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Human G-protein coupled receptors (GPCRs) convey a wide variety of extracellular

signals inside the cell and they are one of themain targets for pharmaceutical intervention.

Rational drug design requires structural information on these receptors; however, the

number of experimental structures is scarce. This gap can be filled by computational

models, based on homology modeling and docking techniques. Nonetheless, the low

sequence identity across GPCRs and the chemical diversity of their ligands may limit the

quality of these models and hence refinement using molecular dynamics simulations is

recommended. This is the case for olfactory and bitter taste receptors, which constitute

the first and third largest GPCR groups and show sequence identities with the available

GPCR templates below 20%. We have developed a molecular dynamics approach,

based on the combination of molecular mechanics and coarse grained (MM/CG), tailored

to study ligand binding in GPCRs. This approach has been applied so far to bitter taste

receptor complexes, showing significant predictive power. The protein/ligand interactions

observed in the simulations were consistent with extensive mutagenesis and functional

data. Moreover, the simulations predicted several binding residues not previously tested,

which were subsequently verified by carrying out additional experiments. Comparison

of the simulations of two bitter taste receptors with different ligand selectivity also

provided some insights into the binding determinants of bitter taste receptors. Although

the MM/CG approach has been applied so far to a limited number of GPCR/ligand

complexes, the excellent agreement of the computational models with the mutagenesis

and functional data supports the applicability of this method to other GPCRs for which

experimental structures are missing. This is particularly important for the challenging

case of GPCRs with low sequence identity with available templates, for which molecular

docking shows limited predictive power.
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INTRODUCTION

G-protein coupled receptors (GPCRs) are one of the largest
protein superfamilies, with more than 800 (4%) genes in humans
(Venter et al., 2001; Fredriksson et al., 2003; Lagerstrom and
Schioth, 2008; Tikhonova and Fourmy, 2010). They detect a
wide variety of extracellular signals (from photons to hormones
and neurotransmitters) and trigger a myriad of intracellular
transduction cascades (using different G-proteins and second
messengers) (Alexander et al., 2017). These pleiotropic receptors
are involved in many physiological functions, from vision
to chemical sensing and neurotransmission, and, hence,
they are attractive targets for pharmaceutical intervention.
Approximately 34% of currently FDA-approved drugs bind
to GPCRs (Hauser et al., 2018) and they are used to treat
disorders as diverse as pain, hypertension, diabetes, cancer
or neurological diseases (Hauser et al., 2017). Given the
physiological and pharmacological relevance of GPCRs,
unraveling their ligand binding determinants can be extremely
useful both for understanding receptor function and for
designing new drugs.

Based on phylogenetic and sequence conservation analyses,
GPCRs can be classified in 5 different families or classes
(Fredriksson et al., 2003; Schioth and Fredriksson, 2005):
rhodopsin (class A), secretin (class B1), adhesion (class B2),
glutamate (class C), and frizzled/taste2 (class F). Nonetheless,
taste 2 (or bitter taste) receptors have also been proposed
to form part of class A (Nordstrom et al., 2011) or even
constitute a sixth, additional family (class T) (Munk et al.,
2016a). Since the appearance of the first crystal structure of
rhodopsin in 2000, experimental structural characterization of
GPCRs is blossoming (Munk et al., 2019). As of February
2019, there are 59 unique receptor structures solved (https://
gpcrdb.org/structure/statistics), most of them corresponding to
the rhodopsin (or class A) family (Figure 1). Molecular dynamics
(MD) simulations started from these experimental structures
have provided very important insights into ligand binding and
receptor activation (Miao andMcCammon, 2016; Sengupta et al.,
2016; Latorraca et al., 2017; Marino and Filizola, 2018; Torrens-
Fontanals et al., 2018; Velgy et al., 2018).

Nonetheless, the experimental structural coverage is still
very far from the total of 800 GPCRs. In particular, there are
no experimental structures available for three receptor groups:
olfactory receptors (ORs, which constitute half of class A), taste
2 receptors (TAS2Rs, which represent the third largest GPCR
family) and adhesion (class B2) receptors. In silico modeling
can help to fill this gap of ∼87% structurally uncharacterized
GPCRs (Pándy-Szekeres et al., 2017). Indeed, the community-
wide GPCR Dock assessment (Michino et al., 2009: Kufareva
et al., 2011, 2014) has shown that homology modeling and ligand
docking are able to provide valuable information on receptor-
ligand interactions, in particular for those GPCR targets that have
templates with sequence identity higher than 35–40% (Kufareva
et al., 2011; Beuming and Sherman, 2012). Subsequent refinement
of the bioinformatics-based models through molecular dynamics
simulations (Kufareva et al., 2014; Cavasotto and Palomba, 2015;
Lupala et al., 2018) and integration of experimental (mutagenesis

FIGURE 1 | GPCR statistics. The number of members is based on reference

(Munk et al., 2016a) and the number of experimental structures was taken

from the GPCRdb database (https://gpcrdb.org/structure/statistics, accessed

on January 2019). GPCRs are grouped according to the class A-F

nomenclature (Fredriksson et al., 2003). Within class A, two groups are

differentiated: non-olfactory and olfactory receptors. The taste 2 receptors

have been proposed to belong to either class A (Nordstrom et al., 2011) or

class F (Fredriksson et al., 2003), or even constitute a novel, sixth class (Munk

et al., 2016a). Legend labels for those groups without experimental structures

are in gray.

and ligand structure-activity relationship) data (Munk et al.,
2016b) further increases the model quality to values close to
experimental accuracy. However, approximately half of GPCRs
do not have a close template (i.e., an experimental structure
of a receptor from the same family with a similar ligand). For
instance, the sequence identity of 90%GPCRs with the rhodopsin
template (representative of the largest GPCR family, class A) is
lower than 20% (Zhang et al., 2006). Therefore, in most cases the
in silicomodeling approach needs further improvement, typically
using molecular dynamics (Kufareva et al., 2014; Cavasotto and
Palomba, 2015; Lupala et al., 2018).

Chemosensory receptors (olfactory and bitter taste receptors)
are among the GPCRs without close templates. Increasing
evidence shows that these receptors are expressed not only in the
nose and the tongue, but also in other parts of the body (Foster
et al., 2014; Abaffy, 2015; Ferrer et al., 2016; Shaik et al., 2016;
Lu et al., 2017; Behrens and Meyerhof, 2019; Lee et al., 2019) and
thus they have become attractive novel targets for drug design
campaigns (Lee et al., 2019). However, chemosensory receptors
represent a major challenge for computational modeling. Their
sequence identity with the available GPCR templates is lower
than 20% (Fierro et al., 2017) and thus only low resolution
homology models can be generated (Kufareva et al., 2011;
Fierro et al., 2017). Hence, our lab has made a major effort
to attempt at improving such low resolution homology models
and at making valuable predictions of the ligand binding
determinants of these receptors. In this review, we first explain
the computational approach used in our group to study low
resolution GPCR models, based on the combination of state-
of-the-art bioinformatics techniques and multiscale molecular

Frontiers in Molecular Biosciences | www.frontiersin.org 2 May 2019 | Volume 6 | Article 29

https://gpcrdb.org/structure/statistics
https://gpcrdb.org/structure/statistics
https://gpcrdb.org/structure/statistics
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


Alfonso-Prieto et al. Multiscale Simulations of GPCRs

dynamics simulations, as well as its validation on a class A
GPCR (the β2-adrenergic receptor) with a solved crystallographic
structure. Then, we show that, although bioinformatics-based
models can be a good starting point to study receptor-ligand
interactions, multiscale simulations significantly improve the
quality of the models for which MM/CG simulations have been
run so far. A perspective on this multiscale approach concludes
this review.

MATERIALS AND METHODS

Bioinformatics
Given the lack of experimental structures, the initial structures
of the receptor/ligand complexes are generated using
bioinformatics approaches. Although there are several
webservers specialized in GPCR modeling (Launay et al.,
2012; Zhang et al., 2015; Busato and Giorgetti, 2016; Esguerra
et al., 2016; Pándy-Szekeres et al., 2017;Worth et al., 2017; Miszta
et al., 2018), here we used the GOMoDo webserver (Sandal et al.,
2013), which combines in a single pipeline homology modeling
and molecular docking for GPCRs.

Since the sequence identity of any given olfactory or bitter
taste receptor with the available GPCR templates is lower than
20% (Fierro et al., 2017), special care needs to be taken in the
sequence alignment step. Hence, the alignment was done using
profile Hidden Markov Models (HMMs) of the corresponding
target receptor family and the GPCR template(s), which were
generated with HHPred (Soding et al., 2005). This approach
has been shown to improve the target-template alignment for
distant homologs (Soding et al., 2005), in particular for GPCRs
(Kufareva et al., 2014). This alignment was further improved
by manual curation, taking advantage of the conserved seven
transmembrane (7TM) helix topology and the presence of
common conserved features across GPCRs (Lagerstrom and
Schioth, 2008; Venkatakrishnan et al., 2013; Pydi et al., 2014,
2016; Tehan et al., 2014; de March et al., 2015; Di Pizio et al.,
2016; Fierro et al., 2017). Moreover, since template selection is
difficult with such low sequence identity, several models based on
different templates were built usingMODELLER (Webb and Sali,
2016), and the best model was selected considering also structural
quality parameters (Melo et al., 2002; Shen and Sali, 2006).

The receptor structural model thus generated was then
submitted to molecular docking using HADDOCK (Dominguez
et al., 2003). Although other docking approaches were tested
[based on AutoDock Vina (Trott and Olson, 2010) or Glide
(Friesner et al., 2004)], no significant improvement in the quality
of the models was observed (Fierro et al., 2017). The location of
the ligand binding pocket inside the 7TM bundle is conserved
(Venkatakrishnan et al., 2013), despite the low sequence identity
among GPCRs. Moreover, the results of the GPCR Dock
competitions (Michino et al., 2009; Kufareva et al., 2011, 2014;
Cavasotto and Palomba, 2015; Munk et al., 2016b) seem to
indicate that incorporating information about putative binding
residues (from experimental data or computational predictions)
helps to improve the docking results. Therefore, an information-
driven approach was taken, in which the computationally
predicted binding residues [using fpocket (Le Guilloux et al.,

2009)] were used to guide the docking. Nonetheless, the fine
details of the ligand binding site are expected to be highly
variable across GPCRs (Venkatakrishnan et al., 2013), due
to the chemical diversity of the GPCR ligands. Hence, in
our HADDOCK-based docking approach both receptor and
ligand were considered fully flexible in order to allow mutual
readjustments. Other flexible docking approaches have also been
successfully employed by other groups to predict the binding
determinants of chemosensory receptors [see for instance (Di
Pizio and Niv, 2014; Di Pizio et al., 2017; Xue et al., 2018)].

Multiscale Molecular
Dynamics Simulations
The results of the GPCR Dock competitions [reviewed in
references (Cavasotto and Palomba, 2015) and (Ranganathan
et al., 2017)] showed that refinement of the docked complexes
using molecular dynamics simulations can significantly improve
the prediction of receptor/ligand interactions. This is particularly
important for GPCRmodels based on low sequence identity, as it
is the case for chemosensory receptors, where the low accuracy of
the side chain prediction and the limited sampling of the docking
algorithms may undermine the quality of the bioinformatics-
based models. There are several studies in the literature applying
molecular dynamics simulations to chemosensory receptors
(Gelis et al., 2012; Lai and Crasto, 2012; Charlier et al., 2013; Lai
et al., 2014; Chen et al., 2018; Jaggupilli et al., 2018; Liu et al.,
2018; Bushdid et al., 2019). Here we focus on a hybrid, multiscale
approach developed in our group (Neri et al., 2005, 2008; Leguèbe
et al., 2012; Giorgetti and Carloni, 2014; Musiani et al., 2015;
Tarenzi et al., 2017), which is tailored to study ligand binding
in GPCRs.

As shown in Figure 2, the ligand, the surrounding protein
residues (typically the extracellular half of the receptor) and
water molecules are described with molecular mechanics (MM)
using the GROMOS united-atom force field (Schuler and Van
Gunsteren, 2000; Schuler et al., 2001; Oostenbrink et al., 2004).
Instead, the rest of the protein (i.e., the intracellular half of the
receptor) is treated at the coarse grained (CG) level using a Gō
model (Go and Abe, 1981). Each amino acid is mapped into a
single coarse grained bead corresponding to the alpha carbon
atom and native contacts are mimicked by introducing two new
potential terms. The bonded interactions between consecutive
CG beads are taken into account using a quartic potential,
whereas the non-bonded interactions between non-consecutive
CG beads are described through a Morse-like potential. The MM
and CG regions are connected by an interface (I) region, which
ensures the continuity of the protein backbone by coupling the
two levels of resolution. The MM-I interaction is treated at the
atomistic level using the GROMOS force field, whereas the I-
CG interaction is described using the Gō model. Namely, bonded
interactions are calculated between the Cα atoms of the I residues
and the consecutive CG beads, whereas non-bonded interactions
are computed using both the Cα and Cβ atoms of the I residues
and the non-consecutive CG beads.

The presence of the lipid bilayer is modeled implicitly, using
three wall potentials: a “coating surface” wall that simulates the
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FIGURE 2 | Simulation setup of the Molecular Mechanics/Coarse-Grained

(MM/CG) approach. The receptor (GPCR) is divided in three regions: the

extracellular MM part (in blue), the intracellular CG part (in yellow) and the

connecting interface (I, in green). The ligand (shown in red) and the surrounding

receptor residues and water molecules (in blue and white, respectively) are

described with MM. The presence of the lipid bilayer is modeled implicitly by

incorporating three different wall potentials (upper and lower membrane planes

and coating surface) and two additional hemispheric walls are included to cap

the ends of the protein and prevent water evaporation.

effect of the lipid hydrophobic tails embracing the protein surface
and two “membrane plane” walls that mimic the presence of the
lipid head groups. In addition, two “hemispheric” wall potentials
are included to cap the extracellular and cytoplasmic ends of the
protein and to prevent water evaporation. Water molecules, Cα

atoms and aromatic residues Phe, Trp, and Tyr (the so-called
“anchor residues”) are affected by these boundary potentials,
which are added to the MM/CG potential energy function as
functions of the distance of an atom to the closest wall. Recently,
a reservoir of CG water has been introduced around the MM
water cap, permitting water molecules to freely diffuse between
the MM and CG regions, changing on the fly their resolution.
This allows to carry out simulations in a statistically well-defined
(grand canonical) ensemble in the higher-resolution MM region,
resulting in a further improved description of the binding poses
and the binding site flexibility (Tarenzi et al., 2019).

Compared to docking, these multiscale simulations allow
to (i) sample protein flexibility and protein/ligand interactions
more extensively (∼1 µs timescale) and (ii) include explicit
water molecules, which may be involved in ligand binding in

GPCRs (Pardo et al., 2007; Angel et al., 2009; Venkatakrishnan
et al., 2019). Moreover, the use of the Go model in the
intracellular half of the receptor prevents possible unfolding
problems due the initial wrong orientation of the side chains
in the low resolution homology model. For further details
on the MM/CG implementation, we refer the reader to some
recent reviews (Giorgetti and Carloni, 2014; Musiani et al., 2015;
Schneider et al., 2018).

RESULTS AND DISCUSSION

Validation of the Molecular
Mechanics/Coarse Grained (MM/CG)
Approach
The reliability of the MM/CG approach was assessed using the
β2-adrenergic receptor (β2-AR) in complex with either its inverse
agonist S-carazolol or its agonist R-isoprenaline (Leguèbe et al.,
2012; Marchiori et al., 2013). The availability of a crystal structure
of the receptor (for the first complex) (Cherezov et al., 2007),
as well all-atom (AA) molecular dynamics simulations (for both
complexes) (Vanni et al., 2011) allows to compare the results
of the MM/CG simulations with both static and dynamical
data. Three different types of tests were carried out (Leguèbe
et al., 2012; Marchiori et al., 2013), started from different
initial structures: (i) the same initial structures of the β2-AR/S-
carazolol and β2-AR/R-isoprenaline complexes as the atomistic
simulations, (ii) an alternative initial structure of the β2-AR/S-
carazolol complex built by displacing the ligand to a position
where none of the crystallographic receptor/ligand interactions
was present, and (iii) a low resolution model of the β2-AR/S-
carazolol complex built using bioinformatics. Each of the test
simulations were∼0.8 µs long.

The first test (Leguèbe et al., 2012) showed that the MM/CG
approach is able to preserve the receptor/ligand complex
structure observed in the crystal structure, as well as to
provide dynamical and hydration information similar to the AA
simulations, but at a lower computational cost. Complementarily,
the second test (Leguèbe et al., 2012) confirmed that the
agreement between the MM/CG and AA simulations observed in
the first test is not due to the use of a common initial structure
and, furthermore, demonstrated the predictive power of the
MM/CG approach even when starting from a wrong binding
pose. Nonetheless, the two previous tests can be considered as
redocking experiments: even though the system was converted
from AA into hybrid MM/CG [test (i)] or the ligand was
moved out of place [test (ii)], the binding residues were already
positioned as in the correct binding pose. Instead, the third test
(Marchiori et al., 2013) validated the reliability of the MM/CG
approach applied to low resolution models, as the ones used for
the bitter taste receptors discussed in the next section. In such
models, the orientation of the side chains is expected to be hardly
accurate, due to the low sequence identity with the template
used in the homology modeling (Chothia and Lesk, 1986; Baker
and Sali, 2001; Eramian et al., 2008; Olivella et al., 2013; Piccoli
et al., 2013; Busato and Giorgetti, 2016). Indeed, the homology
model of the β2-adrenergic receptor (built using as template the
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experimental structure of squid rhodopsin) shares only a 20%
sequence identity with the target and thus docking of the ligand
S-carazolol resulted in a wrong binding pose. However, the ∼0.8
µs MM/CG simulation is able to yield a binding pose showing
receptor/ligand interactions similar to the crystallographic ones
(Marchiori et al., 2013).

Predictive Power of the Computational
Models of Chemosensory Receptors
In order to investigate the performance of bioinformatics
and multiscale simulations in predicting receptor/ligand
interactions in chemosensory receptors, we selected those
receptor/ligand pairs for which experimental data are available
(Fierro et al., 2017). As of August 2017, these included
seven olfactory receptor/odorant complexes and fifteen bitter
taste receptor/bitter tastant complexes with available site-
directed mutagenesis data and functional assays, typically
agonist dose-response curves. The docked receptor/ligand
complexes were obtained using the bioinformatics protocol
described in the Materials and Methods section, whereas
the three MM/CG simulations analyzed (for the complexes
TAS2R38/6-n-propylthiouracil, TAS2R38/phenylthiocarbamide
and TAS2R46/strychnine) were taken from previous studies
from our group (Biarnés et al., 2010; Marchiori et al., 2013;
Sandal et al., 2015).

In order to compare the computational models with the
experimental data, we defined “computational binding” and
“computational non-binding” residues, as well as “experimental
binding” and “experimental non-binding” residues (Fierro et al.,
2017). Computational binding and non-binding residues were
determined based on the receptor/ligand distance (using a cutoff
of 5.5 Å) and the presence or absence (respectively) of an
actual chemical interaction (such as hydrogen bonds, salt bridges,
hydrophobic or aromatic interactions, etc.). Experimental
binding residues were inferred from experiments based on (i) the
effect of the mutation on the half maximal effective concentration
(EC50) value and (ii) their position in the upper extracellular
part of the receptor, where the canonical binding site of class
A GPCRs is located (Venkatakrishnan et al., 2013). Residues
whose mutation does not change EC50 and/or that are located
in the lower intracellular part of the receptor are considered as
experimental non-binding residues. Obviously, this is a simplistic
definition of binding residue, as from the experimental data
we cannot discard that these residues might also be involved
in receptor activation (see reference Fierro et al., 2017 for
further discussion).

Comparison of the computational and experimental residues
yielded four different possible test outcomes. “True positives”
(TP) were amino acids identified as binding residues by both
experiment and computation, “false positives” (FP) were amino
acids identified as non-binding residues by experiment but
as binding residues in computation, “true negatives” (TN)
were amino acids identified as non-binding residues by both
experiment and computation, and “false negatives” (FN) were
amino acids identified as binding residues by experiment but
not in computation. In order to assess the agreement of the

computational models with the experimental data, two statistical
parameters, precision (PREC) and recall (REC), were calculated:

PREC = TP/(TP+ FP)

REC = TP/(TP+ FN)

These parameters are close to 1 when the computational
predictions were consistent with the experimental data, and zero
when they were not. Precision and recall values were calculated
for the best docking poses of the twenty-two complexes
investigated and for a representative snapshot of each of the three
MM/CG simulations analyzed (Fierro et al., 2017).

We found that the predictive power of the bioinformatics
approach varied from complex to complex. Nonetheless, the
general agreement between the binding residues identified in the
docking poses and those inferred from experiments was low, with
only 36% of the predictions consistent with experiment (Fierro
et al., 2017). Residues shown experimentally to be important
for binding were not observed in the docked complexes (i.e.,
low recall) and/or residues not involved in protein/ligand
interactions according to experiments were predicted as binding
residues by computation (i.e., low precision). Most likely, this
is due, among other factors, to the low sequence identity
(<20%) between the chemosensory receptor targets and the
available GPCR templates, as well as the limited sampling of
the docking algorithms. Therefore, although the bioinformatics-
based models are a good starting point to study ligand binding
determinants in chemosensory receptors, they appear to require
further refinement (Fierro et al., 2017). This finding is consistent
with the results of the GPCRDock competitions, which indicated
that models based on sequence identity below 30% need
substantial improvement in order to reach accuracy comparable
to experimental structures (Kufareva et al., 2011, 2014).

Next, we compared the performance of molecular dynamics
for the three bitter taste receptor complexes studied so far
with (∼0.8–1 µs long) MM/CG simulations (Marchiori et al.,
2013; Sandal et al., 2015). We found that the predictive power
of the computational models improved dramatically, with 96–
100% of the predictions in agreement with experiment (Fierro
et al., 2017). Most residues shown to be involved in binding by
experiments are captured by the MM/CG simulations and the
number of wrong predictions was minimal (i.e., both recall and
precision increased to values near or equal to one, see Table 1).
Considering the nearly 20 mutants tested experimentally for
either TAS2R38 (Biarnés et al., 2010: Marchiori et al., 2013)
or TAS2R46 (Brockhoff et al., 2010; Born et al., 2013; Sandal
et al., 2015), the agreement of the computational models with
experiments seems really remarkable. Moreover, although in
our analysis we used all the available mutagenesis data to
validate a posteriori the MM/CG results, simulations were also
able to predict new binding residues. Indeed, the simulations
of the TAS2R38 and TAS2R46 complexes suggested several
binding residues not tested previously and these predictions
were subsequently verified by performing additional mutagenesis
and functional assays (Marchiori et al., 2013; Sandal et al.,
2015). Altogether, multiscale simulations seem to be a robust
approach for identifying ligand binding residues in olfactory and
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TABLE 1 | Evaluation of the performance of the bioinformatics models and the

multiscale MM/CG simulations for the three bitter taste receptors studied so far,

i.e. TAS2R38/6-n-propylthiouracil (PROP), TAS2R38/phenylthiocarbamide (PTC)

and TAS2R46/strychnine (Fierro et al., 2017).

TAS2R38/PROP TAS2R38/PTC TAS2R46/strychnine

Model MM/CG Model MM/CG Model MM/CG

PREC 0 1 0 0.75 0.60 1

REC 0 1 0 1 0.33 1

Precision (PREC) and recall (REC) values are listed.

bitter taste receptors, at least for the three bitter taste receptor
complexes studied so far (Fierro et al., 2017). This is consistent
with the conclusions of the GPCR Dock competitions, where
molecular dynamics simulations and integration of experimental
data (such as site-directed mutagenesis or ligand structure-
activity relationships) were shown to improve the computational
predictions (Kufareva et al., 2011, 2014; Cavasotto and Palomba,
2015; Ranganathan et al., 2017). Nonetheless, the application of
MM/CG simulations to other chemosensory receptor complexes
with available experimental data is still needed to firmly establish
the reliability and transferability of this method.

Insights Into Ligand Selectivity
Determinants in Bitter Taste Receptors
There are around 1,000 compounds characterized as bitter,
which vary significantly in size, polarity and chemical
structure (Meyerhof et al., 2010; Behrens and Meyerhof,
2018; Dagan-Wiener et al., 2019). To make things even more
puzzling, three receptors (TAS2R10, TAS2R14, and TAS2R46)
out of the 25 bitter taste receptors are able to recognize about
half of these bitter compounds (Behrens and Meyerhof, 2018). In
contrast to this broad agonist spectrum, there are two receptors,
TAS2R38 and TAS2R16, that are specialized in detecting a
specific chemical group (thiourea/isothiocyanate and β-D-
glucopyranoside, respectively) (Behrens and Meyerhof, 2018).
Here we discuss in detail the structural predictions described
above to investigate whether they can help understand the
molecular basis of this disparate ligand selectivity. In particular,
the MM/CG approach has been applied so far to one receptor
of each group, i.e., TAS2R46 (Sandal et al., 2015) and TAS2R38
(Biarnés et al., 2010; Marchiori et al., 2013).

The microsecond-long simulations of TAS2R46 in complex
with its agonist strychnine (Sandal et al., 2015) showed that
the ligand can explore not only one but two different binding
cavities (Figure 3). The first one coincides with the canonical
binding site of class A GPCRs (i.e., the so-called orthosteric site),
whereas the second is located further toward the extracellular
side and thus has been denoted as “vestibular.” The mutagenesis
data is compatible with this two-site architecture, as the
residues experimentally inferred to be involved in binding
(Brockhoff et al., 2010; Born et al., 2013; Sandal et al., 2015)
are distributed between the two sites (Figure 3). Moreover, the
identified vestibular binding cavity overlaps with the extracellular

allosteric binding site observed for class A GPCRs (Dror
et al., 2011, 2013; Kruse et al., 2012; Abdul-Ridha et al., 2014;
Latorraca et al., 2017; Thal et al., 2018), further supporting its
existence. This two-step binding architecture may constitute the
molecular basis of the “access control” mechanism proposed
by Meyerhof and coworkers (Brockhoff et al., 2010) and
would help TAS2R46 to discriminate the wide range of ligands
recognized by this promiscuous receptor (Sandal et al., 2015).
Moreover, a bioinformatics analysis of the binding residues
predicted for TAS2R46 across the bitter taste receptor family
showed that half of these functionally relevant positions are
conserved in two or more TAS2Rs, suggesting that the vestibular
site might also be present in other receptors of this family
(Sandal et al., 2015). However, the ∼0.8 µs simulations of
TAS2R38 in complex with either PTC or PROP showed the
ligand bound in a single site, corresponding to the orthosteric
one (Marchiori et al., 2013). This hints at the possibility
that the vestibular site is not as crucial for a group specific
receptor such as TAS2R38 or even that the two-site architecture
is not required for a more selective receptor (Suku et al.,
2017). Naturally, given the crudeness of our models, further
simulations and experimental studies on other members of the
bitter taste receptor family are needed in order to confirm
this proposal.

CONCLUSIONS

Given the scarcity of experimental structural data (Munk
et al., 2019), computational modeling of GPCRs is essential
to understand ligand binding and design new drugs targeting
this biologically and pharmacologically relevant family (Michino
et al., 2009; Kufareva et al., 2011, 2014; Cavasotto and
Palomba, 2015; Ranganathan et al., 2017; Lupala et al.,
2018). These computational approaches (Figure 4) include
homology modeling and molecular docking, often supplemented
with experimental (mutagenesis and ligand structure-activity
relationship) data. Subsequent refinement with molecular
dynamics simulations has been shown to further improve the
computational predictions (Kufareva et al., 2014; Cavasotto and
Palomba, 2015; Ranganathan et al., 2017; Lupala et al., 2018). The
accuracy of the models thus generated might reach values near
the experimental ones for those GPCRs with a close structural
template (i.e., with sequence identity larger than 35–40% and
a chemically similar ligand) (Kufareva et al., 2011; Beuming
and Sherman, 2012). However, for most GPCRs the closest
structural template has sequence identity below this threshold,
and thus computational predictions become challenging. This
the case for olfactory and bitter taste receptors, which constitute
the first and third largest GPCR groups, respectively, as
their sequence identity with the available GPCR templates is
below 20%.

In this review, we have shown that molecular dynamics
simulations, in particular the multiscale molecular mechanics /
coarse grained approach developed in our group (Neri et al.,
2005, 2008; Leguèbe et al., 2012; Giorgetti and Carloni, 2014;
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FIGURE 3 | Two binding site architecture of TAS2R46. The agonist strychnine (in licorice representation) can bind in either the orthosteric site (left panel) or the

vestibular site (right panel). Receptor residues interacting with the ligand in the orthosteric site, the vestibular site or both sites are shown with blue, yellow or green

spheres, respectively. The central panel displays the distribution of the ligand center-of-mass z coordinate for the two ∼1 µs MM/CG simulations, showing that

strychnine stabilized either in the orthosteric site or in a second (vestibular) site, located further toward the extracellular side.

FIGURE 4 | Proposed protocol to study ligand binding in low resolution GPCR models. The initial model generated with homology modeling and molecular docking

(e.g., using the GOMoDo webserver, Sandal et al., 2013) is further refined using molecular dynamics (e.g., using the molecular mechanics/coarse grained or MM/CG

approach developed in our group, Leguèbe et al., 2012). The receptor/ligand interactions predicted by the simulations have to be validated by extensive comparison

with experimental data (typically site-directed mutagenesis and dose-response functional assays).

Musiani et al., 2015; Tarenzi et al., 2017), can overcome, at least
in part, these limitations (Fierro et al., 2017) and successfully
predict residues involved in ligand binding for the three bitter
taste receptor complexes studied so far (Biarnés et al., 2010;
Marchiori et al., 2013; Sandal et al., 2015). The natural extension
of these previous works would be to other bitter taste and
olfactory receptors for which experimental data are available.
In addition, MM/CG simulations could be easily applied to
other GPCRs. Although this approach has been used so far for
a limited number of GPCR/ligand complexes (Leguèbe et al.,
2012; Marchiori et al., 2013; Sandal et al., 2015), the excellent
agreement of the computationally predicted binding poses with
the experimental mutagenesis data [for the aforementioned three
bitter taste receptor complexes (Marchiori et al., 2013; Sandal
et al., 2015)] or the crystal structure [for the β2-adrenergic

receptor (Leguèbe et al., 2012)] further supports the applicability
of theMM/CGmethod to other GPCR/ligand complexes. Indeed,
MM/CG simulations have been recently used to model the
synthetic agonist diphenyleneiodonium chloride (DPI) bound
to its target receptor GPR3 (Capaldi et al., 2018). Two of the
predicted DPI binding residues were successfully validated a
posteriori using mutagenesis and functional assays, as previously
done for TAS2R38 (Marchiori et al., 2013) and TAS2R46 (Sandal
et al., 2015).
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