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Simulations of intrinsically disordered proteins (IDPs) pose numerous challenges to

comparative analysis, prominently including highly dynamic conformational states and

a lack of well-defined secondary structure. Machine learning (ML) algorithms are

especially effective at discriminating among high-dimensional inputs whose differences

are extremely subtle, making them well suited to the study of IDPs. In this work, we apply

various ML techniques, including support vector machines (SVM) and clustering, as well

as related methods such as principal component analysis (PCA) and protein structure

network (PSN) analysis, to the problem of uncovering differences between configurational

data from molecular dynamics simulations of two variants of the same IDP. We examine

molecular dynamics (MD) trajectories of wild-type amyloid beta (Aβ1−40) and its “Arctic”

variant (E22G), systems that play a central role in the etiology of Alzheimer’s disease.

Our analyses demonstrate ways in which ML and related approaches can be used to

elucidate subtle differences between these proteins, including transient structure that is

poorly captured by conventional metrics.

Keywords: machine learning, intrinsically disordered proteins, molecular dynamics, amyloid fibrils, amyloid beta,

protein structure networks, support vector machines, clustering

1. INTRODUCTION

Molecular dynamics (MD) simulations, either alone or guided by experimental data, have greatly
enhanced our ability to probe molecular motions at the atomic scale. Unfortunately, these advances
can also lead to the creation of a map that is almost as complex as the territory it describes: as
simulation methodology has improved, the need for approaches to analyze and make sense of
increasingly information-rich simulated trajectories has grown. This is particularly true in the
case of intrinsically disordered proteins (IDPs), where recent developments in the combined use
of simulation methods with NMR (Dedmon et al., 2005; Salmon et al., 2010; Salvi et al., 2016)
and small angle x-ray scattering data (Sibille and Bernadó, 2012) have led to a proliferation of
configurational information. The dynamics of and transient conformations explored by IDPs are
often extremely high dimensional and are not always well described by the standard vocabulary
of structural biology. Machine learning and network analytic approaches offer potentially valuable
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ways of addressing such problems by facilitating (respectively)
the detection of systematic patterns in high-dimensional data
and the representation and modeling of complex structures
that do not follow simple, regular motifs (e.g., alpha helices
or beta strands). In this paper, we show how tools drawn
from both traditions can give purchase on the comparative
exploratory analysis of molecular dynamics trajectories from
protein variants, yielding insights that would be difficult to obtain
using more conventional methods. We illustrate our approach
using simulations of the wild type (WT) Aβ1−40, a well-known
intrinsically disordered protein and its E22G (“Arctic”) variant,
which is implicated in familial Alzheimer’s disease (Nilsberth
et al., 2001), and which has been a system of interest for many
previous molecular dynamics studies (Cecchini et al., 2006; Lam
et al., 2008; Urbanc et al., 2010).

The majority of proteins have a well-defined structure-
function relationship, whereby the protein’s biological role
is contingent on it being correctly folded into its flexible,
but locally stable, functional configuration. By contrast,
intrinsically disordered proteins (along with proteins possessing
a significantly large intrinsically disordered region) owe their
function to not being confined to a small number of stable
regions of configuration space. For example, many signaling
proteins are able to bind a wide variety of targets due to their
intrinsic disorder (Iakoucheva et al., 2002). The study of IDPs
presents challenges inherent to both the molecular systems
themselves and the standard conventions used by the scientists
who study proteins. In addition to the difficulty of distilling down
the complex motions of these “moving targets” of structural
biology to some intuitable form, there are additional difficulties
due to the standard descriptive and experimental toolkits used
by structural biologists and chemists, from Ramachandran
plots to X-ray crystallography, being tailored toward gaining
insight about proteins within the paradigm of a small number
of favored static configurations. Thus, if we wish to search
for latent order characteristics of a particular IDP, we must
establish methodologies for characterizing and interpreting IDP
data. Such problems, where vast amounts of high-dimensional
unstructured data is available for a set of known classes (e.g.,
WT class vs. E22G class) are the exact situations where machine
learning algorithms excel. In fact, a great deal of progress has
been made in the development of ML-based technologies for
the interpretation of chemical and biochemical systems, such
as automated optimal partitioning of configuration space for
building kinetic models (Grazioli et al., 2017), clustering-based
methods for building Markov models of protein folding (Husic
and Pande, 2017), protein conformational space mapping with
self-organizing maps (Bouvier et al., 2014), protein-ligand
interaction scoring (Ragoza et al., 2017), automating the
definition of atom types in molecular mechanics force fields
(Zanette et al., 2018), and even the inverse design of materials,
using ML to guide material design, given a set of desired material
properties (Sanchez-Lengeling and Aspuru-Guzik, 2018).

A related problem is summarizing the transient structures
of IDPs in a way that is reductive enough to provide useful
simplification while still being flexible enough to accommodate
a wide range of irregular structural configurations. Network

representations, which have been extensively studied in the
context of human social networks (Wasserman and Faust, 1994),
provide a natural tool for this purpose. Most relevant to IDP
behavior are protein structure networks (PSNs), which represent
protein structures in terms of relationships (e.g., bonded or non-
bonded interactions) among groups of atoms (e.g., moieties,
residues, or whole secondary structure elements). PSNs are
useful for coarse-graining protein structure while retaining
topological information describing internal contacts, and have
been employed to rapidly identify enzymes with distinct but non-
obvious structural features (Butts et al., 2016), characterize local
packing characteristics distinguishing closely related enzyme
classes (Unhelkar et al., 2017), distinguish structural features
particular to thermophilic vs. mesophilic proteins (Brinda and
Vishveshwara, 2005), analyze simulation trajectories (Benson
and Daggett, 2012), and predict differences in overall protein
(Atilgan et al., 2001; Jacobs et al., 2001) and active site (Duong
et al., 2018) flexibility, among other tasks (Csermely et al., 2012).
PSNs can be modeled using statistical techniques adapted from
social network analysis (Yaveroğlu et al., 2015), allowing for very
flexible and computationally efficient identification of structural
biases distinguishing groups of proteins, tests of hypotheses
relating to protein topology, and simulation of PSN structure.
Here we leverage these techniques to uncover differences
in the respective energy landscapes of Aβ1−40 wild type
and E22G.

In addition to providing broadly applicable methodology, we
also present applications of this approach to the elucidation
of the dynamic, and often subtle, characteristics of wild-type
Aβ1−40 and its variant E22G that lead to their distinct behavior
in solution, despite their being identical in all but one amino
acid. Although the present discussion is focused on applying
our methodologies to IDPs, it is noteworthy that there are
also examples of well-folded proteins, like TEM-1 β-lactamase
(Roccatano et al., 2005) or ZASP PDZ (Fratev et al., 2014),
where the structural changes caused by point mutations can
also be very difficult to discern in molecular simulations, despite
the mutations having known physiological effects. Thus, the
approaches discussed here may have applicability beyond the
IDP case. The remainder of the paper is organized as follows:
we begin by applying simple and well-established methods for
comparing data generated by molecular dynamics simulations
of both WT Aβ1−40 and the E22G variant (e.g., Ramachandran
plots), highlighting their limitations in the context of intrinsically
disordered proteins. Although the two proteins seem at first
blush to exhibit nearly identical behavior, we show how support
vector machines (SVMs) can be employed to construct a metric
that readily distinguishes them. Projection of conformations
obtained from structures of Aβ fibrils onto this metric can then
be used to predict differences in fibrillization behavior. Moving
from torsion angles to topology, we employ exponential family
random graph models (ERGMs) to characterize the properties
of favorable transient structures in Aβ1−40 residue-level PSNs,
and use this to explore the structures most energetically favored
by WT vs. E22G (and vice versa). We then close with a
demonstration of how joint k-means clustering of conformations
from long WT and E22G trajectories and network analysis of
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the Markov transition graph on the resulting conformational
states reveals substantial differences in dynamics that are not
apparent on casual inspection. Additional technical details
regarding our simulations and analysis are provided in the
following section, and we conclude with a discussion of our
findings and how approaches such as these can be used to select
targets for further experimental biophysical characterization and
structural biology.

2. RESULTS

2.1. Exploring the Torsion Angle Space of
Energy Minima
Prior to applying more complex, ML-based techniques
for identifying the characteristic differences between the
configurational dynamics of the WT and E22G variants, it is
reasonable to first apply more established approaches toward that
same end. Thus, we begin by calculating a Ramachandran plot
(Figure 1) from a large set of configurations generated by MD
simulations from a highly dispersed set of seed conformations
(details provided in section 4), as well as from conformations
associated with large samples of local energy minima. It is clear
from the data shown in Figure 1 that WT and E22G cannot
be distinguished by their distributions in Ramachandran space.
This result illustrates the core problem of exploratory analysis of
intrinsically disordered proteins: many of the simple and familiar
tools of structural biology exploit the fact that folding confines
typical proteins to a narrow range of conformations, and the lack
of such confinement leaves them with little signal to leverage.

Given that the Ramachandran plot does not display any
obvious differences that could be used to distinguish between
WT and E22G conformations in torsion angle space, it is
natural to ask whether these variants might still be distinguished
by the distribution of their angular velocities in the same
space. Employing a large number of trajectories initialized from
a set of widely dispersed local minima (see section 4), we
plot the distribution of local ψ and φ angular velocities in
the equivalent of a Ramachandran space (Figure 2). As can
be seen, the resulting velocity distribution is homogeneous
both by residue index (left) and by variant (right), with the
points colored for each attribute overlapping so completely
that they appear to form a single undifferentiated distribution.
Plainly, this property cannot differentiate between WT and
E22G. Moreover, the similarity in velocity distributions between
variants suggests that differences in the energy landscape
associated with the E22G mutation are extremely subtle, despite
its known differences in aggregation behavior relative to wild type
(Lord et al., 2006; Norlin et al., 2012).

The lack of distinguishing features in either the
Ramachandran space of conformations or the “differentiated
Ramachandran” space of angular velocities highlights the subtle
nature of differences in IDP behavior, and points to the need for
more flexible—and high dimensional—techniques to identify
differences. We now turn to a family of kernel learning methods
that are well-suited to this purpose.

2.2. Finding Relatively Favored
Conformations via SVM
The observation that WT and E22G Aβ1−40 differ by a
single residue, yet exhibit differing propensities for fibrillization
in experiments (Norlin et al., 2012), seems to imply that
the conformations they sample in solution must originate
from differing equilibrium distributions in configuration space.
Further, we note that if a configuration is defined as a vector
of all torsion angles for residues 1 through 40, the respective
distributions forWT and E22G both “live” in the same coordinate
space. Thus, we may posit some characteristic axis, onto which
any configuration in the shared torsion angle space can be
projected, where points at one extreme are most characteristic of
WT (and least likely to be sampled by E22G) and points on the
other extreme are most characteristic of E22G (and least likely
to be sampled by WT). If we, for the sake of argument, were to
imagine that the sets of conformations sampled by each variant
were linearly separable—i.e., a separating hyperplane in torsion
angle space could be placed between them with all WT points on
one side and all E22G points on the other—such an axis would be
trivial to define: it would be the vector normal to the separating
hyperplane. Unfortunately, the condition of linear separability is
an unrealistic assumption for two systems that are both highly
similar and high dimensional, and the Ramachandran analysis of
Figure 1 suggests that it is inapplicable here. However, we could
consider an alternative version of our construction, in which
we nonlinearly map our torsion angle space into an alternative
space (called a feature space) in which our conformations are
linearly separable and then find the characteristic axis within this
modified space. The resulting characteristic axis would no longer
take a simple form in our original space (the input space), but we
could nevertheless use it to “score” hypothetical conformations
for similarity to WT vs. E22G by mapping them into the feature
space and finding their projection onto the characteristic axis in
that space.

Finding transformations of this type in high-dimensional data
is a central problem of kernel learning (Scholkopf et al., 1999),
and identifying a “characteristic axis” like the one envisioned
above is a natural application of support vector machines (SVMs)
(Vapnik, 2013). In a classification context, SVMs seek maximum-
margin separating hyperplanes between sets of observations, with
the characteristic axis corresponding to a quantity (often called
the decision value) that is used to predict class membership.
While “pure” SVMs are linear algorithms, kernelized SVMs (i.e.,
SVMs operating on kernel-transformed inputs) are powerful
tools for finding complex separating surfaces (or, in the case of
imperfect separability, approximate separating surfaces) in more
general contexts.

A heuristic illustration of how SVMs can be used to extract
a characteristic axis from linearly non-separable data classes is
shown in Figure 3, as an aid to intuition. Note that in the input
space {x, y} (Figure 3A), no single plane can be defined that
perfectly separates the blue class from the red class. By mapping
the data to the higher-dimensional space of all polynomials in x
and y (truncated to the subspace {x, y, x2} in Figure 3B, chosen
for visualization purposes), this same data set is now linearly
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FIGURE 1 | Ramachandran plots for all conformations (Left panel) and conformations of local minima (Right panel). Points are colored by variant (blue - WT, red -

E22G); apparent purple color indicates near identical distribution of torsion angles.

FIGURE 2 | Angular velocity distributions by dihedral angle colored by residue index (Left panel) and by protein (Right panel). No systematic variation is visible in

either case.

separable. Such a mapping onto quadratic functions of the
inputs constitutes a polynomial kernel of order 2, with mapping
into higher-order polynomials corresponding to higher-order
kernels; mapping to polynomial functions of arbitrary order can
be performed by selection of e.g., the Gaussian or radial basis
function (RBF) kernel, whose basis set can be interpreted in
terms of Taylor series expansions of exponential functions. Such
an expansion can in principle find a separating hyperplane for
any point set (subject to regularity conditions), making the RBF
kernel a so-called “universal” kernel.With a separating plane now
defined in the kernel-transformed feature space, the data points

can be projected onto the vector normal to that plane (C). This
vector is our characteristic axis, with the 0 point corresponding
to the point of maximum margin when dividing the two classes.

To apply this idea to the case of our Aβ variants, we
trained an SVM classifier under a RBF kernel to distinguish
low-energy conformations of WT (obtained by independent
annealing trajectories seeded with an overdispersed sample of
conformations obtained via a high-temperature trajectory) from
those of E22G (see section 4 for details). To gain insight into
conformations that are relatively favorable for E22G vs. WT, we
approximately linearize the decision surface (i.e., the pre-image

Frontiers in Molecular Biosciences | www.frontiersin.org 4 June 2019 | Volume 6 | Article 42

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


Grazioli et al. ML-Based Comparative Analysis of IDPs

FIGURE 3 | This schematic demonstrates the process of mapping linearly non-separable data to a single coordinate that indicates membership to each class. (A) An

example of linearly non-separable 2D data with two classes indicated by red and blue dots. (B) An exact mapping of the points shown in (A). To a 3D feature space,

where the data is linearly separable by the plane shown as gray mesh. (C) A vector normal to the separating plane (black double-headed arrow) is introduced, along

with the intersection of the separating plane and normal vector (green dot). (D) The points in the 3D feature space are projected onto the normal vector. (E) The

projected points on the characteristic axis are shown in the 3D space. (F) The characteristic axis now serves as the reference frame for a scalar scoring indicating a

point’s affinity for one class vs. the other.

of the separating hyperplane in the input space) and examine its
characteristics averaged over the E22G/WT conformations that
are closest to it. Specifically, we identify the support vectors from
the SVM solution (i.e., the data cases with non-zero weight, from
which the decision surface is defined), and identify pairs of WT
and E22G support vectors that are as close as possible within the
input space (as measured by Euclidean distance between inputs).
Each of these pairs can be envisioned as straddling the decision
surface, with no other pair being strictly closer to it (since, if so, at
least one point in the pair would not be a support vector). Taking
the difference of properties between one conformation in the pair
and the other thus allows us to approximate the gradient of the
decision surface with respect to those properties in the original
(input) space, at some point between the conformation pair.
Considering the distribution of such differences over all such
pairs then gives us insight into the properties that typically do (or
do not) typically distinguish E22G trajectories from those of WT.

Figure 4 shows the result of such a calculation performed for
the (circular) mean differences in torsion angles between paired
E22G and WT support vectors, for the low-energy conformation
model. Although many angles show no significant differences—
indicating that, on average, there is no net contribution of
position on this angle to relative favorability—some show a clear
and systematic difference across the decision boundary. Perhaps
most notable are the torsion angles for φ22 and ψ22, both of
which show positive change when moving across the decision
boundary from the WT to the E22G side. (Put another way,
ψ22 tends to be turned approximately 0.35 radians to the right
within E22G minima from its value in similar WT trajectories).

In addition to confirming the intuition that the substantial loss of
side chain steric hindrance brought about by the E22G mutation
alters the local backbone curvature at the mutation site, our
analysis allows us to focus on the torsion angle changes that
best distinguish otherwise similar local minima. For instance,
we also see significant increases in φ angles for residues 18, 20,
25, and 38, and decreases for residues 5, 23, and 37, showing
systematic effects on several (but not all) sites along the backbone.
Similarly, we see significant additional increases in ψ angles for
residues 6 and 36, and decreases for residues 13, 21, 23, 26, and 39,
showing that the two torsion angles are affected differently by the
mutation but that those effects show signs of clustering (e.g., the
relatively numerous angular differences near the mutation site, or
for residues 37-39 at the C terminus).

Another method for determining which degrees of
freedom contribute most substantially to the classification
of a configuration as belonging to either WT or E22G is to
combine SVMs with principal component analysis (PCA),
as shown in Figure 5. In this treatment, the differences in
torsion angles between WT and E22G minima across the SVM
decision boundary are processed using PCA, resulting in a new
reference frame in which the principal components are linear
combinations of the original dimensions that begin with the
direction of maximum variance and proceed in subsequent
orthogonal directions in order of diminishing variance (Pearson,
1901). Thus, plots of the first two principal components, such
as Figure 5, display the two directions through the space of
torsion angle differences that best summarize (in a least squares
sense) the total pattern of variation in torsion angle differences
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FIGURE 4 | Mean angular difference in torsion angles between WT and E22G

minima, across the SVM decision boundary. For each torsion angle, y axis

values show the average across all support vector pairs of the angular

difference in WT and E22G values; 95% confidence intervals indicated by thick

lines (orange values significantly positive, teal values significantly negative).

Prominent deviations are seen at the mutation site (blue dotted lines) but can

also be seen at many other locations along the backbone.

across the decision surface. The loadings on these components
hence provide information on which angles contribute most
to these directions, and on the sense of that contribution (i.e.,
positive or negative).

Figure 5 shows that, with the exceptions of φ37−38, the first
two components are strongly dominated by the ψ torsion angles.
This result is consistent with the greater variance in ψ relative
to φ in standard protein secondary structures, but it was not
observable from the Ramachandran plot of Aβ conformations
given in Figure 1. The strongest contrasts seen are between: ψ13

and ψ15−16 (left) and a group of angles including ψ31−32, ψ3,
ψ9, ψ25, and ψ28 (right); and ψ20 and ψ22−23 (top) and ψ14,
ψ18, and ψ24 (bottom). The first contrast involves a cluster of
residues marking the N-terminal end of a stretch of residues
forming a (transient) α-helix in a solution-state NMR structure
(PDBID: 2LFM) (Vivekanandan et al., 2011) vs. a collection of
several residues in the terminal regions of the protein. The second
contrast, interestingly, pits a cluster of residues at the C-terminal
end of the aforementioned helix-forming region with three
residues spanning it (two at either end and one in the middle).
This suggests one mode involving the extent of helical structure
in range of residues 14-23, and another involving a broader
pattern of curvature throughout the protein. By identifying
such patterns, we can potentially focus attention on particular
conformational features that are differentially favored by E22G
vs. wild-type Aβ .

One obvious application for a score distinguishing WT and
variant conformations is in screening for the potential to exhibit
distinct patterns of fibrillization. Fibrillization is difficult to probe
directly via MD trajectories, due to the long timescales and
large atom counts involved, and fibrillization experiments with
new systems are costly. In particular, structure determination

FIGURE 5 | PCA of angular differences in torsion angles between WT and

E22G minima, across the SVM decision boundary. Vectors show φ (teal) and φ

(orange) torsion angle loadings on the first two principal components; angles

with similar loadings tend to show similar patterns of differences for E22G vs.

WT conformations.

efforts are time-consuming and often require technological
innovations to achieve. Although amyloid fibrils by definition
form a common cross-β structure, they often differ in detailed
structural topology. Therefore, given a new variant with potential
clinical significance, it is useful to be able to obtain some
indication of whether or not it is likely to form fibrils with the
same structural topology as the wild-type protein. While the
SVM analysis conducted here cannot provide a definitive answer
to this question, it can tell us (based on the sets of trajectories
available) whether known fibril structures involve monomeric
conformations that are more characteristic of wild-type than the
variant. If WT and the variant (here E22G) have similar affinity
for a particular set of fibrillar conformations, then this suggests
that the variant will have a similar propensity to produce such
fibrils in practice; however, if the affinity differs strongly between
WT and the variant, then this may indicate a difference in the
propensity to produce fibrils of this topology.

Such an approach is illustrated in Figure 6, where the relative
similarity of fibrillar conformations to E22G vs.WT (as expressed
by projection onto the characteristic axis) is shown for all
conformations from 10 Aβ fibril structures found in the Protein
Data Bank. While some individual configurations appear more
favorable for E22G than WT (positive values), all fibril structures
were overall significantly more typical of WT solution minima
than the minima observed for E22G (hence all plot markers
are blue in Figure 6), suggesting that the latter has a different
fibrillization pattern. Interestingly, the two non-wild type fibrils
included (PDBIDs 2LNQ and 2MPZ, both of the D23N or
“Iowa” variant) show particularly strong relative affinity for WT
vs. E22G, suggesting that E22G’s fibrillization behavior differs
from that of both variants. These results are compatible with
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FIGURE 6 | Distribution of similarity scores for conformations from known fibril

structures (Aβ residues 15–40). Higher values (above dotted mid-line) indicate

greater net E22G affinity, while lower values indicate greater net WT affinity. The

overwhelming majority of conformations are more characteristic of WT minima

than E22G minima, suggesting that there is a different fibrillization pattern for

E22G, making this variant a high priority for future structural studies.

experimental findings that have previously suggested that E22G
may have a different fibrillization mode from WT, potentially
proceeding through a different oligomeric precursor. A study
employing a variety of biophysical techniques concluded that
aggregation of this species proceeds via a characteristic type
of on-pathway intermediates and then quickly progresses to
a highly polymorphic variety of fibrils (Norlin et al., 2012),
making high-resolution structure determination difficult. Given
the time and expense necessary for solving atomic-resolution
structures of even a single fibrillar conformation, measures of
potential dissimilarity in fibrillization behavior are useful tools
for choosing new structural targets. Disease-relevant variants,
such as E22G, that are likely to occupy one or more novel fibril
topologies can be considered high-priority targets for further
structure determination efforts. It is important to reiterate here
that the similarity scores for each fibril type represent how similar
each fibril structure is to WT vs. E22G, thus two fibril structures
whose similarity scores are close in value may or may not be
similar to each other.

As with the decision surface, we can gain some additional
insights regarding the local factors that tend to lead fibrillar
conformations to be more favorable for E22G vs. WT by local
linearization. In this case, we proceed by regressing the similarity
score (projection onto the characteristic axis) for each fibrillar
conformation onto the input features of each conformation
(the real and imaginary components of its torsion angles). The
coefficients from this regression represent the mean gradient of
the score over the fibrillar conformations; to convert these into
statements involving the original torsion angles, we express the
gradient elements associated with each angle (i.e., β̂i sin(θi) +
β̂ ′i cos(θi), for angle θi with regression coefficients β̂i, β̂ ′i ) in the

periodic form bi sin(θi − yi) [where bi =
√

β̂i
2
+ β̂ ′i

2
and yi =

tan−1(β̂ ′i/β̂i)]. Intuitively, the modulus bi scales the absolute
magnitude of the contribution of local changes to the ith torsion
angle to changes in the expected similarity score, while the
argument yi defines a reference angle or angular offset such that
small increments above yi increase similarity to E22G, while small
decrements below yi decrease it.

A schematic detailing how such an approach is implemented
is shown in Figure 7 using a single pair of φ and ψ torsion
angles in a simplified, two-dimensional example. We consider
two variants of a hypothetical protein (designated “blue” and
“red”) with two torsion angles of interest, φ and ψ . The blue and
red dots on the angular plots for φ and ψ in Figure 7A represent
the values for these angles for 1,000 different configurations
sampled for each variant. From these conformations we may
create an affinity score surface by training an SVM classifier to
classify blue vs. red configurations using the real and imaginary
components of both angles φ and ψ as the training data
({Re(ψ), Im(ψ),Re(φ), Im(φ)}). Figure 7B shows this affinity
score surface in φ,ψ space (lighter values favor blue, while
darker values favor red), together with the sampled red and
blue configurations from panel Figure 7A. Now, consider a set
of comparable torsion angles obtained from fibril structures;
these may also be projected into our angular space, as shown
in Figure 7C (cyan points). Each fibrillar conformation can be
assigned an affinity score based on its location on the affinity
score surface, indicating the extent to which it is more typical
of the blue vs. the red variant. Regressing the affinity scores
of the fibrillar conformations on the underlying torsion angles
yields the mean gradient of the affinity score surface in angular
space across the fibrillar conformations (orange arrow). From
this we can equivalently construct a set of reference angles
(green dot) that expresses the torsion angles that would provide
the average greatest tendency to be more blue-like (vs. red-
like) in the vicinity of the fibrillar conformations. Returning
to an angular representation, Figure 7D shows both the mean
vectors for the fibrillar conformations (cyan) and the reference
angles (orange/green) in polar space. Local rotations toward the
reference angle are here associated with increasing “blueness,”
while rotations away are associated with increasing “redness.”

In applying this methodology at scale to the Aβ system, we
display these regression coefficients in the form of what we call an
orrery plot in Figure 8. Each y axis value in the orrery plot gives
the reference point for the associated torsion angle, while moduli
are shown by point radius. Higher moduli indicate greater local
contributions to the affinity score. (Note that, due to unreported
residues in the fibrillar PDB structures, we limit our examination
to residues 15-40). At a glance, the orrery plot tells us that the
dominant local contributors to E22G similarity are the torsion
angles at the mutation site, as well as angles such as φ17, φ27, φ32,
ψ18, ψ21, and ψ34. The offset values show that not all torsion
angles of the same type are in phase with each other (in the
sense of having a common reference such that values higher or
lower than the reference have the same impact on the similarity
score), although some sets of residues do have very similar
offsets. This may suggest particular groups of residues whose
local conformations play a similar role in initiating or stabilizing
fibril structure in wild-type Aβ . We also see many residues whose
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FIGURE 7 | Schematic demonstration of the linearized similarity score used in Figure 8 using a simplified 2-dimensional example. (A) 1000 sampled conformations

for two protein variants (blue and red dots) on two torsion angles. (B) Depiction of blue and red conformations in Ramachandran space, with an SVM-derived affinity

score (background gradient). Lighter regions are more typical of the blue variant, while darker regions are more typical of the red variant. (C) Mapping a set of

hypothetical fibrillar conformations into Ramachandran space (cyan) allows them to be associated with affinity scores. Regression of affinity scores onto the underlying

angular components yields the mean gradient of the affinity score local to the fibrillar conformations (orange arrow), which can be re-expressed in terms of a reference

angle (green dot). (D) Re-expression of conformations in angular space, with reference angles (orange/green) and mean fibrillar conformations (cyan arrows) indicated.

Direction of rotation relative to the reference indicates whether local angular changes (from the mean fibrillar conformation) would make the structure more “blue-like”

vs. “red-like”.

FIGURE 8 | Linearization of the similarity score for fibrillar conformations.

Relative affinity for E22G (vs. WT) increases as b sin(θ − y), where y is the

angle offset (y axis), b is the weight coefficient (circle size), and θ is the torsion

angle. The color spectrum from red to blue indicates the sequence position

from N-terminal to C-terminal.

conformations do not seem to be strongly associated with relative
affinity for wild-type vs. E22G (e.g., φ37 or ψ24), which suggests
that differences in fibrillization behavior between the two variants
are not likely to depend on the local conformations of these
residues. The orrery plot thus provides us with guidance on
the angular degrees of freedom that are more or less likely to
distinguish protein variants with respect to their propensity to
adopt fibrillar conformations.

2.3. Identifying Differences in Transient
Structure via Network Analysis
As noted, a central challenge in the analysis of IDPs is their lack of
the characteristic secondary structure motifs that are the primary

point of reference for describing and comparing the tertiary
structures of folded proteins. Although IDPs by definition lack
stable secondary structure, they nevertheless form other types
of transient structures that can be characterized. Transient
structural features have been observed in weakly structured
proteins (Williamson and Miranker, 2007; Lee et al., 2014) or
partially folded intermediates (Teilum et al., 2002; Bernard et al.,
2005), often using the sensitivity of NMR chemical shifts to local
backbone conformation (Spera and Bax, 1991); such features are
often found to resemble more stable structural elements formed
upon interaction with a binding partner (Song et al., 2008). A
natural approach to characterizing transient structural elements
is via the use of residue-level PSNs to characterize the pattern
of interactions among residues within sampled conformations,
giving rise to coarse-grained representations that are flexible
enough to represent the wide range of conformational variation
exhibited by IDPs. A residue-level PSN is a network structure (or,
more formally, a graph) whose nodes or vertices correspond to
individual residues, and whose edges correspond to inter-residue
contacts. Here, we define two residues vi, vj to be in contact
(adjacent) if there exists an atom ai in residue vi and atom aj in
residue vj such that the inter-atomic distance between ai and aj is
less than 1.2 times the sum of their respective van derWaals radii.
We compute a PSN for each conformation in our set of respective
WT and E22G energy minima, giving us an ensemble of PSNs
(each a 40-node network) for each Aβ1−40 variant.

2.3.1. Where Is Transient Structure Formed in E22G

and WT?
A natural first question to address is where transient structure is
potentially formed in the wild-type and variant proteins. While
there are many types of local network structure that might be
considered, we follow (Unhelkar et al., 2017) in using the degree
k-cores of the PSN to indicate areas of cohesive interaction
among residues. A (degree) k-core (Wasserman and Faust, 1994)
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is a maximum set of nodes such that every member of the set
is adjacent to at least k other members of the set; the highest
k such that vertex v belonging to the kth core of a graph
is referred to as v’s core number, and is an indication of v’s
embeddedness in locally cohesive structure. While k-cores need
not be globally cohesive, high-numbered k-cores are composed
of locally cohesive elements, and hence vertices with high core
numbers represent residues belonging to regions of the protein
connected by multiple redundant contacts. By contrast, vertices
with low core numbers represent residues residing in regions that
are at best very loosely connected.

To summarize global tendencies toward structure formation
in the two variants, Figure 9 shows the mean core numbers
for each WT and E22G residue, averaged over all minimum
energy conformations in each respective set. Observed mean
core numbers range from just over 1 at the N-terminus to over
3 in the internal region of the protein, falling again near the
C-terminus. The relatively low core numbers near the termini
are reflective of the high flexibility of these regions, though we
observe a substantial and significant difference between the N-
terminal and C-terminal regions (with the former being far less
structured, on average, than the latter). In general, WT and E22G
show very similar patterns of core structure throughout the N-
terminal region, although E22G shows significantly higher core
numbers for the majority of residues. The largest differences in
core numbers are observed for a band of residues extending
roughly from G15 to M35. Within this region, E22G produces
substantially more local cohesion, on average, than WT. The
elevated level of structure within this band for both variants may
stem in part from interactions among the numerous nonpolar
residues located within it, but the cross-variant difference points
to a major role for E22 in destabilizing possibly aggregation-
inducing local interactions throughout the C-terminal region.
Although comparative experimental results are not available
for these proteins, this central region of higher connectivity
is consistent with the observations of Rosenman et al. (2013)
from NMR experiments on the wild-type protein at low
temperature. Based on measured J-couplings and molecular
dynamics simulations, several frequently populated structural
elements were observed, including a transient salt bridge between
E22 and K28 [also observed by Rosenman et al. (2013)], which
was observed in the minima of our wild-type models.

To get a better sense of how these differences in structure arise,
it is useful to distinguish the residue contacts that arise more
often in E22G than WT (and vice versa). Figure 10 shows, for
both sets of PSNs, the edges that are found significantly more
often in E22G (red) or in WT (blue). Mutation of the glutamic
acid at position 22 to glycine clearly enhances a large complex
of potential contacts, prominently including residues 7-8, 11-
12, and 22-23 (among others); in addition, we see a weaker but
more broad-based enhancement of contact rates throughout the
protein, but particularly in the C-terminal region. By contrast,
relatively few contacts are more prevalent in WT, among the
exceptions being pairwise contacts between 1 and 22 and 3 and
11, as well as some relatively local contacts in the C-terminal
region (appearing to involve interactions among nearby non-
polar residues). Overall, the broad pattern suggests that in WT,

FIGURE 9 | Mean degree core number by residue, WT vs. E22G, with 95%

confidence intervals. Significant differences in core numbers are indicated by

dark circles. E22G shows a region of markedly higher average cohesion

involving internal residues in the C-terminal portion of the protein, suggesting a

major role for these residues in the formation of transient structural elements

that may be involved in aggregate formation.

E22 both blocks interactions among residues in its immediate
vicinity and limits the ability of the two large patches of nonpolar
residues within the C-terminal region to interact (with some
of these instead participating more often in ephemeral internal
interactions). In E22G, the replacement of the bulky glutamic
acid with the small and highly flexible glycine appears to allow
these previously blocked groups to interact with much higher
frequency, raising the average local cohesion.

It should be noted that all of the above contacts are transient,
with typical conformations being quite sparsely connected
(though some do have considerable self-interaction). Thus, these
patterns reveal biases or general tendencies in a fluctuating
system, rather than the stable structures characterizing more
typical proteins. This raises the question of which particular
structures are more strongly favored for WT vs. E22G, to which
we now turn.

2.3.2. What Transient Structures Characterize the

Difference Between WT and E22G?
The above give us some sense of where transient structure is being
formed inWT and E22G, but they do not provide a strong holistic
sense of which sorts of global structures are more characteristic of
E22G vs. WT. For that purpose, we must consider the networks
as a whole. To do this, we fit statistical models to the respective
E22G andWTminima that identify the network features that are
more or less enhanced for each variant. We do this by leveraging
ERGMs (Hunter et al., 2008), parametric statistical models for
graphs that allow direct representation of complex dependence
among edges. Given a random graph G, defined on support G,
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FIGURE 10 | Relative PSN edge frequencies, E22G vs. WT. Of edges that

differ statistically between E22G and WT, more of them are characteristic of

the E22G variant (red) than wild type Aβ(blue); backbone edges (black) are

provided as a reference, with vertices colored by residue index (red to blue).

Edge width and translucency reflect the magnitude of relative difference in

appearance rates (heavier edges differ more). Although E22G forms structure

more readily in most locations, a key complex of activity involves residues 7, 8,

11, 22, and 23 (with several other residues also participating).

we may write its probability mass function in ERGM form as

Pr(G = g|θ , t,X) =
exp(θT t(g,X))h(g)

∑

g′∈G exp(θT t(g′,X))h(g′)
, (1)

where t :G,X 7→ R
k is a vector of sufficient statistics, θ ∈ R

k is a
parameter vector, h is a reference measure satisfying 0 ≤ h(g′) ≤
∞ for g′ ∈ G and h(g′) = 0 otherwise, andX is a set of covariates.
In the case of residue-level PSNs,G is the set of all simple graphs
on N vertices (where N is the length of the primary sequence),
subject to the constraint that each vertex is tied to the vertices
corresponding to its neighbors in the protein backbone. Here, we
follow typical practice for unvalued, fixed-N networks and take
h to be the counting measure on G, implying that h(g′) ∝ 1 for
g′ ∈ G and 0 otherwise. Since h then cancels for graphs in the
support, we henceforth omit it in our notation (it being tacitly
assumed that the probability of graphs outside the support is 0).

An extensive statistical literature exists on ERGMs, and in
particular on the problem of inferring an unknown θ from
observations of G. Substantively, the model can be understood
as describing biases in the distribution of G relative to the
reference measure (in our case, the uniform distribution over
possible 40-node PSNs), with the nature of each bias determined
by the choice of statistics (t) and the direction and strength
of each bias determined by θ . Here, we fit separate ERGMs

to the sets of observed WT and E22G minima (respectively),
inferring θ in each case by approximate Bayesian inference using
Laplace parameter priors analogous to the L1 regularization
employed in the well-known LASSO procedure (Tibshirani,
1996). Table 1 shows the posterior mean estimates, posterior
standard deviations, and 95% central posterior intervals for the
parameters (i.e., θ) of each fitted model. The estimated effects
(i.e., t) are described in greater detail in section 4, but may
be summarized as follows: an Edges effect sets the baseline
PSN density; Backbone Dist indicates the effect of the absolute
distance through the backbone (in units of residues) on the
propensity of each residue pair to be in contact; Hydophobicity
indicates the effect of hydrophobicity (as measured by the scale
of Kyte and Doolittle, 1982) on the overall propensity of each
residue to form contacts; Charge Mixing indicates the effect of
like or unlike charges to be respectively in contact or not in
contact (for charged residues); Polar/Nonpolar Mixing indicates
the propensity of polar residues to be in contact with nonpolar
residues; Polar/Polar mixing indicates the propensity of polar
residues to be in contact with other polar residues; Volume
indicates the effect of residue van der Waals volume (in Å3)
on the propensity to form contacts; Mass indicates the effect
of residue mass (in Da) on the propensity to form contacts;
Dist from Termini indicates the effect of residue distance from
the nearest terminus (ranging from 1 at the center to 0 at
either terminus) on the propensity to form contacts;GWESP(0.5)
indicates a geometrically weighted shared partner statistic with
a decay parameter of 0.5, reflecting the tendency toward triadic
clustering within the PSN; and Prior Scale refers to the scale
of the Laplace parameter prior (which determines the strength
of regularization).

Of the estimated effects, all except for hydrophobicity and
mass have 95% credible intervals that do not contain 0, and
posterior means for both models are quite similar. Broadly,
we may interpret the parameter estimates as follows. The low
baseline density (as determined by the edges parameter) is
compatible with the general observation that bothWT and E22G
are generally unstructured, with most residues having few non-
backbone contacts at any given time.We observe a mild tendency
for residues that are far from each other in the primary sequence
to interact; the high flexibility of Aβ implies relatively little
inhibition of long-range contacts, however, and the effect is fairly
small. As would be expected on physical grounds, electrostatic
and nonpolar effects are fairly large (with pairs of nonpolar
residues relatively more likely to form contacts than pairs of
polar residues or polar/nonpolar pairs). Volume also has a small
effect on contact formation, with larger residues being somewhat
more likely to have more contacts. Perhaps more interestingly,
distance from the nearest terminus (equivalently, placement in
the middle of the primary sequence) is a strong positive predictor
of the tendency to form contacts, and there is a strong overall
tendency toward clustering (as might be expected on geometric
grounds). Thus, there is a net bias toward structure formation for
the interior of the protein, despite its overall high mobility and
lack of persistent secondary structure.

Although these models are highly simplified, they can be
thought of as expressing approximate “force fields” describing
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TABLE 1 | Posterior estimates for the WT and E22G PSN ERGMs (respectively).

Wild type E22G

Parameter Post mean Post SD Q2.5% Q97.5% Post mean Post SD Q2.5% Q97.5%

Edges −6.137 0.0719 −6.286 −5.986 −6.356 0.0667 −6.484 −6.218

Backbone dist −0.025 0.0017 −0.028 −0.021 −0.019 0.0014 −0.021 −0.016

Hydrophobicity −0.003 0.0038 −0.010 0.005 0.002 0.0039 −0.006 0.009

Charge mix −0.999 0.0449 −1.083 −0.909 −0.996 0.0533 −1.108 −0.901

Polar/Nonpolar mix −0.347 0.0320 −0.411 −0.285 −0.365 0.0295 −0.419 −0.308

Polar/Polar mix −0.512 0.0531 −0.614 −0.410 −0.478 0.0465 −0.571 −0.393

Volume 0.004 0.0007 0.003 0.006 0.003 0.0007 0.001 0.004

Mass −0.001 0.0007 −0.002 0.001 0.001 0.0007 0.000 0.002

Dist from termini 0.140 0.0239 0.097 0.188 0.190 0.0247 0.145 0.241

GWESP(0.5) 2.137 0.0235 2.090 2.182 2.205 0.0221 2.159 2.246

Prior scale 0.941 0.0102 0.922 0.960 0.958 0.0080 0.941 0.974

the relative favorability of different PSN structures with respect to
each variant. Drawing on this intuition, wemay use the models to
construct a log “favorability ratio” that, for a given PSN, measures
the extent to which it is relatively favorable for E22G vs. WT. In
particular, let θ̂WT be the estimated coefficients for theWTmodel,
and θ̂E22G the corresponding coefficients for the E22G model.
Then, for PSN G, the quantity

f E22GWT (G) = θ̂E22GtE22G(G)− θ̂WT tWT(G) (2)

is the log favorability ratio for E22G vs. WT (where tE22G and
tWT indicate the vectors of graph statistics for G evaluated for
each respective sequence, the two having slightly different residue
properties). It may be observed from Equation 1 that f E22GWT (G)
is equal to the log ratio of the probability of observing G under
the two respective models, up to an additive constant that does
not depend upon the PSN. Thus, while the absolute level of
f E22GWT (G) cannot be interpreted, differences in the log ratio for
different choices of G are meaningful; in particular, if f E22GWT (G) >
f E22GWT (G′), then PSN G is relatively favored by E22G vs. WT vis a
vis G′.

The log favorability ratio provides considerable insight into
the types of transient structures that are most heavily favored
by E22G relative to WT. For instance, Figure 11 shows the five
PSN structures most favored by E22G and WT, respectively,
out of all minima from both (pooled) sets. As can be seen,
the minima most favored by E22G involve extensive, cohesive
structures, while those favored byWT tend to be extremely sparse
(with most structure being local with respect to the backbone).
Interestingly, where the wild type-favored PSNs have more
extensive structure, it tends to be near the termini (in contrast
with E22G, which shows more extensive structure within the
interior of the protein). As noted above, both models encourage
structure formation within the interior of the primary sequence;
however, wild type Aβ1−40 appears to favor conformations
with terminal structure more than the E22G variant (plausibly
because the E22G places far more probability mass on globally
cohesive structures that are destabilized in the wild-type protein).

Examination of these extreme cases thus gives us an immediate
intuition for the nature of the subtle differences in transient
structure formation that distinguish the two variants.

2.4. Comparative Cluster Analysis of WT
and E22G Dynamics
Cluster analysis is a useful tool for subdividing conformational
spaces, having been successfully employed in applications such
as refinement of protein structure homology models (Raval
et al., 2012), building Markov models for protein folding
(Husic and Pande, 2017), and probing the configurational and
hydrogen bonding structure of solvating water molecules in
confined regions of proteins (Young et al., 2007). Here, we
show how cluster solutions calibrated for accurate treatment of
conformational dynamics combined with comparative analysis
of cluster-induced transition networks can be used to reveal
differences in the behavior of the WT and E22G Aβ variants.

2.4.1. Can Differences in Physiological Temperature

Dynamics for WT and E22G Be Detected?
It has been shown in the present study and elsewhere (Chebaro
et al., 2015; Granata et al., 2015) that the thermodynamics of
intrinsically disordered proteins are governed by vast potential
energy surfaces with numerous or perhaps innumerable local
minima corresponding to nearly isoenergetic microstates, rather
than a single well-defined global minimum. This situation makes
comparative analysis of thermodynamic distributions for similar
IDPs extremely difficult compared to systems where only a
few local minima exist. At the same time, experiments have
confirmed that even subtly different IDPs, such as the WT and
E22G proteins being studied in the present work, do exhibit a
marked difference in their capacity to form amyloid fibrils (Lord
et al., 2006; Norlin et al., 2012). This sharp contrast between
the thermodynamic similarities of WT and E22G and the
substantial difference in their behavior under solution conditions
strongly suggests that there may be more easily discernible
kinetic differences between them. In other words, although the
configurations of both systems are distributed very similarly
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FIGURE 11 | Five PSN structures most heavily favored by E22G (Top) and WT (Bottom), respectively. E22G-favored structures are highly cohesive, while those

favored by WT have little structure (most of which is local).

when time-marginalized, the way the proteins transition between
regions of the conformation space may be distinct.

While the conventional intuition motivating clustering or
segmentation of conformational space in the context of protein
dynamics is that the protein will restricted to a relatively small
number of low free energy basins (with relatively rare transitions
over free energy barriers between basins) (Bolhuis et al., 2002),
this cannot be assumed for IDPs: while local minima exist,
they are extremely numerous and widely dispersed across a
relatively flat energy landscape (Granata et al., 2015). However,
even without the assumption of well-defined basins, we can
segment conformational space into a set of discrete regions and
use this as the basis for a coarse-grained treatment of protein
dynamics (estimating transition rates from observed simulation
trajectories). While many approaches could be used for this
purpose, k-means clustering (Hartigan and Wong, 1979) on
input space of torsion angles is a natural choice: it is highly
scalable, adaptively places boundaries around regions of high
conformational density, and leads to cells that are both convex
and relatively compact. Here, we apply k-means clustering (using
the R implementation R Core Team, 2018) to trajectories in
torsion angle space produced by 500 ns long molecular dynamics
simulations (10 × 106 time steps each), jointly clustering WT
and E22G to create a shared coarsening of their common
conformational space. We then examine the dynamics on this
coarsened space to reveal differences between the two systems.

2.4.2. Choosing the Number of Clusters to Optimize

Dynamic Accuracy
An important parameter to determine in fitting any k-means
clustering model is k, i.e., the number of clusters the algorithm
will generate. One of the most common and straightforward
metrics for determining the optimal choice of k is to plot
the mean squared distance between the data points and their

respective cluster centers, a.k.a. an elbow plot. For data sets with
a strong characteristic number of clusters, a sharp decline in
this distance will be observed when k is set to that characteristic
number of clusters. As shown in Figure 12A, the configurations
produced by theMD simulations of theWT and E22G variants of
Aβ1−40 showed no well-defined elbow, a pattern compatible with
a widely dispersed range of conformations with no deep potential
energy wells. Although somewhat diminishing gains are observed
somewhere between k = 5 and k = 10, this result is by no means
conclusive, thus additional metrics for selecting k are needed.

Another commonly used metric for finding an optimal value
of k for k-means clustering is to plot mean silhouette width as a
function of k and look for a well-defined maximum (Rousseeuw,
1987). The silhouette width of a given data point i is defined as:

s(i) =
b(i)− a(i)

max{a(i), b(i)}
(3)

where a(i) is the mean distance between point i and all other
points within its cluster, b(i) is the mean distance between point
i and all points in the cluster it is nearest to but to which it
does not belong. This equation produces silhouette width values
−1 ≥ s(i) ≤ 1, where, on the extremes, 1 indicates ideal cluster
membership for point i and -1 indicates that i has been grouped
into the wrong cluster. Silhouette analysis of our system is shown
in Figure 12B. Although the optimal choice of k is clearly greater
than 8, again, the standard metric provides evidence for the wide
dispersal of conformations, and a need to choose a k-selection
approach that is tailored for the case of IDP trajectories.

Given that our goal is to segment a continuous conformation
space for the purpose of building a coarse-grained approximation
to the underlying dynamics, an alternative approach is to
estimate the accuracy of the dynamic model produced by
a given choice of k, and to find the k that leads to the
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lowest level of approximation error. Intuitively, the error
involved in a Markov approximation of the true dynamics
is dominated by two terms: the coarsening loss due to the
approximation of each specific conformation within a voxel
by the voxel centroid; and the transition rate error associated
with imperfect estimation of the inter-voxel transition rates.
Given a fixed set of trajectories, it is apparent that the
coarsening loss is diminishing in k: the more finely we divide
the space, the more accurately each observed conformation is
represented. At the same time, however, larger choices of k
also reduce the information available to estimate each inter-
voxel transition rate, leading to errors that are increasing in
k. Minimizing the total error is thus expected to lead to a
k that optimizes the trade-off between coarsening and rate
estimation errors.

To put these two error sources on an even footing, we unify
them by defining a one-step prediction error for the coarsened
Markov model. Specifically, given an observed conformation
within a particular voxel, we predict the next conformation in the
trajectory by (1) drawing the next voxel state from the Markov
model, and (2) drawng a random conformation from the set of all
observed conformations within the voxel. The distance between
this drawn conformation and the observed next conformation is
the one-step prediction error. Minimizing this error (summed
over all observed transitions) automatically incorporates both the
coarsening loss and the transition rate error, in a manner that is
conceptually true to our end goal (approximating complex, high-
dimensional conformational trajectories with a coarse-grained
Markov model).

The one-step prediction error summed over all trajectories is
referred to as the total Markov error, and is computed as follows.
First, assume a set of observed trajectories, a clustering solution,
and an estimated transition rate matrix. Next, begin with the first
observed conformation, and proceed as follows:

1. Taking the current cluster ID as input to the Markov model,
predict the cluster membership of the next time point.

2. Draw a configuration from the cluster into which the model
predicted a transition.

3. Measure the distance between the predicted configuration
and the actual configuration for that time step, and add that
distance to the total Markov error.

4. Repeat steps 1 through 3 for the remainder of the trajectory,
and either repeat with the next trajectory if any remain or else
return the TME for that model.

The TME metric for k-means clustering was applied to 20
separate k-means model fitting calculations, varying k from
2 through 16 and averaged to produce the plot shown in
Figure 12C. The metric shows a well-defined optimum at
k = 11, where the total Markov error is at a minimum.
The TME methodology implicitly strikes a balance in bias-
variance tradeoff between the extremes of too few clusters, where
transition frequencies are more likely to be well-sampled but the
configuration draws from step 2 are drawn from higher variance
clusters, and too many clusters, where smaller clusters have lower
variance but under-sampling of transitions imparts a bias to the
random walks in cluster space.

2.4.3. Transition Frequency Graphs From k-Means

Clustering of WT and E22G Trajectories
Once the optimal number of clusters of k = 11 was identified
using the total Markov error metric, the lowest TME of the 20 k-
means models with k = 11 was selected for further analysis. The
matrices of transition frequencies between clusters (see section
4) are ideally represented using graphs (Figures 13, 14). A few
key observations are immediately apparent when comparing
Figure 13 with Figure 14. The E22G graph displays a much
higher degree of connectivity compared to WT, with more
evenly distributed populations across the clusters visited along
its trajectory. Notably, cluster number 6, the highest populated
cluster in the E22G transition graph, is both highly connected
and minimally populated in the WT graph. This is noteworthy
because although transitions were observed between cluster 6
and 9 of the 10 other clusters present in the WT trajectories, the
trajectories did not remain in cluster 6 long enough to produce
a more substantial population in that cluster. This implies that
while cluster 6 is highly accessible to bothWT and E22G variants,
E22G appears to exhibit substantially higher stability in this
region of configuration space.

Given the sharp contrast between the transition frequency
graphs in Figures 13, 14, it is necessary to examine the possibility
that the difference in configuration space sampling is due to
the trajectories being too short. More specifically, since the
configuration space of Aβ1−40 is believed to be expansive, it is
necessary to demonstrate that the observed differences are not
occuring because the two variants simply did not have time to
cover the distance between the configuration subspaces favored
by one vs. the other. As a way to address this, we generated the
cluster proximity graph shown in Figure 15. It is immediately
obvious that this is a very well-connected graph, with many of
the strongest ties occurring between vertices whose populations
are dominated by differing variants. For example, note that
most of the strongest ties in the graph are between nodes of
substantially different relative populations of WT vs. E22G. As
a specific case, consider the three most WT-dominant nodes on
the graph, nodes 4, 8, and 9: all exhibit some strong ties, yet
none of their respective strong ties are shared between each other.
The cluster center proximity graph provides strong evidence that
the disparity between the clusters sampled in the WT and E22G
simulations are indeed inherent to their respective dynamics, and
not an artifact of under-sampling.

3. DISCUSSION

This comparative study of the wild type Aβ1−40 protein and
its “Arctic” E22G variant identifies some key differences in
the types of transient structures formed by monomers of
the disease-related variant. Although the Ramachandran plots
and angular velocity distributions of MD trajectories for these
proteins are essentially identical, SVM analysis finds key sets
of torsion angles that are indicative of conformations that are
more characteristic of either wild-type or E22G. Combining
this approach with PCA provides a more detailed view of
the differences in transient structural motifs formed, namely

Frontiers in Molecular Biosciences | www.frontiersin.org 13 June 2019 | Volume 6 | Article 42

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


Grazioli et al. ML-Based Comparative Analysis of IDPs

FIGURE 12 | (A) Mean distance from cluster centers as a function of the number of clusters generated k, often called an elbow plot, is a typical metric for determining

the ideal number of clusters to use in k-means clustering. In strongly clustered systems, the point where this mean distance drops abruptly, or the “elbow,” is the

optimal value for k. Here we show the mean elbow plot for 20 separate clustering calculations using k values ranging from 2 through 16. (B) Mean silhouette width as

a function of k is another common metric for choosing an optimal value of k. Although the metric shows that the optimal k value ought to be greater than 6, no clear

optimum is demonstrated. The silhouette widths shown were generated by sampling 10 sets of 5,000 silhouette width values from all 20 clustering calculations and

averaging. (C) Our metric for optimal k selection, whereby the quality of a given clustering was evaluated on the basis of how well a Markov model generated from a

transition frequency matrix of transitions between clusters performed at predicting the actual trajectory’s path through torsion angle configuration space. Here we see

a clear optimum: k = 11, where the total Markov error metric is at a minimum.

FIGURE 13 | This graph of transition frequencies between clusters 1 through 11 was generated by clustering the trajectory in torsion angle space from a 500 ns

simulation of wild type Aβ1−40. This particular clustering model was selected due to it having the minimum total Markov error (sum of both WT and E22G) of all 20

replicates having k = 11. Each vertex represents one cluster, edges indicate that transitions were observed between each respective pair of vertices, and molecular

structures shown are the structures from the trajectories nearest each cluster center (N termini are labeled green and C termini are labeled orange). Note that this is a

directed graph, thus the size of the arrowheads are proportional to the number of transitions that occurred in that direction. The size of each vertex is proportional to

the number of configurations from the WT trajectory belonging to that cluster, and the color of each vertex represents the relative populations of WT vs. E22G in the

aggregate of both trajectories (the bluer the more WT, the redder the more E22G).

the amount of helical character in the vicinity of residues 14-
23 and the amount of contact between the C-terminal region
and other parts of the protein. Comparisons of the similarity
scores for the wild-type and E22G monomers investigated here
with known fibril structures from the Protein Data Bank reveal

that most of the known fibril structures occupy more wild-
type like conformations, suggesting that E22G may fibrillize
into a different topology, a hypothesis that is consistent with
morphological differences in experimentally observed fibrils
(Norlin et al., 2012), although high-resolution structures have
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FIGURE 14 | This graph of transition frequencies between clusters 1 through 11 was generated by clustering the trajectory in torsion angle space from a 500 ns

simulation of E22G mutants of Aβ1−40. The clustering model used is the same as that shown in Figure 13, only applied to the E22G trajectory instead. The image

convention used is also the same as that of Figure 13.

FIGURE 15 | (A) For the cluster center proximity graph, the vertex color follows the same convention as Figures 13, 14, while vertex size is proportional to the

aggregate population (both WT and E22G). The edges of this graph represent the proximity between their respective vertices in configuration space (the darker the

edge, the closer the vertices are positioned in torsion angle space). (B) Distribution of the pairwise distances between cluster centers. (C) Distribution of grayscale

values (0 is black, 1 is white) for the edges in (A) was produced by mapping the pairwise distances with a sigmoidal function. Note that the shape of the distribution is

very close to that of (B), indicating an accurate representation of the proximity data in the grayscale.

not yet been solved for this variant. The previously discussed
results approach the structures from torsion angle space, which
is a convenient representation of backbone conformations, but

does not address intramolecular connectivity. Protein structure
networks (PSNs) enable a parsimonious representation of local
and long-range cohesion. We find that the mean degree core
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number, a measure of each residue’s connectivity, is significantly
higher for most residues in E22G compared to wild-type, with
particularly large differences observed in residues G15 to M35.
This region of enhanced structural cohesion in the E22G variant
may represent a nucleation site for the formation of pathological
aggregates. PSN analysis of the five structures most favored by
wild-type vs. E22G shows that the former prefers much sparser,
extended structures, while the latter is prone to compact, densely
connected conformations. Overall, this enhanced propensity
of E22G to form denser patterns of inter-residue contacts,
even if these species exist only transiently, is indicative of its
increased susceptibility to aggregation. Our results not only
provide insight into this protein system, but also illustrate a more
general approach that can be applied to comparative analysis
of intrinsically disordered proteins in other settings. While a
strong precedent exists for applying frameworks devised for
characterizing proteins with well-defined folded states, like DSSP
(definition of Secondary Structure of Protein Joosten et al., 2010),
toward characterizing the transient structure present in IDPs
(Rosenman et al., 2013), we present a methodology that allows
the latent structure of the data itself to define the metrics for
similarity or difference between variants. Our approach does
not risk the confirmation bias that can result from applying
methods that search for a particular known type of order in an
intrinsically disordered system. Rather, the ML-based methods
shown herein search for themost predictive latent structure in the
data and thenmaps that structure onto some intuitable paradigm.
In most supervised machine learning applications, the goal is to
train a classifier or regression model that can be used to make
predictions on future data points after being trained on training
data from the past. We have demonstrated that tools from the
ML toolkit, such as SVMs and clustering algorithms, can be
used in ways that go beyond traditional “black box” approaches,
and instead be used to answer mechanistic questions about how
and why subtle structural differences in complex systems like
IDPs can lead to markedly different dynamics. Although fitting
the models remains an important step in the present work, the
utility of a well-trained ML model goes beyond being able to
make accurate predictions. Using our approach, the fact that
we are able to train a model to accurately classify or group
structures as having WT or E22G character, given the training
data, serves as an indication that the input data is indeed a set of
sufficient statistics for discerning between the classes of interest.
This is a key piece of information for molecular simulations
in general, as one must always be wary that an inconclusive
result is due to the inherent problems of molecular simulations,
such as under-sampling or insufficiently detailed models. For
example, in the case of the present work, wild-type Aβ and the
E22G variant are known to exhibit radically different fibrillization
dynamics on experimentally accessible size and time scales, yet
standard approaches to analysis of MD simulations of these
systems show little to no difference in their behavior (e.g., the
Ramachandran plot if Figure 1). As is the case for MD-based
study, when standard methods of analysis are inconclusive, a
legitimate concern is that lack of detail in the MD forcefields
and/or under-sampling could be to blame for the inability to
differentiate between WT and E22G dynamical data with the

standard methods. By using multiple ML approaches to first
prove that indeed enough simulation data is present to reliably
differentiate between variants, and subsequently probe the ML
models themselves to determine which input characteristics
and even which specific configuration data points were most
informative, we have demonstrated that our ML-based methods
can be used to simultaneously verify the adequacy of the sampling
while providing a less biased interpretation of the dynamics of
intrinsically disordered proteins.

While there is no one-size-fits-all approach for characterizing
the transient structure of IDPs–different questions demand
different representations–we would suggest that several methods
shown here are likely to prove widely useful in practice. As
noted, we find residue-level PSNs to provide a fairly simple way
to represent transient structure that complements traditional,
secondary structure-based methods while capturing features that
are hard to express via the latter. Measures of local cohesion
(like the core numbers used here) are easily computed, and
provide immediate insight into which regions of the protein
tend to occupy locally folded conformations; comparing these
measures across variants allows the impact of mutations on
transient structure to be assessed without requiring formation of
recognizable secondary structure. Model-based analysis of PSN
structure using ERGMs is more complex, but provides a powerful
tool for identifying transient structures that are differentially
favored across variants. Given the rich analytic toolkit developed
for the study of social networks (Wasserman and Faust, 1994;
Brandes and Erlebach, 2005; Butts, 2008a) (which are themselves
characterized by irregular and often transient structure), this
would seem to be an area with substantial potential for
further development.

4. MATERIALS AND METHODS

4.1. Molecular Dynamics Simulation of
AβMonomers
All MD simulations Aβ1−40 monomers were carried out using
the NAMD 2.10 molecular dynamics software package (Phillips
et al., 2005) with the CHARMM36 force field (Best et al., 2012)
in Generalized Born implicit solvent (Qiu et al., 1997) with an
electrostatic interaction cutoff of 14Å, an alpha (i.e., descreening)
cutoff of 12Å, a 2fs step size, and an ionic concentration of
0.1M; except as noted below, all simulations were performed
at constant temperature using a Langevin thermostat with
a damping coefficient of 1/ps. The seed structure for WT
Aβ1−40 was taken from the lowest energy conformation of the
monomeric solution structure of (Paravastu et al., 2008) (PDB:
2LMN). The seed structure for the E22G variant was obtained
via homology modeling using SWISS-MODEL (Schwede et al.,
2003) (template PDB 2M4J Lu et al., 2013). Visualizations of the
molecular structures were generated using the VMD software
package (Humphrey et al., 1996), with additional processing
performed using R (R Core Team, 2018).

4.1.1. Identification of Local Minima
To obtain an overdispersed set of seed conformations, 100 ns
MD simulations at 450K were carried out for WT and E22G,
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respectively using the above protocol; 1,000 conformations were
collected in each case (1 per 100 ps), with the first being
discarded and the rest being retained for subsequent analysis.
Each conformation obtained from the above process was then
used to seed a 1ns annealing trajectory in which temperature
was systematically lowered from 310K to 0K by constant
increments of 1K (i.e., with approximately 1,600 time steps
between increments) using velocity reinitialization (no Langevin
thermostat). The final conformation from each of 1998 annealing
runs was retained as a local minimum for further analysis
(resulting in 999minima for each ofWT and E22G, respectively).

4.1.2. Simulation of Conformations and Angular

Velocities from Dispersed Starting Points
To sample Aβ1−40 conformations across a wide range of
conformation space, we use the above-identified local minima
as seeds for short secondary trajectories at physiological
temperature. For each minimum, we simulated 10 independent
trajectories at 310K, using our base protocol. Each trajectory
was simulated for 50 intervals of 2 ps, separated by “bursts”
in which conformations were recorded 10 times separated by
intervals of 20 fs. This resulted in a total length per trajectory of
approximately 110 ps. In total, 9,990 trajectories were simulated
for each of WT and E22G, with approximately 500,000 10-
configuration “bursts” recorded for analysis. Mean angular
velocities were then estimated for each burst by taking the mean
of the circular (angular) difference between frames on each
torsion angle and dividing by the interval between frames.

4.1.3. Simulation of Dynamics at Physiological

Temperature
To examine longer-range Aβ1−40 dynamics at physiological
temperature, independent trajectories using our base protocol
were simulated for WT and E22G at 310K for 500 ns. 250,000
conformations (1/2ps) were retained from each trajectory for
subsequent analysis.

4.2. Support Vector Machine Analysis of
Low-Energy Conformations
Backbone dihedral angles were obtained for all local minima
using a combination of R and VMD scripts; for subsequent
analysis, each torsion angle was represented via its real and
imaginary components (for a total of 160 input features per
conformation). SVM analysis was performed using the e1071
package for R (Meyer et al., 2018), using a Gaussian (aka radial
basis function) kernel. Hyperparameter tuning for the kernel
bandwidth and cost parameters was performed via a grid search
using 10-fold cross-validation. For local analysis of mean angular
differences across the decision surface, the set of all support
vectors for the SVM solution was obtained and sorted into
matched E22G/WT pairs by Euclidean distance in the input space
(with the closest pair being matched first, then the next closest,
and so on until no pairs remained). Angular (i.e., minimum
circular) differences were then computed for the torsion angles
in each pair, expressed as the angular displacement needed to go
from the WT angle to its E22G counterpart (in radians).

For analysis involving fibrillar conformations, all models
were extracted from PDB Berman et al. (2000) entries 2LMN
(Paravastu et al., 2008), 2LMO (Paravastu et al., 2008), 2LMP
(Paravastu et al., 2008), 2LMQ (Paravastu et al., 2008), 2LNQ
(Qiang et al., 2012), 2M4J (Lu et al., 2013), 2MPZ (Sgourakis
et al., 2015), 2MXU (Xiao et al., 2015), 5KK3 (Colvin et al., 2016),
and 5OQV (Gremer et al., 2017). The conformation of each
monomer in each fibril structure was extracted and converted
to torsion angle features as described above. Because many
reported structures were missing most or all of the N-terminal
residues, we limited analysis to residues 15-40. A second SVM
solution was obtained from the minima using only these residues
using the above protocol, which was employed for this analysis.
The projection of each fibril onto the feature space vector
normal to the separating hyperplane (the “affinity score”) was
performed by obtaining the decision value for the classification
prediction (E22G vs. WT) for each fibrillar conformation. To
obtain information on the mean gradient of the affinity score
over the fibrillar conformations, scores were regressed on the
input features of the conformations; the resulting coefficients
estimate the mean gradient of the affinity score for the real and
imaginary portions (respectively) of each torsion angle, averaged
across conformations. For visualization, the two coefficients for
each torsion angle were transformed into modulus/argument
representation [i.e., for torsion angle θi, βisin(θi) + β ′i cos(θi) =

bisin(θi − yi) with bi =

√

βi
2 + β ′i

2 and yi = tan−1(β ′i/βi)]. All
calculations were performed using R (R Core Team, 2018).

4.3. Protein Structure Network Analysis
Residue-level PSNs were obtained for each local minimum
conformation by calculating distances among all atom pairs and
forming an edge between residues ri and rj if there existed atoms
ai ∈ ri, aj ∈ rj such that the ai, aj distance was smaller than
1.2 times the sum of their van der Waals radii. All analysis and
visualization was performed using R and statnet (Handcock et al.,
2008; R Core Team, 2018); van der Waals radii were taken from
Alvarez (2013). k-cores were calculated for all PSNs using the sna
library for R (Butts, 2008b).

ERGM estimation was performed using an approximate
Bayesian procedure building on the approach of Desmarais and
Cranmer (2012). We independently estimate a model for each
sample of PSNs, with the structure

σ ∼ Inv− Gamma(κ , ζ )

θ1, . . . , θp ∼ Laplace(0, σ )

Y1, . . . ,Yn ∼ ERGM(θ ,X),

where σ is the prior scale (with hyperparameters κ and ζ ),
θ = (θ1, . . . , θp) is the vector of ERGM coefficients, Y =

(Y1, . . . ,Yn) is a PSN sample, and X is a set of protein-
specific covariates (e.g., residue properties). Draws at each
level are taken to be conditionally independent. Intuitively,
this model is a Bayesian analog to the LASSO procedure
applied to a pooled ERGM, with the Laplace parameter priors
inducing the equivalent of L1 regularization on the posterior
mode. (To improve regularization performance, we rescale the
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changescores associated with θ to unit variance during the
estimation process, so that each coefficient is on the same scale;
reported estimates have been returned to the original scale).
Because direct posterior simulation for this model would be
prohibitively computationally expensive on the large sample
of networks used here, we instead employ an approximate
inference strategy closely related to that of Schmid andDesmarais
(2017) for single networks and Desmarais and Cranmer (2012)
dynamic networks. Our approach proceeds as follows. For a
specific sample, Y , we approximate the posterior mode θ |Y ,X by
numerically maximizing the quantity

∫ ∞

0
p(θ |σ )p(σ |κ , ζ )

n
∏

i=1

PL(Yi|θ ,X)dσ

where PL is the conditional pseudo-likelihood of Yi (Strauss
and Ikeda, 1990) given the constraint that all residues must be
adjacent to their neighbors along the protein backbone. The
pseudo-likelihood is an easily calculated approximation to the
exact ERGM likelihood whose mode, for large conditionally
independent samples, approaches that of the true likelihood
(Strauss and Ikeda, 1990). To obtain approximate posterior
quantities, we then perform Bayesian bootstrap (Rubin, 1981)
simulation of θ |Y(j),X over replicates Y(1), . . . ,Y(m) of the
original data set (with graphs as the independently resampled
units). We report approximate posterior mean, standard
deviations, and 95% credible intervals obtained through this
procedure for θ and σ .

Model terms used for the PSN ERGM analysis were computed
using a combination of R scripts and tools within the ergm
statnet package (Hunter et al., 2008); descriptions for model
terms used here follow e.g., Morris et al. (2008). A standard
edges term was used as a density offset, with an absdiff term for
distance along the backbone, and a nodemix for polar/nonpolar
interaction (with nonpolar/nonpolar as the reference category).
Electrostatics were implemented via an edgecov term with a
covariate matrix Z such that Zij = 1 if ri and rj have the same
nonzero charge, Zij = −1 if ri and rj have the different nonzero
charge, and Zij = 0 if either ri or rj are uncharged. nodecov terms
were included for hydrophobicity (using the scale of Kyte and
Doolittle, 1982), residue volume (in Å3), residue mass (in Da),
and residue-wise distance from the nearest terminus (scaled from

0 to 1). Finally, we account for endogenous clustering using a
fixed-decay geometrically weighted edgewise shared partner term
(GWESP(0.5)). For the Laplace scale, we employ a minimally
informative (i.e., diffuse) hyperprior (κ = 0.1, ζ = 1.1).

Computation for the log relative favorability ratio was
performed for each PSN by calculating the model statistics (i.e.,
terms) for the adjacency structure of the PSN under the respective
residue properties of each variant and then multiplying by their
respective parameter estimates per equation 2. f E22GWT was then
calculated for all WT and E22G minima PSNs, with the highest
and lowest scoring configurations (respectively) being chosen
for visualization.

4.4. Comparative Cluster Analysis of WT
and E22G Dynamics
All k-means clustering was carried out using the standard R
implementation of k-means clustering (R Core Team, 2018).
Torsion angle vectors used to define the configuration space
were expanded into real and imaginary components, as outlined
in section 4.2. The Markov models for the total Markov
error metric were generated matrices of transition frequencies
by defining a Jeffreys prior on each row, with the observed
transitions for that row treated as multinomial data, leading
to a posterior mean for the cij transition of (Zij + 0.5)/(Ni +

k/2), where Ni is the number of cluster pairs starting in ci and
Zij is the total number of transitions from cluster i to cluster
j.
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