'," frontiers

in Molecular Biosciences

BRIEF RESEARCH REPORT
published: 12 September 2018
doi: 10.3389/fmolb.2018.00081

OPEN ACCESS

Edited by:
Pier Paolo Piccaluga,
Universita degli Studi di Bologna, Italy

Reviewed by:

Jaime F. Modlano,

University of Minnesota Twin Cities,
United States

Mahendra Pratap Kashyap,
University of Alabama at Birmingham,
United States

*Correspondence:
Petter Brodin
petter.brodin@ki.se

T These authors have contributed
equally to this work

Specialty section:

This article was submitted to
Molecular Diagnostics and
Therapeutics,

a section of the journal

Frontiers in Molecular Biosciences

Received: 15 April 2018
Accepted: 13 August 2018
Published: 12 September 2018

Citation:

Chen Y, Lakshmikanth T, Olin A,
Mikes J, Remberger M and Brodin P
(2018) Continuous Immune Cell
Differentiation Inferred From
Single-Cell Measurements Following
Allogeneic Stem Cell Transplantation.
Front. Mol. Biosci. 5:81.

doi: 10.3389/fmolb.2018.00081

Check for
updates

Continuous Immune Cell
Differentiation Inferred From
Single-Cell Measurements Following
Allogeneic Stem Cell Transplantation

Yang Chen'?, Tadepally Lakshmikanth'?, Axel Olin’, Jaromir Mikes', Mats Remberger?*
and Petter Brodin "**

" Unit of Clinical Pediatrics, Science for Life Laboratory, Department of Women’s and Children’s Health, Karolinska Institutet
and Karolinska University Hospital, Stockholm, Sweden, 2 Department of Oncology-Pathology, Karolinska Institutet,
Stockholm, Sweden, ° Center for Allogeneic Stem Cell Transplantation, Karolinska University Hospital, Stockholm, Sweden,
“ Department of Neonatology, Karolinska University Hospital, Stockholm, Sweden

The process of immune system regeneration after allogeneic stem cell transplantation
is slow, complex, and insufficiently understood. An entire immune system with all
of its cell populations must regenerate from infused donor hematopoietic stem cells
over the course of weeks and months post-transplantation. Both innate and adaptive
arms of the immune system differ in their capacity and speed to reconstitiute in
the recipient, which contributes to inadequacy in global immunity during the delayed
reconstitution period. Systems-level analyses of immune systems in human patients
have been made possible by high-throughput and high-dimensional, state-of-the-art,
single-cell methodologies such as mass cytometry. Mass cytometry has revolutionized
our ability to comprehensively profile all immune cell populations simultaneously in blood
or tissue samples, providing signatures of differentially regulated cells in a range of
clinical conditions. Such kind of systems immunology analyses promise not only for more
accurate descriptions of variation between patients but also within individual patients over
time, inter-dependencies between cell populations and the inference of developmental
trajectories for specific cell populations. Here, we took advantage of a recently performed
longitudinal mass cytometry analysis in 26 patients with hematological malignancies
followed during the first 12 months following allogeneic stem cell transplantation.
We present a proof-of-principle analysis to understand the evolution of individual
immune cell populations. By applying non-linear dimensionality reduction and feauture
extraction algorithms, we infer trajectories for individual immune cell populations, and
map continuous marker expression changes occuring during immune cell regeneration
that add novel information about this developmental process.

Keywords: mass cytometry, CyTOF, stem cell transplantation, systems immunology, human immunology, diffusion
maps
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INTRODUCTION

Human immune systems are highly variable between individuals
and complex within individuals, consisting of multiple
specialized cell populations that circulate and establish
unique tissue niches. Fortunately, important information
about even distal immune responses can be obtained from
peripheral blood, the conduit of immune cells transiting from
one organ to another (Brodin and Davis, 2016). Networks of
such specialized cell populations give rise to immune responses
and such responses can therefore only be fully understood if
all participating immune cells are taken into account. Novel
measurement techniques now allow for such simultaneous
analyses of all cell populations present in the same blood sample
(Davis et al., 2017). One such key measurement technique is
mass cytometry (Bandura et al.,, 2009; Bendall et al., 2011). In
mass cytometry, antibodies targeting proteins of interest are
coupled to metal ions, each with a unique mass, and these
can subsequently be detected using an ICP-MS instrument
with single-cell resolution. Close to 50 different antibodies
can now be combined and distinguished. This allows for
the simultaneous analysis of all white blood cell populations
in peripheral blood and variation in frequencies between
individuals can be quantified (Brodin et al, 2015; Roederer
et al,, 2015; Carr et al., 2016). Using such novel assays, immune-
mediated diseases and therapies aimed at modulating immune
responses can be made more understandable (Kaczorowski
et al,, 2017). One example in recent years is the application
of systems immunology analyses to vaccine-induced immune
responses (Tsang et al, 2014; Hagan et al, 2015; Sobolev
et al, 2016). Apart from predicting the strength of vaccine
responses, information from these studies have revealed novel
mechanisms of general importance to immunology at large
(Ravindran et al., 2016). Also in tumor immunology, systems-
level analyses are taking hold, providing novel information
on the immune landscape of solid tumors (Chevrier et al,
2017; Lavin et al, 2017), and perturbations to immune cell
networks associated with clinical outcome after allogeneic stem
cell transplantation (Lakshmikanth et al., 2017). In the latter
study, we analyzed immune cell and protein recovery during
the first year after transplantation and identified differentially
regulated features associated with clinical outcome of the patients
(Lakshmikanth et al., 2017). Stem cell transplantation offers
a unique opportunity for studying immune cell development
and regeneration in humans, a process previously studied
mostly in murine model systems (Davis and Brodin, 2018).
Here we used this recently published mass cytometry dataset
from patients undergoing allogeneic stem cell transplantation
(Lakshmikanth et al., 2017) and performed a proof-of-principle
analysis to reconstruct continuous immune cell development.
We use diffusion maps to infer developmental trajectories
for multiple immune cell populations and the results reveal
novel aspects of immune cell regeneration after transplantation
and improving our understanding of human immune cell
differentiation and maturation after hematopoietic stem cell
transplantation.

MATERIALS AND METHODS

Patients and Blood Samples

Twenty-six patients with hematological malignancies were
involved in this study, who have undergone allogeneic stem
cell transplantation at the Center for Allogeneic Stem Cell
Transplantation (CAST), Karolinska University Hospital,
between 2008 and 2013. Blood samples from these patients
were drawn at 1, 2, 3, 6, and 12 months post-transplantation.
Informed consent was provided by all patients in writing prior
to their participation in accordance with the Declaration of
Helsinki and our Ethical permit (2010/760-31/1) approved by
the local Ethical review board in Stockholm.

Mass Cytometry Analysis

PBMCs obtained by density gradient centrifugation from the
blood samples of all patients were cryopreserved in freeze
medium (90% FBS, 10% DMSO) and stored in liquid nitrogen.
At the time of cell analyses, these cryopreserved PBMCs were
thawed in RPMI medium supplemented with 10% fetal bovine
serum (FBS), penicillin-streptomycin and benzonase (Sigma-
Aldrich, Sweden). For live-dead cell distinction, cells were stained
with 2.5uM Cisplatin (Fluidigm) in RPMI without serum for
5min at RT and quenched with RPMI containing 10% FBS. Cells
were then re-suspended in CyFACS buffer (PBS with 0.1% BSA,
0.05% sodium azide and 2mM EDTA), counted and around 1-
2 million live cells were used for staining in a 96-deep well
round bottom plate (Thermo Fisher Scientific, Waltham, MA),
following which they were incubated for 30 min at 4°C with
a 30 pl cocktail of metal conjugated antibodies against surface
antigens. This was followed by a wash with CyFACS buffer
and overnight fixation using 1% formaldehyde made in PBS
(Polysciences Inc., PA, USA). For intracellular staining, cells were
permeabilized with ice cold methanol (Sigma-Aldrich, Sweden)
for 10 min at 4°C and stained with 30 pl of intracellular Ab
cocktail (Ki-67) for 60 min at RT. Cells were washed and fixed
in 4% formaldehyde at 4°C until acquisition. The antibody
list is shown in Supplementary Table 1. Within a week after
staining, cells were stained with DNA intercalator (0.125pM
Iridium-191/193 or MaxPar® Intercalator-Ir, Fluidigm) in 4%
formaldehyde made in PBS for 20 min at RT. Cells were washed
twice with CyFACS, once with PBS and milli-Q water, filtered
through a 35um nylon mesh and diluted to 500,000 cells/ml.
Cells were then acquired at a rate of 300-500 cells/s using a
CyTOF 2 (Fluidigm) mass cytometer, CyTOF software version
6.0.626 with noise reduction, a lower convolution threshold of
200, event length limits of 10-150 pushes, a sigma value of 3 and
flow rate of 0.045 ml/min.

Antibodies and Reagents

Antibodies for CyTOF analyses were obtained in a purified
form formulated in carrier/protein-free buffer and were then
coupled to lanthanide metals using the MaxPar X8 antibody
conjugation kit (Fluidigm). The panel of antibodies is shown
in Supplementary Table 1. The protein concentration was
determined by measurement of absorbance at 280nm, and
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12 mo

FIGURE 1 | Phenotypic changes revealed across cell populations at different time points post transplantation. (A) T-cell phenotypes across time-points analyzed
together by tSNE and visualized separately to make global structure of the data comparable across time-points. (B) B-cells, (C) Monocytes, and (D) NK-cells

visualized as in (A).

tSNE Y

T-cells

B-cells

Monocytes

CD20

NK-cells

6

tSNE X

Frontiers in Molecular Biosciences | www.frontiersin.org

September 2018 | Volume 5 | Article 81


https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles

Chen et al.

Evolution of Immune Cells After ASCT

A i B
B—cells % 12 B_cells  CD19 CD22 HLA-DR CD24 CD27 CD38 CD20 IgD CD45RACD45RB CD44
2fte bc2 — J/ \ v Ry
‘g / \—\ " / /"\
. e o x = e
Q Q DC6 _— \ ™~
1 J /‘\—\/ I\ \,./'\
© DC10
00 — AT e e
(o] » DC2 D
NK-cells " sl RP) NK-cells CD45 CD57 CD16 CD1ic NKG2C CXCR3 CD161 CD27 CD45RA CD56  2B4
[ 8 Y S
% 6 DC2 _\}\_,\\__,\_
% = '\ __)¥ N——
2 = s ~— ~/ N
Q DC8 S~ SN— \\
a o N\ ——— \/- T —
2 /\A\‘ /"'\
1 > N
@) DC9 [
DC2 AN
E tad F
. “lio _ CD45 CD1ic CCR3 CD123 CD44 CD38 HLA-DR
Basophils 2 Basophils
Q)
@ DC1 \
£ \\-\ ~ jBm. immus:
< =| -3 8 /
[$) a DC2
a , ~T N NTTNCLINTN
1 7o DC4 |— \ —_—
DC2 e
—]
FIGURE 2 | Diffusion Maps reveal a continuous evolution of cell populations over time. (A) Gated B-cells visualized along the time-variant DCs. Arrows indicate the
direction of change over time. (B) The ordering of B-cells along the indicated DCs and median expression of the indicated markers. (C,D) NK-cells are shown as in
(A,B). (E-F) Basophils shown as in (A,B).

the metal-labeled antibodies were diluted 1:1 in Candor PBS
Antibody Stabilization solution (Candor Bioscience, Germany)
for long-term storage at 4°C.

Diffusion Maps Analysis

Manually classified populations (T-cells, B-cells, NK-cells,
monocytes, and basophils) from one patient at a time, were
merged across all time-points for calculation of diffusion
maps using the destiny package within the Bioconductor
release 3.2 (http://bioconductor.org/packages/release/bioc/html/
destiny.html) used in R version 3.2.3 (2015-12-10) in R
Studio server (version 0.99.473) on a 16 core Linux server
(Centos 6.7). To identify changes associated with time,
single-cell data was plotted colored by time-point and the
diffusion components best describing transitions over time were
identified.

RESULTS

Cell Population Frequencies Change Over
Time After Stem Cell Transplantation

In the context of immune system regeneration after
transplantation, it is conceivable that immune cell phenotypes
might exist that do not follow the expected canonical phenotypes.
In order to improve the classification of five principal immune
cell populations, we used a recently developed dimensionality
reduction and manual clustering tool (ACCENSE, www.

cellaccense.com) (Shekhar et al., 2014) to visualize single-cell
level data in 2D (tSNE) and classify cell populations not based
on individual markers, but on the basis of all 37 parameters
analyzed (Supplementary Figure 1A). Using this method we
selected T-, B-, and NK-cells, monocytes and basophils in each of
the 26 patients at 1, 2, 3, 6, and 12 Months post-transplantation
(Supplementary Figure 1A). Since relative frequencies fail
to account for changes in total white blood cell counts and
such changes are common and important aspects of immune
system regeneration in this situation, we instead recalculated
relative frequencies into absolute cell counts using clinical lab
measurements of white blood cell counts and neutrophil counts
(107 cells/L of blood). This resulted in cell count measurements,
which revealed drastic changes over time for each of these
populations (Supplementary Figure 1B). T-cell counts increase
up to about 150 days post-transplantation and plateau thereafter
while B-cells engraft continuously, but slow-paced during the
first year post-transplantation (Supplementary Figure 1B).

Phenotypic Changes Revealed Across Cell
Populations at Different Time Points After
Transplantation

Even previously unknown cell populations which otherwise
would be missed by manual gating based on expected marker
combinations can be identified. The phenotypic distributions
reveal striking changes between time-points that differ between
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the canonical cell populations. For T-cells, the most dramatic
changes occurred between the 1st and 2nd month and between
the 6th and 12th month (Figure 1A), while B-cell phenotypes
changed completely between the 3rd and 6th month (Figure 1B).
In contrast, monocyte phenotypes were largely stable throughout
the year after transplantation (Figure1C), while NK cell
phenotypes were characterized by a convergence from multiple
subpopulations into the two main subpopulations, CD56 bright
and dim NK cells, by 12 Months after transplantation
(Figure 1D).

Diffusion Maps Reveal a Continuous

Evolution of Cell Populations Over Time

The continuous nature of phenotypic changes occurring during
immune reconstitution is difficult to appreciate from the
discrete time-points alone. In order to reconstruct phenotypic
trajectories during immune regeneration, we applied another
non-linear dimensionality reduction algorithm, diffusion maps
(Coifman et al., 2005; Haghverdi et al., 2015). When applied
to mass cytometry data generated at discrete time-points,
diffusion components, DCs (eigenvectors) that best correlate
with time points, can be considered pseudo-time axes describing
phenotypic evolution as a function of time after transplantation.
In this way, marker expression changes along such pseudo-time
axes reconstruct continuous phenotypic changes occurring after
transplantation (Figure 2). B-cells showed a branched pattern of
evolution along DCs 6, 2, and 10 that best correlated with time
(Figure 2A). Changes in marker expression during the evolution
of B-cells verify a previously described lack of CD27" memory B-
cells (Avanzini et al., 2005), but also reveal concomitant changes
across a range of other markers (CD22, CD24, CD38, and CD44)
(Figure 2B). NK cells evolve in a different pattern, starting out as
a heterogeneous population and becoming increasingly focused
with time into a more homogeneous one (Figure2C). The
convergence of NK cell phenotypes (toward the center of DC8)
is accompanied by an increase in CD57, CD16 and a reduction
in CD56 and CD27 expression (DC8 middle) (Figure 2D).
In contrast, 2B4 and CD45 expression is stable during
NK cell differentiation (Figure 2D). Basophils were relatively
stable in frequency over the course of immune reconstitution
(Supplementary Figure 1B), but nevertheless exhibited a clear
phenotypic trajectory during immune reconstitution, most
strongly represented by an inverse correlation with DCl1
(Figure 2E). Along this trajectory, there is a continuous increase
in canonical basophil markers CCR3, CD123, CD38, even for the
more broadly expressed CD44 receptor (Figure 2F).

DISCUSSION

Canonical immune cell populations are typically defined based
on prior knowledge of marker expression through a tedious
process of manual gating. While biaxial plots showing two
markers at a time are used to select cells with only a few
markers taken into account to classify cells into specific cell
populations, ACCENSE allows for visualization of cell data
using 37 markers analyzed in a tSNE plot and this depicted

the change in cell frequencies better in these patients analyzed
post stem cell transplantation. Calculation of absolute cell counts
revealed drastic changes overtime in cell populations. Early after
transplantation, monocytes, and NK cells engraft and provide
early protection from infectious disease complications (Storek
et al, 2008). These dynamical changes reveal the complete
reconfiguration of the immune systems in patients undergoing
stem cell transplantation from an innate dominated system early
to a more adaptive immune system later after transplantation.

Apart from these drastic changes observed, changes in
phenotypes of cells add another layer of information needed
to better understand the process of immune regeneration
after transplantation. To investigate such changes in cell
phenotypes in an unbiased manner, we took advantage of
the dimensionality reduction and data visualization method, t-
stochastic neighborhood embedding (tSNE) (van der Maaten
and Hinton, 2008), previously applied also to mass cytometry
data (Amir el et al, 2013). In the tSNE 2-d distribution
plots, individual cells are aggregated into local neighborhoods
together with other cells of similar phenotypes based not just
on a few markers, but on the entire marker set analyzed
(Supplementary Figure 1 and Figure 1).

These mass cytometry analyses reveal phenotypic changes
occurring throughout regeneration albeit at different time
intervals for different cell types, adding yet another layer of
complexity to the process of immune cell reconstitution in
patients undergoing stem cell transplantation. Together, our data
illustrate that mass cytometry analyses performed at discrete
time-points can be used together with diffusion maps to
reconstruct continuous phenotypic trajectories during immune
cell regeneration. To fully compare statistically, differences in
the developmental processes of individual cell populations, more
work will be required and new computational strategies devised.

AUTHOR CONTRIBUTIONS

PB: Conception and study design; MR and PB: Sample
collection; TL, AO, and PB: Mass cytometry panel development,
optimization, and implementation; YC, PB, and TL: Data
pre-processing, cell frequencies analysis, and cluster analysis
(ACCENSE, Diffusion maps); YC and PB: Data visualization
(tSNE); YC, TL, AO, JM, and PB: Manuscript preparation; YC,
TL, AO, JM, MR, and PB: Critical reading and intellectual
assessment of manuscript. All authors read and approved the
final manuscript.

FUNDING

This work was supported by grants from the Swedish Cancer
Society, The Swedish Childhood Cancer Foundation, Karolinska
Institutet and the Swedish Research council.

ACKNOWLEDGMENTS

We are indebted to all members of the Brodin lab, and
also to our clinical colleagues at the Center for Allogeneic

Frontiers in Molecular Biosciences | www.frontiersin.org

September 2018 | Volume 5 | Article 81


https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles

Chen et al.

Evolution of Immune Cells After ASCT

Stem cell Transplantation (CAST), Karolinska University
Hospital.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fmolb.
2018.00081/full#supplementary-material

REFERENCES

Amir el,-A. D., Davis, K. L., Tadmor, M. D., Simonds, E. F., Levine, J. H., Bendall, S.
C., etal. (2013). viSNE enables visualization of high dimensional single-cell data
and reveals phenotypic heterogeneity of leukemia. Nat. Biotechnol. 31, 545-552.
doi: 10.1038/nbt.2594

Avanzini, M., Locatelli, F., Santos, C., Maccario, R., Lenta, E., Oliveri, M.,
et al. (2005). B lymphocyte reconstitution after hematopoietic stem cell
transplantation: functional immaturity and slow recovery of memory CD27+
B cells. Exp. Hematol. 33, 480-486. doi: 10.1016/j.exphem.2005.01.005

Bandura, D., Baranov, V., Ornatsky, O., Antonov, A., Kinach, R., Lou, X,
et al. (2009). Mass cytometry: technique for real time single cell multitarget
immunoassay based on inductively coupled plasma time-of-flight mass
spectrometry. Anal. Chem. 81, 6813-6822. doi: 10.1021/ac901049w

Bendall, S., Simonds, E., Qiu, P., Amir, E., Krutzik, P., Finck, R., et al.
(2011). Single-cell mass cytometry of differential immune and drug
responses across a human hematopoietic continuum. Science 332, 687-696.
doi: 10.1126/science.1198704

Brodin, P., and Davis, M. (2016). Human immune system variation. Nat. Rev.
Immunol. 17, 21-29. doi: 10.1038/nri.2016.125

Brodin, P., Jojic, V., Gao, T., Bhattacharya, S., Angel, C., Furman, D, et al. (2015).
Variation in the human immune system is largely driven by non-heritable
influences. Cell 160, 37-47. doi: 10.1016/j.cell.2014.12.020

Carr, E., Dooley, J., Garcia-Perez, J., Lagou, V., Lee, J., Wouters, C., et al. (2016).
The cellular composition of the human immune system is shaped by age and
cohabitation. Nat. Immunol. 17, 461-468. doi: 10.1038/ni.3371

Chevrier, S., Levine, J. H., Zanotelli, V. R. T., Silina, K., Schulz, D., Bacac, M.,
et al. (2017). An immune atlas of clear cell renal cell carcinoma. Cell 169,
736-749.e18. doi: 10.1016/j.cell.2017.04.016

Coifman, R., Lafon, S., Lee, A., Maggioni, M., Nadler, B., Warner, F., et al.
(2005). Geometric diffusions as a tool for harmonic analysis and structure
definition of data: diffusion maps. Proc. Natl. Acad. Sci. U.S.A. 102, 7426-7431.
doi: 10.1073/pnas.0500334102

Davis, M., and Brodin, P. (2018). Rebooting human immunology. Annu.
Rev.  Immunol. 36, 1-22. doi: 10.1146/annurev-immunol-042617-
053206

Davis, M., Tato, C., and Furman, D. (2017). Systems immunology: just getting
started. Nat. Immunol. 18, 725-732. doi: 10.1038/ni.3768

Hagan, T., Nakaya, H., Subramaniam, S., and Pulendran, B. (2015). Systems
vaccinology: enabling rational vaccine design with systems biological
approaches. Vaccine 33, 5294-5301. doi: 10.1016/j.vaccine.2015.03.072

Haghverdi, L., Buettner, F., and Theis, F. (2015). Diffusion maps for high-
dimensional single-cell analysis of differentiation data. Bioinformatics 31,
2989-2998. doi: 10.1093/bioinformatics/btv325

Kaczorowski, K., Shekhar, K., Nkulikiyimfura, D., Dekker, C., Maecker, H., Davis,
M., et al. (2017). Continuous immunotypes describe human immune variation

Supplementary Figure 1 | Cell population frequencies changing over time after
stem cell transplantation. (A) tSNE visualization of PBMCs at the indicated
time-points post transplantation and colored by canonical cell population.

(B) Changes in cell count for the indicated cell population over time after stem cell
transplantation in all patients (n = 26).

Supplementary Table 1 | Antibodies used in Mass cytometry experiments. Table
indicates target marker name, clone ID, metal tag, and vendor for each antibody
used.

and predict diverse responses. Proc. Natl. Acad. Sci. U.S.A. 114, E6097-E6106.
doi: 10.1073/pnas.1705065114

Lakshmikanth, T., Olin, A., Chen, Y., Mikes, J., Fredlund, E., Remberger,
M., et al. (2017). Mass cytometry and topological data analysis reveal
immune parameters associated with complications after allogeneic stem cell
transplantation. Cell Rep. 20, 2238-2250. doi: 10.1016/j.celrep.2017.08.021

Lavin, Y., Kobayashi, S., Leader, A., Amir, E., Elefant, N., Bigenwald, C., et al.
(2017). Innate immune landscape in early lung adenocarcinoma by paired
single-cell analyses. Cell 169, 750-765.17. doi: 10.1016/j.cell.2017.04.014

Ravindran, R., Loebbermann, J., Nakaya, H., Khan, N., Ma, H., Gama, L., et al.
(2016). The amino acid sensor GCN2 controls gut inflammation by inhibiting
inflammasome activation. Nature 531, 523-527. doi: 10.1038/nature17186

Roederer, M., Quaye, L., Mangino, M., Beddall, M., Mahnke, Y., Chattopadhyay,
P., et al. (2015). The genetic architecture of the human immune system: a
bioresource for autoimmunity and disease pathogenesis. Cell 161, 387-403.
doi: 10.1016/j.cell.2015.02.046

Shekhar, K., Brodin, P., Davis, M., and Chakraborty, A. (2014).
Automatic Classification of Cellular Expression by Nonlinear Stochastic
Embedding (ACCENSE). Proc. Natl. Acad. Sci. US.A. 111, 202-207.
doi: 10.1073/pnas.1321405111

Sobolev, O., Binda, E., O’Farrell, S., Lorenc, A., Pradines, J., Huang, Y., et al. (2016).
Adjuvanted influenza-HIN1 vaccination reveals lymphoid signatures of age-
dependent early responses and of clinical adverse events. Nat. Immunol. 17,
204-213. doi: 10.1038/ni.3328

Storek, J., Geddes, M., Khan, F., Huard, B. Helg, C. Chalandon, Y.,
et al. (2008). Reconstitution of the immune system after hematopoietic
stem cell transplantation in humans. Semin. Immunopathol. 30, 425-437.
doi: 10.1007/s00281-008-0132-5

Tsang, J., Schwartzberg, P., Kotliarov, Y., Biancotto, A., Xie, Z., Germain, R., et al.
(2014). Global analyses of human immune variation reveal baseline predictors
of postvaccination responses. Cell 157, 499-513. doi: 10.1016/j.cell.2014.03.031

van der Maaten, M., and Hinton, G. (2008). Visualizing data using t-SNE. J. Mach.
Learn. Res. 9, 2579-2605.

Conflict of Interest Statement: YC, TL, AO, JM, and PB are founders and
shareholders of Cytodelics AB (Stockholm, Sweden). The remaining authors
declare that the research was conducted in the absence of any commercial or
financial relationships that could be construed as a potential conflict of interest.

Copyright © 2018 Chen, Lakshmikanth, Olin, Mikes, Remberger and Brodin. This
is an open-access article distributed under the terms of the Creative Commons
Attribution License (CC BY). The use, distribution or reproduction in other forums
is permitted, provided the original author(s) and the copyright owner(s) are credited
and that the original publication in this journal is cited, in accordance with accepted
academic practice. No use, distribution or reproduction is permitted which does not
comply with these terms.

Frontiers in Molecular Biosciences | www.frontiersin.org

September 2018 | Volume 5 | Article 81


https://www.frontiersin.org/articles/10.3389/fmolb.2018.00081/full#supplementary-material
https://doi.org/10.1038/nbt.2594
https://doi.org/10.1016/j.exphem.2005.01.005
https://doi.org/10.1021/ac901049w
https://doi.org/10.1126/science.1198704
https://doi.org/10.1038/nri.2016.125
https://doi.org/10.1016/j.cell.2014.12.020
https://doi.org/10.1038/ni.3371
https://doi.org/10.1016/j.cell.2017.04.016
https://doi.org/10.1073/pnas.0500334102
https://doi.org/10.1146/annurev-immunol-042617-053206
https://doi.org/10.1038/ni.3768
https://doi.org/10.1016/j.vaccine.2015.03.072
https://doi.org/10.1093/bioinformatics/btv325
https://doi.org/10.1073/pnas.1705065114
https://doi.org/10.1016/j.celrep.2017.08.021
https://doi.org/10.1016/j.cell.2017.04.014
https://doi.org/10.1038/nature17186
https://doi.org/10.1016/j.cell.2015.02.046
https://doi.org/10.1073/pnas.1321405111
https://doi.org/10.1038/ni.3328
https://doi.org/10.1007/s00281-008-0132-5
https://doi.org/10.1016/j.cell.2014.03.031
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles

	Continuous Immune Cell Differentiation Inferred From Single-Cell Measurements Following Allogeneic Stem Cell Transplantation
	Introduction
	Materials and Methods
	Patients and Blood Samples
	Mass Cytometry Analysis
	Antibodies and Reagents
	Diffusion Maps Analysis

	Results
	Cell Population Frequencies Change Over Time After Stem Cell Transplantation
	Phenotypic Changes Revealed Across Cell Populations at Different Time Points After Transplantation
	Diffusion Maps Reveal a Continuous Evolution of Cell Populations Over Time

	Discussion
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References


