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Over the past few years, exosomes and their RNA cargo have been extensively studied

because of the fascinating biological roles they play in cell-to-cell communication,

including the signal exchange among cancer, stromal, and immune cells, leading to

modifications of tumor microenvironment. RNAs, especially miRNAs, stored within

exosomes, seem to be among the main determinants of such signaling: their sorting

into exosomes appears to be cell-specific and related to cellular physiopathology.

Accordingly, the identification of exosomal miRNAs in body fluids from pathological

patients has become one of the most promising activity in the field of biomarker

discovery. Several analyses on the qualitative and quantitative distribution of RNAs

between cells and their secreted exosomes have given rise to questions on whether

and how accurately exosomal RNAs would represent the transcriptomic snapshot of the

physiological and pathological status of secreting cells. Although the exact molecular

mechanisms of sorting remain quite elusive, many papers have reported an evident

asymmetric quantitative distribution of RNAs between source cells and their exosomes.

This phenomenon could depend both on passive and active sorting mechanisms related

to: (a) RNA turnover; (b) maintaining the cytoplasmic miRNA:target equilibrium; (c)

removal of RNAs not critical or even detrimental for normal or diseased cells. These

observations represent very critical issues in the exploitation of exosomal miRNAs

as cancer biomarkers. In this review, we will discuss how much the exosomal and

corresponding donor cell transcriptomes match each other, to better understand the

actual reliability of exosomal RNA molecules as pathological biomarkers reflecting a

diseased status of the cells.
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INTRODUCTION

The complex functional coordination among different cell
types, tissues and organs in Metazoans is made possible
thanks to cell-to-cell communication (Gerdes and Pepperkok,
2013). Cells are able to communicate by soluble factors (e.g.,
hormones, cytokines), adhesion molecules mediating cell-to-cell
interactions, and specialized cellular structures (e.g., cytonemes,
nanotubules), which connect neighboring cells and enable the
transfer of surface components and cytoplasmic molecules
(Majka et al., 2001; Rustom et al., 2004; Sherer and Mothes,
2008). Cell communication is critical also in specific pathological
processes, including tumorigenesis. Indeed, cancer cells need
to cross-talk to each other, normal cells, and immune system
to survive, proliferate, and metastasize. Communication among
tumor and stromal cells leads to modifications of tumor
microenvironment favoring tumor growth, survival, immune-
escape, and invasion (Brucher and Jamall, 2014). Moreover, long-
distance communication with stroma located at distant non-
cancerous sites facilitates the formation of metastatic niches
and promotes metastatic processes (Ungefroren et al., 2011).
Although the molecular mechanisms promoting cell-to-cell
communication have not been fully understood yet, recent studies
have shown that cells may also communicate by secreting and
exchanging small membranous particles named extracellular
vesicles (EV). Initially, EVs were considered to be cellular debris
released by cells, following cell damage or dynamic plasma
membrane turnover (Siekevitz, 1972). Inconsistent with this
initial hypothesis, in 1977 it has been shown that EVs can also
be the result of a specific and active cellular process and that
they may carry functional membrane enzymes (De Broe et al.,
1977). Cells can secrete different types of EVs that are classified
according to their subcellular origin (Colombo et al., 2014). EVs
may come from the cell plasmamembrane as shedding vesicles by
direct budding of plasmatic membrane. Such EVs display a wide
range of diameter sizes (100–1,000 nm) and are generally known
asmicrovesicles; depending on their cellular origin, EVs also have
been named ectosomes (from polymorphonuclear leukocytes),
microparticles (from platelets), or argosomes (secreted during
the morphogenesis of multicellular organisms from basolateral
epithelial membranes; George et al., 1982; Hess et al., 1999;
Greco et al., 2001). Another source of EVs is represented by
apoptotic bodies, which originate from apoptotic cells and range
from 1 to 5µm in diameter (Hristov et al., 2004). Otherwise,
EVs may arise from multivesicular bodies from the endosomal
compartment (EC): after its fusion with the plasma membrane,
EC releases intraluminal vesicles into the extracellular space as
exosomes (Thery et al., 2002). Exosomes are vesicles spanning
from 30 to 100 nm in diameter, which are enriched in endosomal
molecules as tetraspanin proteins CD9, CD63, CD81, and CD82
(Lotvall et al., 2014). Therefore, EVs circulating in body fluids are
an extremely heterogeneous population, which differ in cellular
origin, size, and surface molecules, and are secreted by nearly all
cell types in both physiological and pathological conditions. Over
the past 10 years, researchers have mainly focused on unveiling
the functional role and pathological involvement of EVs (above
all, exosomes), especially after the discovery by Valadi et al. that

exosomes carry fully functional mRNAs and miRNAs able to
modify the physiological state of recipient cells (Valadi et al.,
2007). The RNA contents of exosomes is heterogeneous and may
depend on different biomolecular factors, including the specific
cellular status. Some miRNAs are highly expressed in exosomes,
while others are barely present in them; moreover, some miRNAs
are enriched only in exosomes secreted by distinct cell types
(Pigati et al., 2010; Nolte-’T Hoen et al., 2012; Villarroya-Beltri
et al., 2013). All these clues suggest that RNA molecules are not
randomly loaded into exosomes, but that rather a machinery
actively regulating the sorting of specific sets of RNAs into
exosomes does exist. Similar to other molecular apparati, this
molecular machinery may be functionally perturbed by drugs,
diseases and infections (Purrello et al., 1998; Di Pietro et al., 2009).

Exosomes carry distinctive sets of mRNAs, rRNAs, miRNAs,
other small non-coding RNAs (ncRNAs; e.g., piRNAs, snRNAs,
snoRNAs, scaRNAs, Y-RNAs), and long non-coding RNAs (Li
M. et al., 2014; Van Balkom et al., 2015). The exosomal cargo
is critical to determine the outcome of cell communication
(Mittelbrunn et al., 2011; Hergenreider et al., 2012; Halkein
et al., 2013). As reported above, cancer-derived exosomes are
able to modulate the immune response against the tumor, and
promote angiogenesis, invasion, and metastasis (Milane et al.,
2015; Silva and Melo, 2015). Much evidence has suggested
that miRNA signatures of tumor-derived exosomes may be
used as potential circulating biomarkers for the diagnosis of
several types of cancers (Munson and Shukla, 2015; Soung
et al., 2017). Moreover, circulating exosomal miRNAs have also
been reported as candidate biomarkers for pregnancy disorders,
liver damage and inflammation, cardiovascular diseases, and
neurodegeneration (Cosme et al., 2013; Masyuk et al., 2013;
Tsochandaridis et al., 2015; Soria et al., 2017). Intriguingly, some
disease-related exosomal miRNAs mirror pathway dysfunctions
of their source cells (Haug et al., 2015; Reclusa et al., 2016; Zhong
et al., 2016). The discovery of exosomal miRNAs circulating
in body fluids and their potential exploitation as non-invasive
disease biomarkers have given rise to the following question
(Ma R. et al., 2012; Wang J. et al., 2016): how exactly exosomal
RNAs represent an accurate transcriptomic snapshot of the
physiological and pathological status of their source cells? To
date, many studies have dealt with such question directly
or indirectly, but results from them are conflicting and not
conclusive. In this review, we will summarize the most critical
issues on the sorting of RNAmolecules into exosomes and we will
discuss how much the exosomal and corresponding donor cell
transcriptomes match each other, in order to better understand
the actual reliability of exosomal RNA molecules as pathological
biomarkers reflecting the diseased status of cells.

MECHANISMS OF MOLECULAR SORTING
INTO EXOSOMES

Different mechanisms for sorting molecules into exosomes
have been described, although the precise molecular signaling
controlling them are unsatisfactorily known (Villarroya-Beltri
et al., 2014). Endosomal Sorting Complexes Required for
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Transport (ESCRT) controls the sorting of ubiquitinated
proteins into Intraluminal Vesicles (ILVs) through a molecular
cascade involving several ESCRT sub-complexes (Henne et al.,
2011). Specifically, ESCRT-0 binds ubiquitinated proteins
and is associated to the endosomal compartment thanks to
its interaction with phosphatidylinositol 3-phosphate (PI3P).
ESCRT-0 recruits ESCRT-I, which in turn recruits ESCRT-II
proteins, which lastly activate the ESCRT-III machinery. Snf7
protein (an ESCRT-III component) forms oligomeric assemblies
inducing vesicle budding and recruits the adaptor protein
ALG-2-Interacting Protein X (Alix) to stabilize the ESCRT-III
complex (Henne et al., 2011). ESCRT-independent mechanisms
of sorting into exosomes have been also reported (Stuffers
et al., 2009). Proteolipid-positive exosomes are enriched in
cholesterol and ceramide and their secretion is closely related
to the production of ceramide by neutral sphingomyelinase 2
(nSMase2; Trajkovic et al., 2008). Indeed, nSMase2 controls
the secretion of Aβ-peptide-exosomes in neurons, whereas the
ceramide induces a curvature of the endosomal membranes
and the coalescence of microdomains, leading to the budding
of intraluminal vesicles (Yuyama et al., 2012). Another process
independent from the ESCRT machinery could be regulated
by tetraspanins, integral membrane proteins that are highly
abundant on the exosome surface. Tetraspanins are able to form
intra-membrane tetraspanin-enriched domains by interacting
with other membrane proteins and lipids (Escola et al., 1998;
Yanez-Mo et al., 2009): for instance, CD81 structurally organizes
the membranes in microdomains, while CD63 regulates the
loading of LMP1 protein into exosomes and PMEL into
intraluminal vesicles during melanogenesis (Van Niel et al.,
2011; Verweij et al., 2011; Perez-Hernandez et al., 2013). The
specific mechanisms of RNA sorting into exosomes are still
poorly characterized and represent a matter of debate. The
sorting of RNA molecules within mammalian cells appears
to be independent of ESCRT and dependent on ceramide
(Kosaka et al., 2010). It has been proposed that RNA loading
into exosomes occurs before the budding process, when
RNA molecules bind to raft-like regions of multivesicular
body membranes creating intraluminal vesicles through inward
budding (Janas and Janas, 2011; Janas et al., 2012). RNA binding
to membranes is determined by hydrophobic modifications,
lipid structures, and sphingosine at physiological concentration
in rafted membranes (Janas et al., 2015). It has also been
reported that specific nucleotide sequences show enhanced
affinity to phospholipid bilayers (Khvorova et al., 1999; Vlassov
et al., 2001; Janas and Yarus, 2003; Janas et al., 2004).
Bolukbasi et al. suggested that the loading of mRNAs into
exosomes could be mediated by a specific zipcode-like sequence,
present within the 3′UTR of mRNAs that are enriched in
exosomes, and by the presence of binding sites for miRNAs
that are highly expressed in source cells (Bolukbasi et al.,
2012). Computational analysis of over-represented motifs in the
sequence of miRNAs that are enriched in exosomes, along with
mutagenesis experiments, led to the identification of specific
nucleotide motifs (named EXOmotifs) that may regulate the
loading of miRNAs into exosomes. EXOmotifs are recognized
and bound by the heterogeneous ribonucleoprotein A2B1

(hnRNPA2B1). Specifically, the sumoylated form of hnRNPA2B1
performs miRNA sorting into exosomes (Villarroya-Beltri et al.,
2013). Previously, hnRNPA2B1had been reported to be involved
in the intracellular transport of specific mRNAs in neurons
and HIV genomic RNAs to packaging sites (Munro et al.,
1999; Levesque et al., 2006). Intriguingly, Signal Recognition
Particle RNAs (SRP-RNAs), also present within exosomes, are
bound by Signal Recognition Particle (SRP) proteins through
a GGAG tetraloop, which shares the same sequence of one of
the two EXOmotifs previously identified (Wild et al., 2001).
Recently, a MALDI-TOF/TOF mass spectrometry analysis of
proteins specifically binding to exosome-enriched miRNAs in an
in vitro hepatocyte model revealed a new molecular player in
the sorting of miRNAs into exosomes: synaptotagmin-binding
cytoplasmic RNA-interacting protein (SYNCRIP; Santangelo
et al., 2016). Knockdown of SYNCRIP impaired the exosomal
loading of specific exosome-enriched miRNAs, whereas RNA
immunoprecipitation showed that SYNCRIP binds directly to
some EXO-miRNAs thanks to a short common sequence (the
hEXOmotif) that is shared by 60% of exosome-enrichedmiRNAs
(Santangelo et al., 2016). Similarly to hnRNPA2B1, SYNCRIP is
also sumoylated, but the hEXOmotif which it binds to is different
from the EXOmotifs bound by hnRNPA2B1. This suggests
that the exosome sorting machinery might involve different
ribonucleoproteins, each controlling the exosomal loading of
a specific set of miRNAs. Bang et al. found that about one-
quarter of miRNAs found in fibroblast-derived exosomes is
represented by miRNAs derived from the passenger strand
(also named star miRNAs), which usually undergo intracellular
degradation (Bang et al., 2014). This suggests the existence of a
preferential transport mechanism of star miRNAs into exosomes.
Intriguingly, Squadrito et al. showed that miRNA distribution
in macrophages and their exosomes depends on the cellular
levels of their target transcripts (Squadrito et al., 2014). They
found a negative correlation between miRNA:target interactions
in cells and miRNA enrichment in exosomes. Physiological
or artificial overexpression of either specific miRNAs or their
target mRNAs promoted a bidirectional miRNA redistribution
from the cell cytoplasm/P bodies to the multivesicular bodies
and, accordingly, a controlled miRNA sorting into exosomes
(Squadrito et al., 2014). In other words, when the mRNA target
of a specific miRNA is abundant in the cytoplasm, that miRNA
needs to stay in the cytoplasm in order to bind to it, and,
as a consequence, its amount decreases within exosomes. On
the contrary, a miRNA, more abundant in the cytoplasm than
its target, will have an increased level also in the exosomes.
These findings would suggest that secretion of miRNAs into
exosomes is a mechanism through which cells, at least in part,
can arrange miRNAs in excess respect to their targets in order to
adjust the physiological miRNA:mRNA homeostasis (Squadrito
et al., 2014). Altogether, these observations would suggest that
RNA sorting into exosomes is the complex result of: (a) active
mechanisms of molecular loading, based on specific sequence
features of RNA molecules; (b) partially passive processes,
which depend on the availability of RNA molecules free and
unrestrained from functional binding mechanisms inside the
cells. However, these considerations could be challenged by
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a study showing that miRNAs, even the most abundant, are
present at far less than one copy per exosome, suggesting
that the most of exosomes circulating in biological fluids are
almost empty (Chevillet et al., 2014). These results do not
underplay the role of exosomes in cell-to-cell communication,
but rather provide some interesting scenarios on exosome
sorting and uptake mechanisms. Indeed, the authors propose
two models: (1) a low-occupancy/low-miRNA concentration
model, in which a sub-population of exosomes carries a low
amount of miRNAs; or (2) a low-occupancy/high-miRNA
concentration model, in which rare exosomes inside the same
nanovesicle population carry many copies of a given miRNA.
This latter appears to be the most consistent with exosome-
mediated communication, if exosome uptake is a selective
and infrequent event. However, low-occupancy/low-miRNA
concentration model could be considered valid if cellular uptake
of exosomes is rapid, and therefore miRNAs can accumulate
within the cell in functionally sufficient quantities. Both these
models lead to the hypothesis that an exosome population
from the same cell source exhibits a dramatic quantitative
heterogeneity of its miRNA cargo (Chevillet et al., 2014).
The molecular determinants of such heterogeneity of exosome
loading remains still uncharacterized.

ASYMMETRIC DISTRIBUTION OF RNA
MOLECULES BETWEEN SOURCE CELLS
AND THEIR EXOSOMES

Several papers on in vitro cellular models have analyzed the
qualitative and quantitative distribution of RNAs between cells
and their secreted exosomes, both at steady states and after
biological stimuli. In one of the earliest reports, Pigati et al. found
that nearly 30% of exosomal miRNAs released by normal and
malignant mammary epithelial cells does not reflect the cellular
profile, suggesting that some miRNAs are selectively retained
or released (Pigati et al., 2010). Nevertheless, they observed
that about 66% of the released miRNAs had an amount that
closely reflected the corresponding abundance inside the cells.
These findings would suggest that the majority of miRNAs is
passively secreted through exosomes depending onmiRNAmass.
Intriguingly, the authors also reported that miRNAs with well-
characterized roles in mammary biology tend to be selectively
retained by cells and nearly absent in the extracellular population.
This category of miRNAs included: miR-196a-1, which is
overexpressed in breast cancer cells; miR-210, a hypoxia sensor
with prognostic value in breast cancer; other miRNAs associated
with metastasis (e.g., miR-148a, miR-335, miR-373, and miR-
520c). In flat opposition to this group of retained miRNAs, the
authors found miR-451 to be one of the most disproportionately
exported miRNAs: more than 90% of it was secreted into the
extracellular space (Pigati et al., 2010). MiR-451 functions as
a tumor suppressor in breast cancer: its active removal from
cells might represent a convenient mechanism to promote cancer
progression (Liu et al., 2015). Furthermore, the excessive release
of miR-451 might also explain the interstitial accumulation of
miR-451 reported in breast tumors (Sempere et al., 2007). This

asymmetric distribution of miR-451 has also been reported in
another study on normal andmalignantmammary epithelial cells
and their exosomes, in which the authors observed the selective
encapsulation of miRNAs inside the exosomes and characterized
different miRNA profiles between the exosomes secreted by
cancer cells and those produced by normal cells (Hannafon et al.,
2016). Among the exosome-enriched miRNAs, those that were
more abundant in exosomes from the breast cancer cell lines
MCF7 andMDA-MB-231 than in exosomes from the normal cell
line MCF10A were miR-21, miR-122, miR-451, and miR-1246
(Hannafon et al., 2016). Interestingly, miR-21 andmiR-1246 were
also highly expressed in plasma exosomes from patients affected
by breast cancer. Although both miRNAs are highly abundant in
breast cancer exosomes, they are also in large measure retained
inside the cells because of their oncogenic role in breast cancer.
On the contrary, miR-122 and miR-451 are downregulated in
breast cancer cells and have tumor suppressive properties (Wang
et al., 2012; Liu et al., 2015). The observations from these two
studies on mammary epithelial cells further strengthen the idea
that miRNAs secreted via exosomes may represent a mixture
of: (a) highly expressed cellular miRNAs, which passively pass
through the endosomes for an osmotic-like effect; (b) selectively
secreted miRNAs, whose function inside the cytoplasm could be
unnecessary or unfavorable for the cells in certain time frames
and in specific physiological or pathological conditions (Pigati
et al., 2010; Hannafon et al., 2016). This hypothesis has also
been proved by studies on other cell types. Unequal distribution
of RNAs between endothelial cells and their exosomes has also
been reported (Van Balkom et al., 2015). More specifically, the
authors observed a partially overlapping distribution of small
RNAs in exosomes and corresponding donor cells. As a matter
of fact, the most abundant miRNAs within the cells matched
the most numerous ones in exosomes. However, about half of
the identified miRNAs and 5p-, 3p-, and stem-loop fragments
were differentially distributed. Just as an example: (1) miR-
30d, miR-30e, miR-92b, and miR-125a were among the most
abundant miRNAs in cells, but they were barely present in
exosomes; (2) miR-25, miR-27a, miR-186, and miR-4485 were
the most abundant miRNAs in exosomes, but were scarcely
present inside the cells (Van Balkom et al., 2015). Interestingly,
the authors focused their attention also on other RNA molecules
than miRNAs: they observed that mRNA, lncRNA, vRNA,
mtRNA, and yRNA fragments were more enriched in exosomes
than in cells. These data on RNA molecule fragments in
exosomes would suggest a link between RNA turnover and
exosome biogenesis: endothelial endosomes could selectively
sequester cytoplasmic RNA-degrading machineries and release
degraded RNAs via exosomes (Van Balkom et al., 2015). In a
previous work from our group, we have analyzed the miRNA
transcriptome of two different colorectal carcinoma (CRC) cell
lines and their secreted exosomes before and after treatment
with Cetuximab, a monoclonal antibody that binds and blocks
the Epidermal Growth Factor Receptor (EGFR; Ragusa et al.,
2014, 2015b). About 90% of cellular miRNAs were also present
inside the exosomes for both cell lines. However, in contrast
with such a qualitative miRNA overlapping, we found a strong
quantitative asymmetry of miRNAs between secreted exosomes
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and their source cells. Some miRNAs were mainly released
into exosomes (e.g., miR-127, miR-136∗, miR-144∗, miR-432,
miR-433, miR-487b, and miR-495, in Caco-2 exosomes; miR-
136∗, miR-223∗, miR-380-5p, miR-432, and miR-672, in HCT-
116 exosomes). Exosomes from both cell lines were enriched
in miRNAs with a potential tumor suppressive role in CRC
or with immunosuppressive properties (e.g., miR-142-5p, miR-
150, miR-223, and miR-433; Ragusa et al., 2014). This finding
was consistent with our functional data showing a decreased
proliferation of Caco-2 cells after transfection with HCT-116-
derived exosomes and vice versa (Ragusa et al., 2014). This
anticancer effect of tumor-derived exosomes on tumor cells had
been previously reported for pancreatic cancer cells (Ristorcelli
et al., 2008). Asymmetric distribution of miRNA contents in
exosomes and their source cells was highly accentuated by
Cetuximab treatment in Caco-2 (Cetuximab sensitive), but less
pronounced in HCT-116 (Cetuximab unresponsive). The sets of
differentially expressed miRNAs in exosomes and their source
cells were different for these two CRC cell lines. However
and interestingly, for both of them the exosomal miRNAs that
were most dysregulated after treatment were involved in many
cancer-related functions, as oncomirs or tumor suppressors,
and in inflammatory processes (Ragusa et al., 2014). We
concluded that cellular miRNAs, both at steady state and after
pharmacological treatment, are selectively released into the
tumor microenvironment through exosomes in order to: (a)
throw functionally disadvantageous miRNAs out of the cells, or
(b) favorably influence the immune system response (Ragusa
et al., 2014). We obtained similar data on the asymmetric
distribution of retained cellular miRNAs and secreted exosomal
ones in an in vitro model of non-alcoholic fatty liver disease
(NAFLD) and non-alcoholic steatohepatitis (NASH; Di Mauro
et al., 2016). Interestingly, in HepG2 cells at steady state we found
that: (1) 104 miRNAs were specifically expressed within the cells;
(2) 20 miRNAs were exclusively secreted in the culture medium;
(3) 284 miRNAs were both present inside the cells and secreted
in the medium. In the same cell line analyzed after lipotoxic and
non-lipotoxic stimuli we found quantitative, but not qualitative,
alterations for many secreted miRNAs, and just few and relatively
minor changes for those intracellular (Di Mauro et al., 2016). The
majority of extracellularmiRNAswere involved in inflammatory-
related pathways. This finding led us to propose the following
hypothesis: in response to lipogenic stimuli, some miRNAs
could be selectively secreted to either act in an endocrine
manner and determine a cross-talk among NAFLD-associated
inflamed tissues or act in a paracrine/autocrine manner and
regulate inflammation in hepatocytes or innate immune liver
cells (Di Mauro et al., 2016). Our results suggest that the innate
disequilibrium between retained and secreted miRNAs could
be perturbed by biochemical stimuli (Ragusa et al., 2014; Di
Mauro et al., 2016). A similar rearrangement of the cellular
environment by exosomes has been observed in a study on
HIV infection (Aqil et al., 2014). In this work, it has been
demonstrated that transfection of U937 cells with the HIV Nef
protein (a multifunctional virulence factor) leads to the selective
secretion through exosomes of 47 miRNAs and retention of 2
miRNAs in Nef-expressing cells. Intriguingly, exosomes secreted

in response to the intracellular upregulation of Nef were enriched
in miRNAs that target proinflammatory cytokines and can
potentially attack HIV-1 (Aqil et al., 2014). In this way, Nef
expression would reduce the intracellular levels of miRNAs
responsible for innate immune responses and targeting viral
transcripts by throwing them out of the cell via the exosomes.
This mechanism could potentially be used by the virus to
modify the host cell environment in favor of its replication and
dissemination. In general, miRNA sorting into exosomes has
been demonstrated to be largely influenced by virus infection.
Just to cite a different and peculiar example, lymphoma cell
lines infected by Kaposi sarcoma-associated herpes virus (KSHV)
have been found to produce exosomes that contained about
48% of miRNAs of viral origin (Hoshina et al., 2016). This
phenomenon is due to the expression of viral small RNAs
in the host cells: some of these viral miRNAs may possess
EXOmotifs, like CCCT or CCCG, that influence the exosome
loading of the host cells. Even more interesting is the finding that
exosomes from virus-infected cells more frequently contained
non-exact mature miRNAs (i.e., mutated miRNAs) than the
corresponding infected source cells (Hoshina et al., 2016). This
observation would suggest the presence of a mechanism that
preferentially sorts non-exact mature miRNAs to the exosomes.
Moreover, this would inspire the idea that exosomes might have
the function of removing the mutated mature miRNAs from
cells and, accordingly, concentrating wild-type and functional
miRNAs into the cytoplasm. Otherwise, the delivery of non-
exact miRNAs to target cells via exosomes could have other
unexpected and unknown roles and functions (Hoshina et al.,
2016). All these data on the asymmetrical distribution of RNAs
between exosomes and source cells lead us to some critical
considerations on the biological meaning of RNAs released by
exosomes and to potential general sorting criteria. The first
evident issue is that cells tend to retain and accumulate into the
cytoplasm RNAs that exert critical functions for the cell itself
in both physiological and pathological conditions. We note that
a normal epithelial cell expresses and retains RNAs involved
in its correct specific physiology and homeostasis. Nevertheless,
when the same cell undergoes cancer transformation, it will
tend to retain RNAs that promote cell growth and inhibit cell
death. Cells preferentially hold back RNAs that are advantageous
for cell functioning in specific conditions (Kanlikilicer et al.,
2016). This consideration leads us to a second question: which
RNAs do cells secrete via exosomes? Different from RNAs
retained within the cytoplasm, those encapsulated in exosomes
are preferentially RNAs that could be judged to be not critical
for the appropriate cell performance or detrimental in normal
or diseased conditions. Moreover, also mutated miRNAs and
other species of degraded RNAs are largely abundant in exosomes
(Van Balkom et al., 2015; Hoshina et al., 2016). The expulsion
of these useless, dysfunctional, or potentially deleterious RNAs
out of the cells would represent a convenient cellular process to
accelerate the turnover of non-effective RNAs. Intriguingly, when
secreted exosomes are captured by recipient cells, this apparent
waste RNA cargo can in some cases be functionally effective:
the main effect reported for some pathological conditions
is the modification of the cell environment to favor cancer
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dissemination or virus replication (Meckes et al., 2010; Pegtel
et al., 2010; Neviani and Fabbri, 2015). However, stating that cells
retain into the cytoplasm functionally useful RNAs and throw
out useless or disadvantageous ones via exosomes would be a
largely misleading and inappropriate over-simplification. Indeed,
miRNAs harboring EXOmotifs or hEXO motifs are selectively
transported by specific RNA-binding proteins into exosomes,
regardless of their amount or mutated form (Villarroya-Beltri
et al., 2013; Santangelo et al., 2016). Moreover, the most
abundant cytoplasmic miRNAs are passively incorporated into
the exosomes, especially when they exceed the amount of
their mRNA targets and, accordingly, are not engaged in Ago2
binding (Squadrito et al., 2014). In this way, these miRNAs
become unconstrained from any functional commitment in the
cytoplasm and can be passively stored inside the exosomes. This
observation could appropriately explain the presence of oncomir-
enriched exosomes in the blood of cancer patients, as discussed in
the next paragraph.

EXOSOMAL MIRNAS APPEAR TO BE
PROMISING BIOMARKERS IN CANCER
PATIENTS, BUT CAVEATS ARE NEEDED

Our knowledge on the exact relationship between the profile of
exosomal miRNAs circulating in body fluids and the pathological
condition of cancer patients is admittedly incomplete: this
notwithstanding, the potential of exosomal miRNAs and other
ncRNAs as cancer biomarkers is very promising. First of all,
miRNAs encapsulated in exosomes are very stable because they
are protected against RNase degradation by the lipid bilayer
(Valadi et al., 2007). Moreover, exosomal miRNA expression may
be easily analyzed by using whatever liquid of our body, even
though themost of studies have focused on the exosomes purified
from systemic blood circulation (Keller et al., 2011; Revenfeld
et al., 2014; Boukouris and Mathivanan, 2015). As stated in
the previous paragraph, RNA molecules stored in exosomes
represent the molecular outcome of both active and passive
sorting mechanisms, which seem to be cell-specific. Exosomes
circulating in the blood are a heterogeneous population of
nanovesicles derived from a plethora of different cell types,
but principally coming from blood cells (Chen et al., 2008;
Hunter et al., 2008; Pritchard et al., 2012b; Zhou et al., 2017).
Accordingly, exosomal miRNAs purified from serum or plasma
are a mixture of molecules of different cellular origins and
with different roles in extracellular communication. Given these
premises, it is hardly to be expected that in the whole population
of secreted exosomes, dysfunctional exosomes derived from
diseased cells may possess an RNA cargo able to markedly modify
the relative amounts of circulating miRNAs. Nevertheless,
multiple evidence shows that: (1) exosomal miRNAs from serum
or plasma of cancer patients are quantitatively altered; (2)
interestingly, some of these dysregulations mirror those detected
in source tumor cells (Table 1). A fitting example is the one
about miR-21. MiR-21 is among the most commonly upregulated
miRNAs in cancer: its genetic locus at 17q23 is amplified in
many solid tumors and its expression is stimulated by a variety

of cancer-associated phenomena, such as inflammation and
hypoxia (Griffin et al., 1988; Wu et al., 2001; Loffler et al., 2007;
Fujita et al., 2008; Ribas et al., 2009). Notably, several studies have
reported increased levels of miR-21 in both serum and plasma
exosomes from patients affected by tumors showing a cellular
miR-21 upregulation (Skog et al., 2008; Taylor and Gercel-Taylor,
2008; Que et al., 2013; Ogata-Kawata et al., 2014; Hannafon
et al., 2016; Lai et al., 2017; Tsukamoto et al., 2017). Taylor
et al. showed that the levels of 8 miRNAs (miR-21, miR-141,
miR-200a, miR-200c, miR-200b, miR-203, miR-205, and miR-
214) were increased in exosomes from serum of ovarian cancer
patients, as well as in tumor tissues from the same patients (Iorio
et al., 2007; Nam et al., 2008; Taylor and Gercel-Taylor, 2008; Niu
et al., 2015; Azizmohammadi et al., 2016; Xiaohong et al., 2016;
Li J. et al., 2017; Wei et al., 2017). Liu et al. observed elevated
levels of exosomal miR-23b-3p, miR-10b-5p, and miR-21-5p in
plasma of non-small-cell lung cancer (NSCLC) patients and their
association with poor overall patient survival (Liu et al., 2017).
Interestingly, these three miRNAs have been reported to be also
overexpressed in NSCLC cells and furthermore their intracellular
expression has been found to be associated with poor prognosis
(Begum et al., 2015; Huang et al., 2015; Tian et al., 2016; Xue
et al., 2016; Li C. et al., 2017). In a previous work of our group,
we showed the constant and consistent upregulation of miR-
146a in: (1) vitreous humor, (2) vitreal exosomes, (3) serum, (4)
serum exosomes, and (5) cancerous tissues of uveal melanoma
patients (Ragusa et al., 2015a). We suggested that miR-146a
might be released by melanoma cells inside the ocular chamber
and then conveyed to the systemic circulation through tumor
blood vessels. Specifically, we observed this fixed expression
trend among tissues and body fluids only for miR-146a: this
would suggest the existence of specific mechanisms of retention,
secretion, and filtering of exosomal miRNAs through the cellular
and extracellular compartments (Ragusa et al., 2015a). In contrast
with these examples of exosomal miRNA alterations that match
the corresponding cellular ones in cancer patients, there are
other reports in which the miRNA expression trend in blood
exosomes was inconsistent with or even the opposite to the one
observed in the corresponding cancer cells (Table 1). Profiling
of serum exosomal miRNAs in primary CRC patients showed
the upregulation of let-7a, miR-1229, miR-1246, miR-150, miR-
21, miR-223, and miR-23a (Ogata-Kawata et al., 2014). It is
interesting to note that the overexpression of exosomal miR-
23a, miR-223, and miR-1246 conformed with their upregulation
reported in CRC tissues and linked to their oncogenic role
(Yong et al., 2013, 2014; Della Vittoria Scarpati et al., 2014;
Li Z. W. et al., 2014; Zhang et al., 2014; Neerincx et al.,
2015; Wang S. et al., 2016; Wang F.F. et al., 2017). On the
contrary, augmented serum levels of let-7a and miR-150 were
inconsistent with their documented downregulation and tumor
suppressive property in CRC (Ma Y. et al., 2012; Li et al., 2016).
Recently, another study on serum exosomes from CRC patients
reported the upregulation of miR-486-5p and miR-3180-5p, and
the downregulation of miR-548c-5p, miR-638, miR-5787, miR-
6869-5p, miR-8075 (Yan et al., 2017). Among these differentially
expressed miRNAs, miR-638 was the most relevant concerning
the clinics: its downregulation has been previously reported
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TABLE 1 | Expression of miRNA cancer biomarkers in exosomes and their relative tumor tissues.

miRNAs Cancer Exosome origin Expression

within exosomes

PMID EX Expression

within cells

PMID CELL

let-7a Colon cancer Serum Up 24705249 Down 27498032

let-7a Pancreatic ductal adenocarcinoma Plasma Down 28232049 Down 19323605

miR-10b Pancreatic ductal adenocarcinoma Plasma Up 28232049 Up 22018284

miR-10b-5p Non-small-cell lung cancer Plasma Up 28055956 Up 25988292

miR-17-5p Pancreatic adenocarcinoma Serum Up 24007214 Up 27400681

miR-20a Pancreatic ductal adenocarcinoma Plasma Up 28232049 Down 25485236

miR-21 Breast cancer Plasma Up 27608715 Up 16103053,

18812439,

26549725

miR-21 Colon cancer Serum; plasma Up 24705249; 28376502 Up 18196926,

22844381,

28376502

miR-21 Glioblastoma Serum Up 19011622 Up 21895872

miR-21 Glioma Cerebrospinal fluids Up 26284486 Up 16024602,

24326156

miR-21 Ovarian cancer Serum Up 18589210 Up 17875710,

18451233

miR-21 Pancreatic adenocarcinoma Serum; plasma Up 24007214; 28232049 Up 20093556,

22850622,

28239461

miR-21 Uveal melanoma Vitreus Up 25951497 Up 25951497

miR-21-5p Non-small-cell lung cancer Plasma Up 28055956 Up 26453197,

27811366,

28445945

miR-21-5p Prostate cancer Urine Up 26417675 Up 16461460,

27040772

miR-23a Colon cancer Serum Up 24705249 Up 23758639,

24992592

miR-23b-3p Non-small-cell lung cancer Plasma Up 28055956 Up 26314549

miR-30c Pancreatic ductal adenocarcinoma Plasma Up 28232049 / /

miR-34a Uveal melanoma Vitreus Up 25951497 Up 25951497

miR-106b Pancreatic ductal adenocarcinoma Plasma Up 28232049 / /

miR-122 Pancreatic ductal adenocarcinoma Plasma Down 28232049 Down 22850622,

28239461

miR-125a-3p Colon cancer Plasma Up 28646161 / /

miR-140-3p Chronic myeloid leukemia Serum Up 28197964 / /

miR-141 Ovarian cancer Serum Up 18589210 Up 17875710,

18451233

miR-141-5p Prostate cancer Urine Up 26417675 / /

miR-146a Uveal melanoma Serum Up 25951497 Up 25951497

miR-146a Uveal melanoma Vitreus Up 25951497 Up 25951497

miR-150 Colon cancer Serum Up 24705249 Down 22052060

miR-181a Pancreatic ductal adenocarcinoma Plasma Up 28232049 Up 17473300

miR-200a Ovarian cancer Serum Up 18589210 Up 17875710,

18451233

miR-200b Ovarian cancer Serum Up 18589210 Up 17875710,

18451233

miR-200c Ovarian cancer Serum Up 18589210 Up 17875710,

18451233

miR-203 Ovarian cancer Serum Up 18589210 Up 27347348,

27655286

miR-205 Ovarian cancer Serum Up 18589210 Up 26275944,

28145479,

28476165

(Continued)
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TABLE 1 | Continued

miRNAs Cancer Exosome origin Expression

within exosomes

PMID EX Expression

within cells

PMID CELL

miR-214 Ovarian cancer Serum Up 18589210 Up; down 17875710;

18451233

miR-223 Colon cancer Serum Up 24705249 Up 24819398,

25270282,

27916606

miR-320 Glioblastoma multiforme Serum Up 24435880 Down 25117070

miR-320c Colon cancer Plasma Up 28646161 Down 27119506,

27559432

miR-486-5p Colorectal cancer Serum Up 28636562 Down 27284245

miR-548c-5p Colorectal cancer Serum Down 28636562 / /

miR-574-3p Glioblastoma multiforme Serum Up 24435880 / /

miR-574-3p Prostate cancer Urine Up 26417675 Down 23554959

miR-638 Colorectal cancer Serum Down 28636562 Down 24885288

miR-1229 Colon cancer Serum Up 24705249 / /

miR-1246 Breast cancer Plasma Up 27608715 / /

miR-1246 Colon cancer Serum Up 24705249 Up 25143946,

26436952,

26573378

miR-3180-5p Colorectal cancer Serum Up 28636562 / /

miR-6869-5p Colorectal cancer Serum Down 28636562 / /

miR-8075 Colorectal cancer Serum Down 28636562 / /

miR-5787 Colorectal cancer Serum Down 28636562 / /

This table reports the trend of expression of exosomal miRNA biomarkers in cancer and in tumor parental cells. PMID EX, Pubmed IDs of papers about exosomal miRNAs; PMID CELL,

Pubmed IDs of papers about cancer cellular miRNAs. Slash: no data available.

to be related to invasion and mesenchymal-like transition in
CRC cells (Ma et al., 2014). This is not the case for miR-
486-5p: its exosomal upregulation was diametrically opposed to
its marked downregulation in CRC tissues, previously reported
by Liu et al. (2016). For all the other dysregulated exosomal
miRNAs identified in this study the corresponding alterations
in CRC tissues have not been reported yet. Wang et al. found
miR-125a-3p and miR-320c to be significantly upregulated in
plasma exosomes from patients with early stage CRC (Wang J.
et al., 2017): there is no experimental evidence of miR-125a-
3p alteration in CRC, while miR-320c has been reported to be
frequently downregulated in CRC tissues together with the other
members of miR-320 family (Tadano et al., 2016; Vishnubalaji
et al., 2016). Interestingly, the upregulation of miR-320 was
also detected in serum exosomes from Glioblastoma Multiforme
(GBM) patients (Manterola et al., 2014), in contrast with miR-
320 decreased levels reported in GBM tissues (Guo et al., 2014).
Taken together, these data on exosomes circulating in the blood of
cancer patients would be an in vivo indirect proof that exosomes
secreted by cancer cells might carry a cargo of RNA molecules
that does not exactly reflect the cytoplasmic RNA alterations
of their source cells. This could be considered inessential from
a diagnostic point of view. For instance, the upregulation of
exosomal miR-21 and miR-320 in serum of CRC patients could
represent for clinicians a very useful evidence to diagnose CRC in
a non-invasive manner, regardless of miR-21 overexpression and
miR-320 downregulation described in CRC source cells (Slaby

et al., 2007; Vishnubalaji et al., 2016). However, many works
on the differential expression of exosomal miRNAs in cancer
have attempted to computationally reconstruct miRNA-based
networks in order to infer pathways that might be involved
in a specific tumor (Eldh et al., 2014; Alhasan et al., 2016).
This approach could be considered misleading: a part of altered
circulating miRNAs in body fluids of cancer patients has a
relative expression that is largely different from the one in the
corresponding diseased tissues. The tumor suppressor miRNA
let-7a inhibits tumor cell growth and metastasis in CRC and its
levels are significantly decreased in CRC tissues and cell lines (Li
et al., 2016); nevertheless, its exosomal levels in serum of CRC
patients are increased (Ogata-Kawata et al., 2014). This apparent
incongruity might be the result of a strategy adopted by the
cancer to remove from cells miRNAs that are disadvantageous
for viability and dissemination of CRC. This scenario is made
even trickier by the presence in circulation of exosomes from
other cellular sources that could contribute to the cancer-
related miRNA dysregulation reported in literature (Figure 1).
The presence of exosome populations of different origin could
dilute the actual expression alterations deriving from cancer cells.
However, it is worthmentioning that exosome concentrations are
increased in cancer patients compared to normal controls (Taylor
and Gercel-Taylor, 2008; Logozzi et al., 2009; Caivano et al., 2015;
Alegre et al., 2016), suggesting the hypothesis that cancer cells
release huge quantity of exosomes due to their intrinsic cancer-
related mutations (Yu et al., 2006). Moreover, exosomes coming
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FIGURE 1 | Exosomal RNA dysregulation partially reflects transcriptomic alterations of parental cancer cells. Active and passive sorting mechanisms are responsible

for the native RNA quantitative asymmetry existing between cells and exosomes. In blood of cancer patients the nanovesicle population is the complex outcome of

exosome production by multiple cell types: cancer cells and immune cells, through exosomal secretion, regulate their molecular homeostasis and communicate with

each other during cancer development and progression. For these reasons, exosomal RNAs recovered from the systemic circulation only partially mirror the

transcriptome of tumor cells.

from immune cells could have an important role in changing the
expression of miRNAs within the whole exosomal population.
Cancer development elicits an immune response, triggered by
tumor antigens distinguishing the cancerous cells from the other
non-cancerous ones (Grivennikov et al., 2010). On one hand,
tumor-infiltrating lymphocytes act by slowing or arresting the
development of the tumor. On the other hand, cancer cells
are able to favorably influence the tumor microenvironment
by inducing signaling cascades, leading to immune-suppression
and thus facilitating evasion of immune surveillance and cancer
dissemination (Gardner and Ruffell, 2016; Jang et al., 2017).
This fight between tumor and immune system is also fought by
means of exosome secretion by both cancer cells and regulatory
immune-cells (Bobrie and Thery, 2013; Greening et al., 2015).
Indeed, tumor-derived exosomes directly suppress the anti-
tumor responses of cytotoxic T lymphocytes and NK-cells, and
also induce the generation, expansion, and suppressive function
of T regulatory cells (Treg). Okoye et al. demonstrated that
Treg cell-derived exosomes are able to transfer both in vitro and
in vivo a specific set of miRNAs to T cells (e.g., miR-155, let-
7b, and let-7d), thus suppressing T helper cell proliferation and
interferon-γ production (Okoye et al., 2014). On the contrary,
several reports demonstrated that activated dendritic cells secrete
exosomes and induce a T-cell-mediated anti-tumor immune

response (Zitvogel et al., 1998; Viaud et al., 2010; Tian and
Li, 2017). These observations lead us to consider that part of
dysregulated exosomal miRNAs in blood of cancer patients could
derive from different activated regulatory immune cells and act
by suppressing or activating the immune system. In agreement
with such hypothesis of the over-representation of cancer- and
immune-derived exosomes in the systemic circulation of cancer
patients, it should not be surprising that a large number of
exosomal miRNAs proposed as cancer biomarkers also has a
critical functional role in the differentiation and activation of
immune cells (e.g., miR-10b, miR-17, miR-20a, miR-146a, miR-
150, miR-181a, miR-223; Table 1; Paladini et al., 2016). This
could explain why in some cases exosomal miRNAs differentially
expressed in the blood of cancer patients have no links to
altered cytoplasmic miRNAs of the native tumor. There is a
final technical warning that may be worth mentioning to fully
understand the effectiveness of exosome as cancer biomarkers.
One of potential pitfalls of studies on exosome functions and
their molecular cargo is the lack of standard methods to obtain
highly pure exosome populations. Several methods are reported
in scientific literature, including ultracentrifugation, density
gradient centrifugation, chromatography, filtration, polymer-
based precipitation, and immunoaffinity (Taylor and Shah,
2015). It has been demonstrated that these methods could lead
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to co-isolate contaminating non-exosomal material or to the
loss of exosomes due to damaged membrane integrity, thus,
resulting in significant artifacts of recovery, quality andmolecular
content of exosomes (Whiteside, 2017). Just as an example:
ultracentrifugation is the “gold standard” exosome isolation
method, but the type, quantity and quality of the vesicles isolated
is extremely sensitive to parameters, including g force, rotor type,
angle of rotor sedimentation, radius of centrifugal force, solution
viscosity, and vesicle density (Taylor and Shah, 2015). Needless
to say, accounting for, controlling and standardizing all of these
parameters is quite impossible. Van Deun et al. performed
a comparative study of 4 exosome isolation protocols (i.e.,
ultracentrifugation, OptiPrep density gradient centrifugation,
and two commercial polymer-based precipitation methods) to
evaluate their reliability for downstream molecular analyses
(Van Deun et al., 2014). The four methods provided different
qualitative and quantitative results, but OptiPrep density gradient
ultracentrifugation outperformed the other 3 methods and
revealed a unique and reproducible mRNA profile. In a similar
work, Tauro et al. compared ultracentrifugation, density gradient
centrifugation and immunoaffinity to purify exosomes from
biological fluids and conditionedmedia from in vitro cell cultures
(Tauro et al., 2012). Their proteomic analyses revealed that
immunoaffinity capture was the most effective method to isolate
exosomes. Indeed, the immunoaffinity capture is considered the
better alternative for exosome isolation, because there is no
damage to the nanovesicle structure and the loss of exosomes
is negligible. All these considerations strongly suggest that the
choice of specific isolation method severely affects the purity and
quality of exosomes and, accordingly, the reliability of molecular
profiles of their RNA content. Moreover, also the use of disparate
methods to profile RNA expression from exosomes could add
further bias to final data and cause a scanty reproducibility
among different studies (Git et al., 2010; Chugh and Dittmer,
2012; Pritchard et al., 2012a; Moldovan et al., 2014).

CONCLUSIONS

The key concepts reviewed in this paper may be summarized
in the three following points. (1) RNA molecules secreted

via exosomes are encapsulated thanks to both active, scarcely
characterized, cell-specific mechanisms of sorting and also
passive processes depending on the amount of cytoplasmic
RNAs. The biological meaning of the active processes remains
largely elusive: however, it appears to be related to the
maintenance of the correct molecular equilibrium between
RNA molecules that are biologically important, ineffective, or
potentially deleterious for the cell in a certain physiological or
pathological condition. Moreover, secreted RNAs might have a
role in the homeostasis of the extracellular microenvironment.
(2) This co-occurrence of both active and passive transport
processes leads to a partial match between exosome and source
cell transcriptomes, as observed in the in vitro models reviewed
in this paper. (3) Differentially expressed exosomal miRNAs
in the circulation of cancer patients only partly reflect miRNA
dysregulations found in corresponding cancer tissues and, as a

matter of fact, divergent expression trends between exosomes
and native tumors have been documented for many miRNAs.
These differences could be the assorted result of the asymmetric
distribution of miRNAs between exosomes and cells, but also the
confounding effect of the presence in the blood of exosomes from
different cellular origins. Specifically, the regulatory cells of the
immune system can induce the activation or suppression of T
cells in the tumor microenvironment by producing regulatory
exosomes and, thus, they significantly influence the total relative
expression of circulating miRNAs.

Finally, exosomal miRNAs could be considered as good
biomarkers in cancer, even if no standard reproducible method
to isolate them has been proposed. Nevertheless, they do
not represent an accurate reflection of miRNA intracellular
expression in the diseased cells, but they are the complex outcome
of a mixed exosome production from multiple cell types, which
through exosomal secretion regulate their molecular homeostasis
and communicate with each other during cancer development
and progression.
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