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Noise is pervasive in cellular biology and inevitably affects the dynamics of cellular

processes. Biological systems have developed regulatory mechanisms to ensure

robustness with respect to noise or to take advantage of stochasticity. We review here,

through a couple of selected examples, some insights on possible robustness factors and

constructive roles of noise provided by computational modeling. In particular, we focus

on (1) factors that likely contribute to the robustness of oscillatory processes such as the

circadian clocks and the cell cycle, (2) how reliable coding/decoding of calcium-mediated

signaling could be achieved in presence of noise and, in some cases, enhanced through

stochastic resonance, and (3) how embryonic cell differentiation processes can exploit

stochasticity to create heterogeneity in a population of identical cells.

Keywords: stochastic simulation, molecular noise, robustness, circadian clock, cell cycle, calcium signaling,

embryonic development

INTRODUCTION

Noise arises at all levels of biological organization and inevitably affects the dynamics of biological
systems. Cellular processes, ranging from gene expression to developmental pathways, signaling,
cell division, and circadian rhythms are all exposed to noise, but the way they cope with it varies
from one case to another, and it is therefore not straightforward to predict the effect of noise.
Noise tends to compromise the precision and the timing of molecular events, and is thus often
seen as a nuisance (Kaern et al., 2005). However, in some contexts, it may actively contribute to
biological functions (Eldar and Elowitz, 2010). Complementary to the experiments, modeling-
based approaches constitute a powerful tool to explore the impact of noise and its possible role
in cellular dynamics.

Noise originates from multiple sources. Molecular noise, sometimes referred to as intrinsic
noise (Elowitz et al., 2002), arises from the low number of molecules and the intrinsic stochastic
nature of biochemical reactions in the cell. Extrinsic sources of noise include small variations in
microenvironmental conditions (temperature, pH, concentration of diffusive ligands in the inter-
cellular medium), as well as inevitable cell-to-cell variability in factors like the number of RNA
polymerases, ribosomes, proteases, etc. All these sources of variability result in small differences
in kinetic parameters (transcription/translation rates, etc.). Moreover, cells divide and move. At
division, molecules are not equally distributed into the two daughter cells and the surrounding
environment is continuously changing. In particular, cells do not remain in contact with the same
cells and this remixing of the neighborhood also contributes to stochasticity.

When noise impairs the proper dynamics of a cellular process, it is expected that regulatory
mechanisms have evolved to counteract this negative effect of noise. For example, to ensure a proper
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adaptation to the regular light-dark cycle, the circadian clock
must be quite robust despite the limited number of mRNA and
protein molecules involved in the clockwork (Barkai and Leibler,
2000). Similarly, a tight control of cell proliferation can only be
achieved by a reliable regulation of the cell cycle. One can thus
expect that the complex molecular mechanisms underlying these
processes enable robust oscillations with respect to noise.

Cell signaling is also subject to noise. It involves coding
and decoding messages, and a reliable communication between
cells and between cells and the environment is needed for a
proper function (Kholodenko, 2006). A prototypical example of
cell signaling, involving intracellular Ca2+ dynamics (Berridge,
2009), is clearly random at the sub-cellular level but displays
quite regular Ca2+ spiking at the level of the whole cell.
This example allows for the observation of the passage from
a noise-driven irregular behavior to a more or less regular
spiking, that could correspond to deterministic oscillations
perturbed by noise upon increasing the level of stimulation.
Interestingly, even when stochasticity plays a predominant role,
reliable frequency encoding is possible (Thurley et al., 2014).
Besides the level of stimulation, Ca2+ transfer between the
various intracellular organelles also affects Ca2+ dynamics and
the noise on the period of Ca2+ oscillations. Given that entry
of Ca2+ into mitochondria stimulates ATP synthesis, this noise
has physiological consequences on metabolism (Szabadkai and
Duchen, 2008).

Additionally, noise is responsible for cell-to-cell variability
and this cellular heterogeneity may have important implications
for the development of multicellular organisms and for the fitness
of microbial colonies (Balázsi et al., 2011; Sanchez et al., 2013).
In multicellular organisms, the process of cell differentiation,
whereby identical cells divide, and adopt different fates, may
exploit noise to create cellular heterogeneity. Such heterogeneity
is required to initiate different developmental pathways. Yet,
regulatorymechanismsmust ensure a proper partition of the cells
in each state and possibly their spatial organization. In micro-
organisms, the role of stochastic gene expression in phenotypic
variability and its ability to lead the cells in one or another
developmental pathway was described theoretically early on (see
for example Arkin et al., 1998), but the adaptative role of such
phenotypic heterogeneity, often postulated, was experimentally
demonstrated much later (Acar et al., 2008).

Theoretical studies have for long emphasized the importance
of stochastic fluctuations in biological systems (Delbrück,
1940; Monod, 1971; Spudich and Koshland, 1976). Stochastic
models for gene expression and enzymatic reactions were
already published in the sixties (Jachimowski et al., 1964; Asai
and Morales, 1965; Singh, 1969; Blum, 1974). More recently,
questions have been raised as to the impact of noise on complex
signaling and regulatory networks underlying highly organized
behaviors such as oscillations and multi-stability. In the absence
of noise, oscillatory processes are often modeled by limit
cycle oscillators. These models allow to identify requirements
to generate self-sustained oscillations and shed light on the
roles of regulatory circuits (Goldbeter et al., 2012). Cell fate
determination and differentiation are viewed as reflecting the
possibility for the cell to evolve to one or another stable steady

state, which may co-exist, and are thus explained in terms of
multistability (Huang et al., 2005). Modeling studies highlight
the conditions for the emergence of bistability, often associated
to hysteresis, and the molecular mechanisms allowing a cell to
evolve to one or another state. Deterministic models, relying on
non-linear ordinary differential equations (ODE) and bifurcation
theory, are appropriate to characterize these design principles
and make testable predictions, but they do not account for
noise and its effect on the dynamics. However, advances in
biotechnologies now allow measuring noise in single cells. To
take these data into account and investigate the effect of noise
in a series of ODE-based models for oscillations or multi-
stability, modelers can take profit of the high computational
power to perform CPU-consuming stochastic simulations based,
for example, on the algorithm proposed by Gillespie (1977).
This method is described and illustrated in the Supplementary
Information, where we also provide the references to the original
publications for the results shown here.

We illustrate here, through a couple of selected examples, how
modeling and numerical simulations can be used to assess the
role of noise in the dynamics of biological systems. In particular,
we focus on factors that likely contribute to the robustness of
circadian clocks and the cell cycle with respect to noise, on
how reliable calcium-mediated signaling coding/decoding are
achieved—and even enhanced—in presence of noise, and on how
embryonic cell differentiation processes can exploit stochasticity.

ROBUST CIRCADIAN RHYTHMS FROM
SLOPPY INDIVIDUAL CELLULAR
OSCILLATORS

Circadian rhythms, characterized by an endogenous period
around 24 h, are responsible for the daily timing of physiological
functions. The core molecular mechanism of these rhythms
relies on a negative transcriptional feedback loop. Theoretical
models for circadian rhythms based on such control mechanisms
have been proposed soon after the identification of the first
clock genes (Goldbeter, 1995; Ruoff et al., 1996; Leloup et al.,
1999). These models have been used to study temperature
compensation (Ruoff et al., 1996) or entrainment by light-
dark cycles (Leloup et al., 1999). Extensions of these models
incorporating multiple regulations have been used to investigate
the role of the regulatory feedback loops in the generation of self-
sustained circadian oscillations and to explore the links between
the circadian clock and physiological disorders (Leloup and
Goldbeter, 2003; Becker-Weimann et al., 2004).

Barkai and Leibler (2000) raised the question of the robustness
of such circuit in presence of molecular noise—and thereby
of the validity of the deterministic models. This prompted
the development of stochastic models for circadian clocks.
Numerical simulations of these models (using algorithms such
as the one proposed by Gillespie, 1977) led to the identification
of several factors that enhance the robustness of the oscillations.
These factors include the degree of cooperativity of gene
repression (non-linearity) and the rate of binding-unbinding of
transcription factors to the gene promoter (Gonze et al., 2002;
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Forger and Peskin, 2005). Periodic entrainment by the light-dark
cycles was also shown to stabilize the phase of the oscillations
with respect to molecular noise (Gonze et al., 2002).

In mammals, the central pacemaker is located in the
suprachiasmatic nucleus (SCN) of the hypothalamus. The SCN
receives light information from the retina and generates a
robust, entrainable rhythm, transmitted to peripheral organs.
Oscillations in the SCN occur at the level of single neurons
while inter-cellular coupling, relying on the periodic release
of neurotransmitters, ensures the synchronization between
individual cells (Yamaguchi et al., 2003). Single-cell recording
of clock gene luciferase reporter showed that dispersed cells
can maintain circadian oscillations over several 24-h cycles but
display a large variability of period and amplitude (Honma et al.,
1998; Yamaguchi et al., 2003; Webb et al., 2009).

The idea that the circadian clockwork may be composed
of a collection of sloppy oscillators made robust upon inter-
cellular coupling dates back to Enright (1980) and appears to
be supported by experimental observations in the SCN (Herzog
et al., 2004). Indeed cycle-to-cycle period variability appears 10
times greater in dispersed SCN cells than in connected cells in the
intact SCN tissue. Similarly, treatments with agents that impair
neuronal coupling, result in sloppy circadian rhythms of clock
gene expression in many cells (Yamaguchi et al., 2003).

Mathematical modeling showed that efficient synchronization
can be achieved by the coupling of oscillators via the periodic
release of neurotransmitters (Gonze et al., 2005). Stochastic
simulations of this system further support the idea that inter-
cellular coupling can significantly contribute to the robustness
of the overall network (Figure 1). Stochastic simulations of
individual oscillators show that they undergo rapid phase
diffusion, resulting in a fast desynchronization with respect
to the corresponding deterministic time series (Figure 1B).
When 10 oscillators are coupled, they quickly synchronize
and display an increase in amplitude, even in the presence
of 10% variability in their free running periods (Figure 1C).
Stochastic simulations of this coupled system suggest that,
despite some inter-cellular variability, the average signal of the
coupled system is more robust (Figure 1D) than the one of
the individual cells, as attested by the narrower distribution of
periods (Figure 1E) and by the increased half-life of the auto-
correlation (Figure 1F). Similar conclusions have been reached
with a model of coupled oscillators reflecting the syncytial
coupling of circadian oscillators in Neurospora (Gonze and
Goldbeter, 2006).

In the above model, the individual oscillators display self-
sustained (limit cycle) oscillations. Similar results are obtained
when individual oscillators are parameterized to yield damped
oscillations (not shown). Thus, intercellular coupling can induce
robust, self-sustained oscillations. Whether the noise alone is
able to convert damped, sloppy circadian oscillators into self-
sustained oscillations was addressed byWestermark et al. (2009).
These authors analyzed experimental time series and compared
the observed dynamics with the theoretical predictions for
two scenarios: noisy self-sustained oscillations vs. noise-driven
damped oscillations. This analysis however did not allow a clear
discrimination between the two cases, both being plausible.

In a combined experimental-modeling study, Ko et al. (2010)
analyzed the effect of loss-of-function Bmal1 mutant in the
dynamics of the SCN. Bmal1 is a core clock gene and its
knock-out results in a loss of circadian rhythmicity in individual
cells. Remarkably, a clear rhythm—although noisy—emerged
from the SCN network even in presence of this mutation.
These observations were also reproduced by a mathematical
model. They suggest that the clock network can exploit noise to
compensate for the loss-of-function mutation.

POSITIVE FEEDBACKS AS A
NOISE-REDUCTION MECHANISM IN THE
CELL CYCLE

The cell division process plays a major role in unicellular and
multicellular organisms. In the latter, it drives the development
from fertilized eggs into mature organisms. In the mature
organism, cell division allows the replacement of cells that die
due to natural causes or external damage. Thus, the cell cycle
plays a crucial role in the development of living organisms both
in normal and disease conditions. The cell cycle is composed
of four different phases: G1, S (DNA replication), G2, and M
(mitosis) and is controlled by a network of cyclin-dependent
kinases (CDK) whose activities drive the progression along the
successive phases of the cell cycle (Morgan, 2007).

Computational models were initially proposed for the
dynamics of the cell cycle in frog embryos (Goldbeter, 1991;
Tyson, 1991; Novak and Tyson, 1993), where the coremechanism
of the cell cycle relies on a negative feedback exerted by a CDK
on itself (Goldbeter, 1991). Afterwards, more detailed models
for the yeast cell cycle were proposed (Novak et al., 2001; Chen
et al., 2004). In fission yeast, the ordered progression through
the successive phases of the cell cycle is controlled by a single
CDK, Cdc2, required for both the G1/S and G2/M transitions.
DNA replication and mitosis are triggered by association of Cdc2
with the B-type cyclins Cig2 and Cdc13, respectively. Each cell
cycle transition is controlled by positive feedback (PF) loops
ensuring robust and ordered progression along the different cell
cycle phases (Sha et al., 2003; Novak et al., 2007).

In higher eukaryotes and mammals, the cell cycle is driven by
a complex network of CDK composed of intertwined negative
and positive feedback loops. The activities of cyclin D/Cdk4-6
and cyclin E/Cdk2 ensure progression in G1 and promote G1/S
transition, respectively. Cyclin A/Cdk2 drives progression in S
and G2, while the activity of cyclin B/Cdk1 triggers the G2/M
transition. Detailed models were proposed to account for the
dynamics of the mammalian cell cycle (Novak and Tyson, 2004;
Swat et al., 2004; Gérard and Goldbeter, 2009). Again, each cell
cycle transition such as the G1/S (Barr et al., 2016), the G2/M
(Pomerening et al., 2003) or the anaphase-metaphase checkpoint
during mitosis (He et al., 2011) is controlled by PF loops ensuring
a robust, ordered, progression through the cell cycle (Han et al.,
2005; Verdugo et al., 2013).

Numerous models were proposed to assess the impact of
molecular noise on the dynamics of the cell cycle in yeast (Tyson,
1989; Sveiczer et al., 2001; Kar et al., 2009; Ball et al., 2011; Liu
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FIGURE 1 | Deterministic vs. stochastic simulation of a system of coupled circadian oscillators. (A) Scheme of the model. Each oscillator is modeled by a 3-variable

Goodwin-like model. The oscillators are coupled through the mean field obtained by the average concentration of the clock-controlled release of a neurotransmitter

(see Gonze et al., 2005 for the description and deterministic analysis of the model). (B) Deterministic (blue) and stochastic (red) oscillations of the single-oscillator

model. (C) Deterministic oscillations of 10 coupled oscillators, displaying 10% of variability in their free-running period. (D) Stochastic oscillations of the same 10

coupled oscillators. Stochastic simulations in (B,D) have been carried out for a system size � = 500. (E) Period distribution of the single oscillator (gray) and the 10

coupled oscillators (� = 500, black). (F) Half-life of the auto-correlation as a function of the system size �, determined for the single oscillator (thin curve) and the 10

coupled oscillators (thick curve). The error bars denote the standard deviation over 10 simulations. Stochastic simulations have been performed using the Gillespie

algorithm (see Supplementary Information), as described in Gonze et al. (2002) and in Gonze and Goldbeter (2006).

et al., 2012; Barik et al., 2016), in mammals (Gérard et al., 2012),
or in frog embryos (Gonze and Hafner, 2010).

The stochastic study by Kar et al. (2009) reproduces many
characteristic features of the yeast cell cycle, despite the very low
abundance ofmRNAsmolecules (∼1mRNAmolecule per cell for
each expressed gene). This agreement is obtained when assuming
that some specific mRNAs have very short half-lives—less than
1min.

In addition to the possible tuning of kinetic parameters,
the regulatory network may also have evolved to increase its
resistance to noise. This idea was tested in a toy model for the
embryonic cell cycle (Gonze and Hafner, 2010; Figures 2A–C).
This model includes the cyclin (C), the CDK (M) which is
activated by the cyclin, and a protease X which is activated by the
CDK and degrades the cyclin, thus closing the negative circuit.
The PF is introduced through the auto-activation of the CDK.
Stochastic simulations of this 3-variable system indicates that
the presence of positive feedback reinforces the dynamics of the
CDK network in presence of molecular fluctuations, as observed
when comparing the deterministic and stochastic limit cycles
in the absence (Figure 2B) or presence of a PF loop on CDK
activity (Figure 2C). This model also provides an explanation
for the gain in robustness. The positive feedback introduces
underlying bistability and hysteresis. Indeed, the steady state of
CDK as a function of the cyclin (taken constant) goes from a

sigmoidal shape (in absence of positive circuit) to an S-shape (in
the presence of a positive circuit). In the latter case, when the
negative circuit is at work, the cyclin oscillates, switches back and
forth over the bistable region and induces fast and well-marked
transitions between the inactive and the fully active forms of the
CDK. This fast-slow dynamics dampens the effect of molecular
noise. A systematic parameter screening confirms that this gain
in robustness does not depend on parameter values (Gonze and
Hafner, 2010).

The role of multiple, redundant, PF loops in the robustness of
the oscillatory dynamics of the CDK network was also studied in
more detailed cell cycle models (Domingo-Sananes and Novak,
2010; Gérard et al., 2012). The scheme in Figure 2D represents
a skeleton model for the CDK network driving the mammalian
cell cycle (Gérard et al., 2012). A PF loop is present at the G1/S
transition through the mutual activation between CDK2 and
its phosphatase CDC25, while two redundant PF loops regulate
the core of the G2/M transition of the cell cycle, through the
mutual activation between CDK1 and its phosphatase CDC25,
and the mutual inhibition between CDK1 and the kinase
WEE1. The temporal evolution of cyclin E/CDK2 and cyclin
B/CDK1 is more robust to stochastic fluctuations in the presence
than in the absence of PF loops (compare Figures 2E,G). In
addition, the presence of PF loops considerably enlarges the
amplitude of cyclin/CDK oscillations. The corresponding limit
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FIGURE 2 | Impact of positive feedback loops on the cell cycle robustness. (A) Scheme of a toy model for embryonic cell cycle (C, cyclin; M, CDK; X, protease), with

positive feedback (PF) loop denoted by the red arrow. (B,C) Deterministic (blue curves) and stochastic (red curves) limit cycle obtained without (B) or with (C) PF loop

(see Gonze and Hafner (2010) for details). The dashed, black curve is the steady state of M as a function of C obtained when C is kept constant. (D) Scheme of the

skeleton model for the mammalian cell cycle. The red arrows indicated the PFs. (E,G) Stochastic temporal evolution of cyclin E/CDK2 and cyclin B/CDK1 in the

absence (E) or presence (G) of PF driving the G1/S and G2/M transitions of the cell cycle. (F,H) Deterministic (red curves) and stochastic (black curves) limit cycle

oscillations in the cyclin B/CDK1 vs. cyclin A/CDK2 plot in the absence (F) or presence (H) of PF loops. See Gérard et al. (2012) for details.

cycle oscillations of the cell cycle in the presence or in the
absence of PF loops are illustrated in the cyclin B/CDK1 vs.
cyclin A/CDK2 plot (Figures 2F,H, where red curves correspond
to deterministic limit cycle oscillations while black curves
correspond to stochastic oscillations).

The results of stochastic simulations indicate that the
robustness of the cell cycle dynamics toward random fluctuations
in gene expression critically depends on the presence of multiple,
redundant, PF loops at the different cell cycle phase transitions.

CALCIUM DYNAMICS AT THE EDGE
BETWEEN STOCHASTIC AND
DETERMINISTIC BEHAVIORS

Depending on the conditions, intracellular Ca2+ dynamics can
appear as very noisy or display rather regular oscillations
(Dupont et al., 2016). Increase in cytosolic Ca2+ is initiated
by a rise in the concentration of inositol 1,4,5-trisphosphate
(IP3), a messenger that is synthesized in response to an
external hormonal stimulation. When IP3 binds to specific
receptors (IP3R) located in the endoplasmic reticulum (ER)
membrane, these receptors release Ca2+ from the ER into the
cytosol. Cytosolic Ca2+ itself regulates the activity of IP3R: low
concentrations of Ca2+ stimulate the opening of the channels,

while higher concentrations tend to close them. The positive
feedback of cytosolic Ca2+ on its own release through IP3R,
known as “Ca2+-induced Ca2+ release,” plays a crucial role in
Ca2+ dynamics. It allows the occurrence of oscillations and
permits the spatial coupling between IP3R, as the Ca

2+ released
by one IP3R stimulates the release of Ca2+ from a neighboring
IP3-bound IP3R (Dupont et al., 2016).

When IP3 concentration is low, only a few IP3R have IP3
bound and can be active. As Ca2+ does not diffuse well in
the cytoplasm because of heavy Ca2+ buffering, Ca2+ increases
remain localized around clusters of IP3R. In consequence, cells
display random repetitive localized Ca2+ increases called “Ca2+

puffs” (Keebler and Taylor, 2017). These puffs can be reproduced
by stochastic simulations of closely packed IP3R, as illustrated in
Figure 3A (Swillens et al., 1999; Thul et al., 2009). Following an
increase in IP3 concentration, Ca2+ increases invade the whole
cytosol and cells thus display repetitive sequences of cellular Ca2+

spikes, which appear more or less regular depending on the cell
type and on the level of stimulation by the external hormone or
by IP3 directly.

While some analyses conclude that the cellular Ca2+ dynamics
is intrinsically stochastic at all stimulation levels (Skupin and
Falcke, 2009; Thurley et al., 2014), it is also highly plausible
that at the global level, Ca2+ oscillations correspond to a
deterministic limit cycle perturbed by noise (Kummer et al.,
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FIGURE 3 | Stochastic vs. deterministic character of intracellular Ca2+

dynamics. (A) The IP3R that opens upon IP3 binding and is biphasically

regulated by Ca2+ is the building block of intracellular Ca2+ dynamics. When

isolated or clustered in small numbers, IP3R open randomly in a repetitive

manner leading to localized, highly variables Ca2+ signals called “puffs.” The

trace shows stochastic simulations of such Ca2+ puffs obtained as in Swillens

et al. (1999). The horizontal and vertical bars represent 1 s and 100 nM,

respectively. (B) Depending on the level of IP3, different numbers of IP3R

participate to the cellular Ca2+ dynamics. When IP3 is low, few IP3R

participate (left) while at high concentration of IP3, many channels participate,

which increases the spatial coupling through cytosolic Ca2+ (right).

(C) Gillespie’s simulations indicate that two situations generate qualitatively

different Ca2+ dynamics. For sub-threshold IP3 concentrations, noisy spiking

(with a high coefficient of variation) arises. A small increase in IP3 concentration

allows the passage of a threshold, in which case spiking corresponds

to limit-cycle oscillations perturbed by noise. See Dupont et al. (2008) for details.

(Continued)

FIGURE 3 | (D) Schematic representation of the stochastic vs. deterministic

character of Ca2+ dynamics in terms of a bifurcation diagram. Below the Hopf

bifurcation point, when the system is excitable, stochastic resonance

enhances the effect of random fluctuations. After the Hopf bifurcation point,

the system is oscillatory, and noise perturbs the regular character of the

oscillations.

2005; Dupont et al., 2008; Cao et al., 2014; Li et al., 2018).
As schematized in Figure 3B, at low concentrations of IP3,
only a few clusters of IP3R are active. Hence, little Ca2+ is
released and spatial coupling is limited. In contrast, at high
concentrations of IP3, many channels are active, allowing an
efficient coupling between clusters of IP3R through Ca2+-
induced Ca2+ release. The passage from a stochastic to a noisy
deterministic regime upon increasing the level of stimulation was
tested experimentally in noradrenaline-stimulated hepatocytes
(Dupont et al., 2008). While sub-threshold stimulation levels
induce either no response or highly irregular Ca2+ spikes, a tiny
increase in stimulation allows oscillations to become much more
regular (Figure 3C). The coefficient of variation estimated on
∼30 time series decreases from 31 to 12%. Simulations suggest
that this behavior can be explained by the passage from an
excitable regime displaying stochastic resonance to an oscillatory
regime following the crossing of the Hopf bifurcation point
because of a slight increase in the concentration of IP3 (Dupont
et al., 2008). Stochastic resonance is a well-known mechanism
by which a system amplifies weak signals emitted by a noisy
environment (Benzi et al., 1981). Fluctuations allowing stochastic
resonance are due to the small number of IP3R clusters. A recent
study (Keebler and Taylor, 2017) estimates that a HeLa cell, which
has roughly the same size as a hepatocyte, has ∼100 puff sites,
in agreement with the low number of clusters used to simulate
stochastic resonance-based Ca2+ spiking in hepatocytes.

INCREASE OF CELLULAR NOISE DUE TO
CALCIUM COMPARTMENTALIZATION IN
CELLULAR ORGANELLES

IP3-induced Ca2+ release from the ER is accompanied by
Ca2+ fluxes in and out mitochondria. By entering in these
organelles, Ca2+ activates the Krebs cycle and allows the
coupling of ATP supply with energy demand (Duchen, 1999).
Ca2+ enters into mitochondria via the mitochondrial Ca2+

uniporter (MCU), whose activity depends on Ca2+ and on
the mitochondrial membrane potential. Ca2+ efflux occurs
through Na+/Ca2+ and H+/Ca2+ exchangers. At each cytosolic
Ca2+ spike, mitochondria sequester some of the Ca2+ released
from the ER into the cytosol through the IP3 receptors (Ishii
et al., 2007; Wacquier et al., 2016). Most of these Ca2+ ions
then bind to buffers that are present in large concentrations
inside mitochondria. After the return of the cytosolic Ca2+

concentration to its basal value, mitochondria start releasing
their Ca2+, which progressively dissociates from buffers. By
releasing Ca2+ in the cytoplasm during the interspike interval,
mitochondria play an active role in cellular Ca2+ dynamics: they

Frontiers in Molecular Biosciences | www.frontiersin.org 6 April 2018 | Volume 5 | Article 34

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


Gonze et al. Noise in Cellular Systems

control the frequency of the Ca2+ spikes by regulating the rate of
IP3 receptor reactivation.

Mitochondria are small organelles containing a limited
number of Ca2+ ions and can thus be seen as potential sources of
randomness in Ca2+ dynamics. We investigated this question by
performing Gillespie’s simulations of a model of Ca2+ dynamics
taking mitochondria into account (Wacquier et al., 2016, 2017).
The model (Figure 4A) describes both Ca2+ dynamics and
mitochondrial metabolism as these processes closely interact.
It is visible (Figure 4B) that mitochondrial Ca2+ dynamics is
more affected by noise than cytoplasmic Ca2+ dynamics: the
baseline and shape of the oscillations in mitochondria (green
curve) are more variable than in the cytosol (blue curve).
Moreover, this noise strongly impacts on the regularity of
cytosolic Ca2+ oscillations. Simulations indicate that eliminating
the mitochondrial fluxes always decreases the coefficient of
variation (CV) of the interspike interval (Figure 4C). This
decrease in CV can be as large as 20% for realistic values of cell
and mitochondrial volume (100 and 7.3 µm3 for the total and
mitochondrial volumes, respectively).

This computational prediction thus suggests that the coupling
between Ca2+ signaling and mitochondrial metabolism occurs at
the expense of the regularity of the stimulation-induced cytosolic
Ca2+ spikes.

NOISE AS A TRIGGER TO INITIATE
EMBRYONIC CELL FATE DETERMINATION

Cell specification in early mammalian blastocysts is governed
by interactions between transcription factors, modulated by
extracellular signaling. Although cell differentiation is highly
organized, both spatially and temporally, noise is involved in
this process and extensive expression heterogeneities among
cells precede the emergence of lineage (Chazaud and Yamanaka,
2016). In mice, the second differentiation process, which
corresponds to the specification of the Inner Cell Mass (ICM)
cells into Primitive Endoderm (PrE) and Epiblast (Epi) cells, can
be described as the evolution toward one of the multiple steady
states of the gene regulatory network schematized in Figure 5A

(Bessonnard et al., 2014). Nanog and Gata6 are the transcription
factors necessary to produce Epi and PrE cells, respectively. Their
mutual inhibition is coupled to auto-activation. Moreover, Gata6
activates the ERK pathway while Nanog inhibits it. Besides, cells
communicate through the secretion of Fgf4, which is inhibited
by Gata6. Thus, Nanog-expressing cells (Epi) stimulate the Erk
pathway in Gata6-expressing cells (PrE). Modeling suggests that
this complex network of interactions allows for the existence
of three stable steady states in the levels of expression of
transcription factors, as shown in Figure 5B (De Mot et al., 2016;
Tosenberger et al., 2017). Each steady state corresponds to a given
cell fate: PrE (high Gata6, high Erk, lowNanog), Epi (highNanog,
low Erk, low Gata6) and undifferentiated ICM (intermediate
Nanog, Gata6, and Erk). However, observations in developing
embryos show that the evolution toward one or the other cell fate
is not fully deterministic, as at the 64 cell stage, Epi, and PrE cells

FIGURE 4 | Involvement of mitochondrial Ca2+ fluxes in simulations of Ca2+

oscillations. (A) Schematic representation of the Ca2+ exchanges processes

between the three main cellular Ca2+ compartments: the cytosol, the

mitochondria and the endoplasmic reticulum (ER). IP3R: IP3 receptor; MCU:

mitochondrial Ca2+ uniporter; NCX: Na+/Ca2+ exchanger; SERCA: sarco- or

endoplasmic reticulum Ca2+ ATPase. (B) Numerical simulations of Ca2+

oscillations in a model including mitochondrial Ca2+ fluxes (blue and green

traces) and in a model that does not consider this organelle (red trace). Given

the small volume of mitochondria, mitochondrial Ca2+ fluxes are quite

irregular, which impacts on the variability of the interspike interval. Note,

however, that the amplitude of the oscillations is stabilized in the presence of

mitochondria. (C) Statistical analysis of the interspike interval when considering

(blue) or neglecting (red) mitochondrial Ca2+ fluxes. Boxes indicate the first

quartiles of the distributions and bars inside the box, the median values.

Interspike intervals are normalized with respect to the corresponding

deterministic value. See Wacquier et al. (2016, 2017) for details.

are arranged in a mixed and seemingly random fashion, referred
to as salt-and-pepper pattern (Kang et al., 2013).

Dynamical simulations of a system of four ODE describing
the cellular regulatory network shown in Figure 5A suggests that
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FIGURE 5 | Dynamics of embryonic cell fate determination. (A) Scheme of the gene regulatory network. (B) Bifurcation diagram showing the steady state of Nanog as

a function of FGF4. The blue and red arrows depict the trajectory of two cells (for more details, see De Mot et al., 2016). (C) Time evolution of Nanog and Gata6 in the

two-cell model. (D) Snapshots showing the simulated the evolution of embryonic cells from the 3 inner cells stage in the 3D model including cell division. Outer cells

(trophectoderm) are not considered. Cells are colored according to the proportion of Nanog (red) and Gata6 (blue), with gray indicating blastomers with very low

Nanog and Gata6 concentrations. See Tosenberger et al. (2017) for details.

noise on extracellular Fgf4 plays a key role in the establishment
of the salt-and-pepper pattern, but also in the specification
process itself (Bessonnard et al., 2014; De Mot et al., 2016).
This dynamical process is represented in Figures 5B,C for the
simplified case of two differentiating cells. When the specification
process begins, Gata6, and Nanog are weakly expressed. As the
level of extracellular Fgf4 is intermediate, cells evolve toward
the middle branch of the bifurcation diagram, i.e., the ICM
state where both transcription factors are co-expressed. In the
extracellular medium, Fgf4 decreases due to its degradation.
The two cells then move toward the left part of the bifurcation
diagram. If, because of external noise, one of the cells feels a
slightly lower concentration of Fgf4 than the other cell (cell 1
in the schematic representation shown in Figure 5B), this cell
will reach the end of the intermediate branch before the other
one and will “jump” to the Epi branch. In consequence, the level
of Gata6 decreases in cell 1 and its secretion of Fgf4 increases.
The resulting increase in extracellular Fgf4 induces the transition
of cell 2 toward the PrE state, while cell 1 remains on the Epi
state because the branch is stable over a wide range of Fgf4
concentrations.

When simulated for a realistic number of cells that can
also divide (Tosenberger et al., 2017), the same computational
model can account for the specification of the inner cells of the
embryo into the different cell types, which are moreover arranged
in a salt-and-pepper pattern as observed in vivo (Figure 5D).
Indeed a given cell tends to be surrounded by cells of the
other type (as quantified in Figure 3D in Tosenberger et al.,
2017). Thus, noise on external Fgf4—that likely originates from
restricted diffusion in the compact embryo—can initiate cell
fate specification, which then occurs in a self-organized process

thanks to the interplay between the gene regulatory network
and extracellular signaling through Fgf4. Other computational
approaches emphasize the importance of the interplay between
multistability and noise in early mammalian development
(Krupinski et al., 2011; Ohnishi et al., 2014; Nissen et al.,
2017).

Additional sources of heterogeneity include the variability
in the duration of cell division, unequal partition of the
molecules in the daughter cells after cell division, and noise
on the initial concentration of the key regulatory factors
(namely Nanog and Gata6). Sensitivity analyses confirmed
that the proposed specification mechanism is robust with
respect to these factors. Indeed, the proportions of the
differentiated cell types and the salt-and-pepper pattern
remain unchanged in presence of a moderate amount
of these extrinsic sources of noise (Tosenberger et al.,
2017).

CONCLUDING REMARKS

Biological systems are inevitably subject to noise. Both intrinsic
and extrinsic sources of noise affect cellular dynamics, so that
genetically identical cells in the same environment can behave
differently from one to another. These differences are manifested
by the heterogeneity in the level of gene expression (Elowitz
et al., 2002) or the progressive desynchronization of oscillations
(Elowitz and Leibler, 2000). Noise is thus often seen as a nuisance,
but it can also have constructive roles. We have illustrated
here how modeling-based approaches provide insights on the
effect of noise in a variety of selected cellular systems including
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oscillatory networks, signaling pathways, and developmental
processes.

Noise in Oscillatory Processes
Circadian rhythms must ensure a proper adaptation of the
organisms to cyclical environmental conditions. The cell division
cycle must be tightly regulated to guarantee an adequate
density- and environment-dependent growth. We may thus
expect that noise reduction mechanisms are implemented in
the molecular circuitry of these complex cellular systems.
Mathematical modeling allow to explore regulatory network
features that may contribute to the robustness of oscillations.
Thus stochastic simulations of models for circadian clocks and
for the cell cycle highlight how the robustness of oscillations
is affected by various factors such as positive feedback loops,
transcriptional mechanisms, nonlinear kinetics, or external
periodic forcing. Coupling transcription-translation cycle to
protein phosphorylation cycle may also contribute to the
robustness of circadian oscillations (Zwicker et al., 2010). Besides
the design of individual cellular oscillators, the coupling between
cells constitutes an additional strategy to cope with noise.
The idea that robust circadian oscillations may emerge from
the coupling between sloppy individual clocks, predicted by
theoretical modeling, appears to be supported by single cell
recording in both dispersed and coupled cells. However, further
investigations are needed to fully clarify the relative contributions
of the molecular network architecture, the kinetic nonlinearities,
the intercellular coupling and the different sources of noise in
enhancing the robustness of biological oscillators.

During the last years, microRNAs (miRNAs) were identified
as a potential additional source of robustness against molecular
fluctuations. MicroRNAs are noncoding RNA molecules of 20–

30 nucleotides. They bind to the 3
′

UTR of messenger RNA
which represses protein synthesis by targeting the corresponding
messenger RNA for degradation and/or by inhibiting its
translation (Bartel, 2009). Besides the key role of miRNAs for
the down-regulation of protein expression (Guo et al., 2010),
it was shown that miRNAs can induce thresholds in protein
synthesis (Mukherji et al., 2011). Moreover, they are often
involved in feed-forward regulations with their target genes,
allowing an increase in the robustness of protein expression
toward molecular noise (Osella et al., 2011). MicroRNAs provide
a new layer in the regulation of protein expression that can
confer robustness of gene expression (Ebert and Sharp, 2012).
In addition, numerous miRNAs have been identified to play key
roles in the dynamics of regulatory networks driving the cell cycle
(Bueno and Malumbres, 2011) or the circadian clock (Cheng
et al., 2007). In that framework, a theoretical model indicates that
the presence of miRNA embedded in a negative feedback loop,
which can characterize the regulatory structure of the circadian
rhythms, could enhance the time delay of the oscillations and
favor the oscillations of large amplitude (Gérard and Novak,
2013).

Noise in Signaling
One of the key characteristics of Ca2+ oscillations is that their
frequency increases with the level of external stimulation, thus

leading to the transformation of an analog signal (the agonist
concentration) into a digital one (the frequency of the repetitive
Ca2+ spikes). It is well known that frequency-encoded signals are
more resistant to noise than amplitude-coded ones (Rapp et al.,
1981). The question however arises as how frequency-encoded
signals might be affected by significant stochastic variations in
the average interspike interval, observed in many cell types.
A detailed analysis of the stimulus-frequency relationship in
individual cells has shown that changes in the extracellular
stimulus intensity are encoded by fold changes in the average
interspike interval, this fold change being similar for each cell
despite the large CV on intervals within each cell and despite the
large variability in average interspike interval in individual cells
(Thurley et al., 2014). Interestingly, such fold change in response
after simulation increase has been reported for other signaling
pathways, as for example the nuclear concentration of the NF-κB
transcription factor (Lee et al., 2014).

Noise in Development
Many developmental processes are based on spatial information
(such as gradients of morphogens) but in some cases stochasticity
holds a key role in cell fate determination. Stochasticity does
not mean that everything is random. A stochastic component
serves as a source of heterogeneity, often required to lead cells
in one or another developmental pathway. These pathways are
typically associated with alternative steady states. If two or more
stable steady states coexist in the same environmental conditions
(bi/multi-stability), a small difference in the initial conditions
of different cells can be sufficient to induce their evolution
toward different steady states (fates), as exemplified in the
embryonic differentiation system described above. To be reliable,
the differentiation mechanism should also prevent spontaneous,
noise-induced switches between cell fates and should lead to
well-proportioned cells in each fate. This can be achieved by
cooperative roles of multiple regulatory feedbacks (Pfeuty and
Kaneko, 2016).

Differentiation based on bi/multi-stable systems generates
permanent, irreversible cell fates. In other cases, differentiated
states are only transient. This is the case for example of
the “competent” state in Bacillus subtilis, a state characterized
by the capability for the bacteria to uptake DNA from the
environment. A model based on the gene regulatory network
explains the spontaneous and transient entry into competence
in term of excitability and noise-driven excursion in the phase
space (Süel et al., 2006). The model highlights the importance
of both positive and negative feedback loops. Whereas the
positive feedback controls the frequency at which cells become
competent, the negative circuit is crucial for the exit from the
competent state. Bypassing the negative circuit is thus predicted
to “stabilize” the cells in the competent state. This prediction was
verified experimentally (Süel et al., 2006). Such mechanism may
not be limited to bacteria. A similar mechanismwas postulated to
occur inmammalian embryonic stem cell differentiation (Kalmar
et al., 2009).

Finally, it should be noted that, although treated separately,
the different processes discussed here are, in reality, not
independent of each other. Mutual coupling between the
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circadian clock and the cell cycle (Feillet et al., 2015), circadian
regulation of cell differentiation (Brown, 2014), or signaling-
dependent cell fate decision (Sonnen and Aulehla, 2014) are now
well established. Fluctuations in the environment or generated at
the level of a given process are then expected to be transmitted
to the coupled processes. Regulatory mechanisms may thus have
evolved to counteract the undesired propagation of noise, for
example from the cell cycle to the circadian clock, as suggested
by the theoretical study of Paijmans et al. (2016). Similarly, as
cell fate decision is critical for the development and survival
of the organism, signaling must be able to reliably filter noise
from actual environmental changes. For some specification steps,
however, the transmission of stochasticity may be advantageous.
It was also speculated that (dephased) circadian oscillators could
constitute a source of heterogeneity for stem cell, allowing them
to optimally respond to various signals (Brown, 2014).

Conclusion
The dynamics of biological processes results from the interplay
between the hard-wired architecture of regulatory circuits and
the multiple sources of noise. Deterministic and stochastic
modeling approaches constitute valuable tools to interpret
experimental observations and to make sense of the biological
complexity. The underlying bistability, dependent on positive
feedback loops, and its contribution to the robustness of the
cell cycle or the phenomenon of stochastic resonance revealed
by models of Ca2+ signaling are features that would not be
predicted by sheer intuition. Even less predictable is the behavior
of interacting cell populations in the presence of noise. Noise-

induced synchronization of circadian clocks and noise-induced
cell differentiation are properties that were revealed by modeling.
However many questions remain open. Various aspects such as
for example, the contribution of miRNA in the robustness of
oscillatory processes or the relative importance of the different
sources of noise involved in cell fate determination still need
to be investigated. The path, initiated by Delbrück in 1940, has
beautiful days ahead.
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