it to take a different strategy for substrate
unfolding. We show that, unlike ClpX, the 19S and PAN
proteasomal ATPases resemble a lower velocity, but highly
processive motor that is slower than ClpX but does not
appear to stall when it approaches the stably folded domain
of GFP, but rather it drives through it without slipping.
These kinetics are consistent with the hand over hand
sequential mechanism of ATP hydrolysis that has been
proposed for the proteasomal ATPases (Smith et al., 2011; Kim
et al., 2015). These data therefore suggest that proteasomal
ATPases, while slower, are more processive and efficient
than ClpX and use a different kinetic strategy for unfolding
substrates.

RESULTS

In order to test unfolding ability of PAN, we used the model
substrate of GFP with an unstructured ssrA tag fused to its
N-terminus (GFPssrA). GFP’s fluorescence is dependent on
its tertiary structure; therefore, the rate of unfolding can be
monitored by following its decrease in fluorescence in real time.
As expected, PAN unfolded GFPssrA in an ATP-dependent
manner (Figure 1B). The slow loss of GFP fluorescence in
the “no ATP” control is attributed to the slow bleaching of
GFP with time, which is expected. To determine the catalytic
affinity (Km) for GFP we performed a GFPssrA dose response
at saturating [ATP] (2 mM). The unfolding rate was determined
by calculating the maximum linear rate of the change in
GFP fluorescence with time. The Vmax of GFPssrA unfolding
was 0.44 ± 0.01 GFPs·PAN−1·min−1, which indicates that
PAN takes ∼2 min to unfold a single GFP. This unfolding
rate for the proteasomal ATPases is consistent with prior
observations (Benaroudj et al., 2003). In addition, the Km
was found to be 0.187µM (Figure 1C). Next, we determined
the ATP hydrolysis rate in PAN using a real-time NADH-
coupled assay and found the rate of ATP hydrolysis to be

58.5 ± 3.5 ATPs·PAN−1·min−1 in the absence of substrate
and was activated ∼1.7-fold to 97.0 ± 2.9 ATPs·PAN−1·min−1

upon addition of saturating GFPssrA (2µM), which is also
consistent with previous reports (Kim et al., 2015; Figure 1D).
The ATP hydrolysis rate we found for PAN is fairly similar
to previous reports in the mammalian 26S proteasome, which
place the ATPase rates between ∼30 and 50 ATPs per minute
in the absence of substrate (Hoffman and Rechsteiner, 1996;
Kraut et al., 2012), with a ∼1.5–2-fold activation upon addition
of substrate (Peth et al., 2013). We compared this ATP
hydrolysis rate to previously reported ATP hydrolysis rates
for the psueudohexameric ClpX. Reported ATPase rates for
the ClpX pseudohexamer tend to vary quite a bit (∼100–500
ATPs per minute; Martin et al., 2005; Aubin-Tam et al., 2011;
Maillard et al., 2011; Nager et al., 2011; Baytshtok et al., 2015;
Iosefson et al., 2015a; Rodriguez-Aliaga et al., 2016), but all of
these rates are considerably faster than the reported basal rates
for the proteasomal ATPases. Addition of substrate to ClpX
typically increases its ATP hydrolysis rate, although the degree
to which ClpX is activated depends upon the substrate analyzed
(Kenniston et al., 2003; Baytshtok et al., 2015; Iosefson et al.,
2015a).

A longstanding question in the proteasomal ATPase field is
how chemical energy from ATP is converted into mechanical
work on substrates, and the efficiency of such mechanochemical
coupling is informative to mechanism. In ClpX, it was found that
at higher ATPase rates, ClpX has quite efficient mechanochemical
coupling; however, at lower ATPase rates coupling is less efficient
(i.e., at lower ATPase rates, ATP hydrolysis often does not
lead to unfolding). This less efficient mechanochemical coupling
can be observed by decreasing the rate of ATP hydrolysis by
either reducing total [ATP] or competing with non-hydrolyzable
nucleotide. In order to test the mechanochemical coupling
efficiency of PAN, we simultaneously measured, in real time,
the unfolding rate of GFPssrA and PAN’s ATPase activity (via
absorbance of NADH in a coupled ATPase assay—see Materials
and Methods Section). 0.2µM GFPssrA (∼Km) was incubated
with PAN at various concentrations of ATP to determine the
ATPase (Figure 2A) and unfoldase rates (Figure 2B). To our
surprise, Km-values of PAN’s ATPase and GFPssrA unfolding
matched quite well with one another, with the Km of ATPase
activity being 0.397 ± 0.017µM and the Km for GFPssrA
unfolding being 0.429 ± 0.025µM. This suggested a tight
coupling between unfolding and ATPase rates at least around
½ Vmax. We then plotted the GFP unfolding and ATP
hydrolysis rates against each other on a single 2-dimensional
plot (Figure 2C). Surprisingly, the data was very linear and fit a
linear curve with an R2 of 0.9918. Therefore, PAN exhibits a 1:1
mechanochemical coupling of ATPase and unfoldase activities.
In contrast, prior experiments with ATPases that stall (e.g., ClpX)
have shown that its ATPase to GFPssrA unfoldase plot is highly
non-linear (e.g., when the ATPase rate is ∼50%, the unfolding
rate drops to <5%). In Figures 2C,F, we show a dotted gray line
as an example of what the ATPase vs. unfoldase plot would look
like in a stalling ATPase (e.g., ClpX). This non-linear ATPase to
GFPssrA unfoldase relationship has been attributed to increased
substrate “stalling” and “slipping” upon reaching a globular
domain (i.e., GFP’s beta-barrel), which results in non-productive

Frontiers in Molecular Biosciences | www.frontiersin.org 3 April 2017 | Volume 4 | Article 18

http://www.frontiersin.org/Molecular_Biosciences
http://www.frontiersin.org
http://www.frontiersin.org/Molecular_Biosciences/archive


Snoberger et al. Processivity of Proteasome Mediated Unfolding

FIGURE 2 | PAN does not stall when it encounters the unfolded domain of GFP. (A,B) To determine mechanochemical coupling efficiency at ∼Km levels of

GFPssrA, ATP hydrolysis and GFPssrA unfolding (2µM) were assessed concurrently, in the same well, using an NADH-coupled ATPase assay combined with

GFPssrA unfolding (see Materials and Methods Section). Rate of ATP hydrolysis was measured by loss of NADH absorbance at 340 nm (A), while at the same time

GFPssrA unfolding rate was measured by loss of fluorescence at ex/em: 485/510 (B). (C) Efficiency of mechanochemical coupling of ATP hydrolysis to GFPssrA was

determined by plotting relative percentage ATPase and unfoldase onto a 2 dimensional plot and fitting with a line (R2 = 0.9918). The dotted gray line is a hypothetical

example of an ATPase that stalls (e.g., ClpX), where stalling is defined as <5% of the maximal degradation rate when the ATPase rate is 50% of maximal (Nager et al.,

2011). (D–F) Same as (A–C), but at saturating GFPssrA substrate concentration (2µM). Error bars are standard deviations from three independent experiments

(n = 3).

ATP hydrolysis (Aubin-Tam et al., 2011; Maillard et al., 2011;
Nager et al., 2011; Iosefson et al., 2015b; Rodriguez-Aliaga et al.,
2016). Since we found that PAN’s ATPase activity is directly
proportional (1:1) to GFPssrA unfolding, this data indicates
that PAN essentially does not slip when it reaches the folded
domain of the GFP beta-barrel. We repeated the experiment
using saturating levels of GFPssrA (2µM) and found that the
Km for ATPase activity and GFP unfolding were nearly identical
to one another (Figures 2D,E). Consistent with Figure 1C, the
Vmax for unfolding was 2-fold higher at saturating [GFPssrA]
(0.43 ± 0.03 GFPs·PAN−1·min−1; Figure 2E) compared to at
the Vmax at ∼Km concentrations of GFPssrA (0.19 ± 0.01
GFPs·PAN−1·min−1; Figure 2B). This is expected since the
unfolding rate at Km concentrations of GFPssrA should be ½
of the Vmax. Consistent with prior observations, we observed
here that saturating levels of GFPssrA stimulated the Vmax for
ATPase activity by ∼1.7-fold when compared to the no substrate
ATPase experiments (Figure 1D), and a∼1.2-fold increase when
compared to the 200 nM GFPssrA experiments (Figures 2A,D).
Interestingly, we found that in addition to increasing the Vmax,
saturating levels of GFPssrA also lowered the Km for ATP
hydrolysis and substrate unfolding ∼2–3-fold (compare Km-
values in Figures 2A,B to Km-values in Figures 2D,E). This
may suggest an underlying mechanism for substrate stimulated
ATPase activity, which is well-established in the literature. In

addition, the similar Km between ATPase and unfoldase activities
at saturating substrate levels is consistent with the linear fit
(R2 = 0.9455) that we observe when plotting ATP hydrolysis
against GFP unfolding (Figure 2F), similar to Figure 2C. Thus,
even when all PAN complexes are bound to a GFPssrA the rate
of ATP hydrolysis is tightly coupled to GFP unfolding. In other
words, hydrolysis of ATP by PAN almost always results in a
successful translocation event, even when it meets a globular
domain.

The eukaryotic 19S ATPases are homologous to PAN,
however, the 19S forms a heterohexameric ring and has many
additional associated non-ATPase subunits while PAN forms a
homohexameric ring and has no known non-ATPase subunits.
Therefore, it was unclear whether the 1:1 mechanochemical
coupling of ATPase rate to substrate unfolding that we observed
in PAN would be a general property of proteasomal ATPases, or
whether it would only apply to the archaeal proteasomal ATPases.
Therefore, we sought to determine whether the eukaryotic 26S
(i.e., 19S–20S complex) also had a similar linear relationship
between its ATPase and unfoldase activity. The Matouschek
group generously provided us with a novel 26S substrate,
Ub4(lin)-GFP35-His6, suitable for use with in vitro 26S unfolding
assays. Such a substrate is very useful for mechanistic studies
since it allows for the analysis of ubiquitin- and ATP-dependent
degradation using the purified 26S proteasome. For the 26S
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proteasome to remain functional it requires the persistent
presence of ATP, so we could not assess coupling of ATPase
and substrate unfolding using the ATP dose response as was
done in Figure 2 for PAN because low ATP concentrations
would induce disassembly of the 26S proteasome (Thompson
et al., 2009). Instead, we slowed ATPase rate by competing
ATP with the largely non-hydrolyzable ATP analog, ATPγS
(which by itself stabilizes the 26S complex as does ATP). We
first performed this ATPγS competition experiment in PAN
and found that as the ATPγS:ATP ratio increased, GFPssrA
unfolding rate decreased in a 1:1 linear relationship with the
ATPγS:ATP ratio (R2 = 0.989; Figure 3A). This is consistent
with and further supports our observations with the ATP dose
response method in Figures 2C,F, and it demonstrates that the
ATPγS:ATP ratio method mimics a linear decrease in ATP

FIGURE 3 | The eukaryotic 26S does not stall when it encounters the

folded domain of GFP. (A) PAN’s ATPase rate was slowed by competing

with increasing ratios of ATPγS:ATP (2 mM total nucleotide), and GFPssrA

(0.2µM) unfolding rate was assessed as in Figure 1A. Data fit a line with an

R2 = 0.989. (B) 25 nM of purified rabbit 26S was incubated with 100 nM

Ub4(lin)-GFP35 and was analyzed as in (A). Data fit a line with an R2-value of

0.982. “Stalling” is defined in Figure 2. Error bars are standard deviations from

three independent experiments (n = 3).

hydrolysis activity in PAN similar to the ATP dose response.
We next performed a similar ATPγS competition experiment
using the Ub4(lin)-GFP35 substrate and the eukaryotic 26S
proteasome and were surprised to find that the 26S had similar
1:1 unfolding kinetics to that observed in PAN (Figure 3B) with
a strong linear fit (R2 = 0.982). These ATPγS competition
experiments demonstrate that ATP hydrolysis and unfolding are
also tightly coupled in ubiquitin-dependent protein degradation
by the eukaryotic 26S proteasome. In addition, this indicates that
the tightmechanochemical coupling betweenATP hydrolysis and
unfolding ability is shared between PAN and the 26S and thus it
is expected to be a general property of the proteasomal ATPases
despite their structural differences.

DISCUSSION

Previous studies reveal that the bacterial ClpX pseudohexamer
resembles a higher velocity motor. It also has a correspondingly
quick steady-state translocation rate: for example ∼7 amino
acids per second on the “non-stalling” substrate, cp6SFGFPssrA
(Nager et al., 2011). However, when ClpX reaches a tightly
folded domain “stalling” and “slipping” can occur, whereby
it loses its grip on the substrate and the substrate is often
released, resulting in unproductive ATP hydrolysis (Aubin-Tam
et al., 2011; Maillard et al., 2011; Nager et al., 2011; Iosefson
et al., 2015b; Rodriguez-Aliaga et al., 2016; Figures 4A,B). In
contrast, the proteasomal ATPases hydrolyze ATP considerably
more slowly than does ClpX and we estimate that proteasomal
ATPases translocate on non-stalling substrates at an average
rate of ∼1.0–1.9 amino acids per second, or about ∼3–7 times
more slowly than ClpX. Interestingly, despite these differences in
translocation velocity both PAN and ClpX show a similar cost
for non-stalling translocation at a mean of∼1.1–1.2 amino acids
translocated per ATP that is hydrolyzed (Figure 4A). Despite
this similarity, here we find for the proteasomal ATPases that
even at low ATPase rates ATP hydrolysis is tightly coupled with
translocation, which is the force that drives unfolding. This is
consistent with a lack of substrate “slipping,” and indicates that
proteasomal ATPases are more efficient and processive than
ClpX particularly when they reach a folded domain. Therefore,
the proteasomal ATPases operate at a lower velocity, but also
have higher processivity since they do not slip or lose grip on
the substrate (Figures 4A,B). This suggests that ClpX and PAN
utilize different kinetic strategies to unfold proteins: ClpX uses a
fast translocation strategy to trap unfolded intermediates, while
the proteasomal ATPases use a slower but more processive and
efficient kinetic strategy to drive through unfolded domains with
a tight mechanochemical coupling between ATP hydrolysis and
translocation events.

What functional characteristics in these ATPases could cause
these different kinetic strategies for unfolding proteins? One
possibility is the sequential vs. semi-stochastic mechanisms that
have been proposed for the proteasomal ATPases vs. ClpX
(Figure 4A). It could be expected that a semi-stochastic ATP-
hydrolysis mechanism could lead to states of the ring where
all ATPs are hydrolyzed, leaving ClpX in an ADP-bound state
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FIGURE 4 | Comparison of the unfolding kinetics for the Proteasomal ATPases vs. ClpX. (A) Summary of ClpX and the proteasomal ATPases’ unfolding

kinetics taken from experiments performed in this manuscript as well as by other groups (cited in main text). Footnotes: aATP hydrolysis rate in the absence of

substrate. bSteady state translocation rates are taken from mean unfolding rates with non-stalling substrates. cTranslocation cost is calculated as the rate of steady

state translocation on a non-stalling substrate, divided by the ATPase rate of the enzyme on that same substrate. dStalling is defined as <5% of max unfolding rate at

50% max ATPase activity (Nager et al., 2011). (B) Working model: ClpX ATPases resemble a higher velocity, less processive motor that is prone to slipping. ClpX

translocates rather quickly along a loosely folded protein domain. However, at low ATP concentrations, ClpX is unable to drive through tightly folded protein domains,

and thus undergoes multiple slips and stalls, and can even dissociate from the protein completely. Proteasomal ATPases resemble a lower velocity, more processive

motor. The proteasomal ATPases translocate more slowly along a loosely folded protein domain, but even at these lower speeds the proteasomal ATPase is able to

drive through more tightly folded domains (i.e., GFP) without significant slipping or stalling.

only. Since ATP binding drives substrate association, this could
lead to loss of substrate affinity and slipping, especially when
ATP is limiting. In contrast, it has been proposed that the
proteasomal ATPases use a sequential single subunit progression
mechanism for ATP hydrolysis (Kim et al., 2015). In this
model, at least one ATPase subunit is always bound to an
ATP, supporting constant affinity for the substrate, which

would be expected to prevent slipping. In this model it would
thus be expected that most hydrolysis events are coupled to
translocation events, which is supported by our data presented
here. This tight mechanochemical coupling can be explained
by two different models for the proteasomal ATPases: (1)
ATP hydrolysis has sufficient power to forcibly unfold GFP
with each power stroke, allowing the ATPase to drive through
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unfolded domains or (2) ATP hydrolysis does not occur in
any one subunit until translocation can take place. These two
models could represent differences in the “power stroke” vs.
“Brownian ratchet” mechanisms, and many ATPase motors
exhibit a blending of both of these mechanisms, but neither
of these have been determined for the proteasomal ATPases.
However, both models are consistent with the data we have
shown here. It’s also possible that other structural differences
between ClpX and the proteasomal ATPases could play a role
in the unfolding kinetics. For example, the proteasomal ATPases
have trans-arginine fingers (vs. cis-arginine fingers in ClpX),
which constitutes an arginine that allows one subunit to contact
the gamma phosphate of the ATP bound to the Walker A/B sites
in its neighboring subunit. This arginine is critical for the effects
of ATP-binding in the proteasomal ATPases, which include
promoting substrate binding, and the association of PAN/19S
with the 20S core particle and gate-opening. The placement and
allosteric role of this trans-arginine is a fundamental difference
between the proteasomal ATPases and ClpX. In addition, the role
of the trans-arginine finger combined with the single subunit
progression model produces a hand-over-hand translocation
model that would be expected to exhibit a high “grip” strength
mechanism that allows for high substrate binding affinity even
at low ATP (Kim et al., 2015). The proteasomal ATPases also
contain a rigid ring of OB domains that substrates are threaded
through during translocation. This threading ring generates a
rigid platform that folded domains can be pulled against during
translocation to cause unfolding. The lack of such a domain in
ClpXmeans that globular domains are pulled into and against the
ATPase domains themselves during translocation (especially for
the 1N-ClpX which is used in most of the in vitro experiments
that study translocation), which could sterically alter their activity
during forceful pulling, and could perhaps cause slipping as well
(Figure 4A).

So why might these two distinct mechanisms have evolved for
unfolding proteins? In bacteria, ssrA tags are added to the C-
terminus of translationally stalled proteins on ribosomes. In fact,
∼1 in 200 translated proteins are tagged by ssrA, and of these,
>90% are degraded by ClpX(P) (Lies and Maurizi, 2008). The
vast majority of these translationally stalled proteins will produce
truncated proteins, which will typically prevent proper folding,
thus destabilizing these proteins. These truncated proteins must
also be rapidly degraded in order to prevent aggregation and/or
toxicity to the cell. Therefore, a high-velocity unfoldase like ClpX
is well-suited to quickly handle such proteins, and perhaps ClpX
would only rarely be expected to encounter a more tightly folded
protein, which could be handled by other ATPases in bacteria
such as ClpA. On the other hand, here we have observed that
the proteasomal ATPases resemble a lower velocity motor with
a more processive and efficient translocation mechanism. Why
might this be? The proteasome degrades most proteins in the
cell, both unfolded as well as fully folded, functional proteins.
Thus, in order for the proteasome to function optimally for
this job it must be able to routinely handle more tightly folded
domains than ClpX typically encounters. The high processivity,
low velocity characteristics that we have observed here for the
proteasomal ATPases seem to be optimized for its specific client

pool of proteins that demand reliable degradation of folded
and functional proteins. Therefore, we propose that the need to
unfold and degrade most folded proteins in the cell is the reason
that the proteasomal ATPases use a slower but more processive
strategy for protein unfolding and degradation.

MATERIALS AND METHODS

Materials, Plasmids, and Protein
Purification
PAN, GFPssrA, and T20S were prepared as described (Smith
et al., 2005, 2007). The purest available forms of ATP, and ATPγS
were purchased from Sigma and stored at −80◦C until use.
Rabbit muscle 26S proteasome was purified by the previously
described UBL-UIM method (Besche et al., 2009) and were
exchanged with reaction buffer by rapid spin column or by
dialysis (4 h) immediately prior to use.

Ub4(lin)-GFP35-His6 plasmid was a generous gift from
Andreas Matouschek and his lab. Plasmids were transfected into
DH5α cells, and 1L cultures were grown at 37◦ at 300 RPM
shaking, and induced with IPTG at OD600 = 0.8 for 4 h. Cell
pellets were resuspended in Buffer A (50 mM Tris pH 7.5, 5%
glycerol, 300 mM NaCl, 20 mM Imidazole) with 1X protease
inhibitor cocktail. Cells were lysed via sonication and spun at
20000 × g for 30 min. Supernatant was loaded onto Nickel-
NTA, washed with 10 CV Buffer A, and eluted with Buffer B
(Buffer A w/ 300 mM Imidazole). Fractions containing Ub4(lin)-
GFP35-His6 were pooled based on fluorescence (ex/em: 485/510)
and SDS-PAGE. Pooled fractions were concentrated and further
purified using size-exclusion chromatography (GE Superose 12
column). Purest fractions were exchanged into 50 mM Tris pH
7.5+ 5% glycerol.

ATPase and GFPssrA Unfolding Assays
ATP hydrolysis was measured by reading the loss of NADH
absorbance at 340 nm in an NADH-coupled ATP regenerating
system (50 mM Tris pH 7.5, 5% glycerol, 20 mM MgCl2, 2
U/µl Pyrivate Kinase, 2 U/µl Lactate dehydrogenase, 3 mM
phosphoenolpyruvate, and 0.2 mg/ml NADH, and indicated
[ATP]). GFPssrA unfolding was assessed by loss of fluorescence
at ex/em: 485/510. For the unfolding experiments, reaction buffer
(50 mM Tris pH 7.5, 5% glycerol, 20 mMMgCl2) was incubated
with 50 nM PAN, 400 nM T20S, and 0.2 nM GFPssrA (or 25
nM 26S and 100 nM Ub4(lin)-GFP35-His6 for experiments with
26S) and 2 mM ATP (or with indicated ATPγS:ATP ratios with
2 mM total nucleotide). GFP fluorescence loss (ex/em: 485/510)
was measured every 20 s in a Biotek 96 well-plate reader to obtain
unfolding rates. Error bars represent standard deviations from at
least three independent experiments (n ≥ 3).

ATP hydrolysis and GFPssrA unfolding were assessed
concurrently in a Biotek 96 well-plate reader by measuring
NADH absorbance loss alongside GFPssrA fluorescence loss.
The ATP regenerating system buffer (above) was incubated with
indicated [ATP] (0–3 mM), 50 nM PAN, 400 nM T20S, and
0.2µM or 2µMGFPssrA. Rates of ATP hydrolysis and GFPssrA
unfolding were extrapolated and Vmax and Km-values were
obtained by non-linear regression analysis on Sigmaplot using
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the Hill equation. Error bars are standard deviations from at least
three independent experiments (n ≥ 3).
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