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TEM family of enzymes is one of the most commonly encountered β-lactamases
groups with different catalytic capabilities against various antibiotics. Despite the studies
investigating the catalytic mechanism of TEM β-lactamases, the binding modes of
these enzymes against ligands in different functional catalytic states have been largely
overlooked. But the binding modes may play a critical role in the function and even the
evolution of these proteins. In this work, a newly developed machine learning analysis
approach to the recognition of protein dynamics states was applied to compare the
binding modes of TEM-1 β-lactamase with regard to penicillin in different catalytic states.
While conventional analysis methods, including principal components analysis (PCA),
could not differentiate TEM-1 in different binding modes, the application of a machine
learning method led to excellent classification models differentiating these states. It
was also revealed that both reactant/product states and apo/product states are more
differentiable than the apo/reactant states. The feature importance generated by the
training procedure of the machine learning model was utilized to evaluate the contribution
from residues at active sites and in different secondary structures. Key active site
residues, Ser70 and Ser130, play a critical role in differentiating reactant/product states,
while other active site residues are more important for differentiating apo/product states.
Overall, this study provides new insights into the different dynamical function states of
TEM-1 and may open a new venue for β-lactamases functional and evolutional studies
in general.

Keywords: TEM-1 β-lactamase, functional binding modes, structural analysis, random forest classification,

machine learning, molecular dynamics

INTRODUCTION

Antibiotic resistance against almost all the existing antibiotics presents a major risk to global health.
Among many other factors, β-lactamases as a group of proteins that hydrolyze antibiotics play a
key role in antibiotic resistance. The serine β-lactamases, which utilize a serine residue to hydrolyze
the β-lactam ring-based antibiotics, and zinc based β-lactamases, are the two main groups of
β-lactamases in general. Class A β-lactamases are one dominant subgroup in serine β-lactamases
and are highly diversified. TEM-1, the most commonly encountered β-lactamase in Gram-negative
bacteria, belongs to the Class A β-lactamases (Bradford, 2001). The structure and potential catalytic
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mechanisms of TEM-1 have been studied extensively as a model
system of Class A β-lactamases (Lamotte-Brasseur et al., 1991,
1999; Jelsch et al., 1992; Fonzé et al., 1995; Maveyraud et al.,
1998; Petrosino et al., 1998; Minasov et al., 2002; Díaz et al.,
2003; Hermann et al., 2003; Golemi-Kotra et al., 2004; Roccatano
et al., 2005; Savard and Gagné, 2006; Doucet et al., 2007). The
catalytic mechanism of TEM-1 can be divided into acylation and
deacylation steps using penicillin as an example. The acylation
step leads to an acylenzymeMichaelis-complex intermediate with
a covalent bond formed between the Ser70 residue and ring
opening product of penicillin β-lactam ring. This covalent bond
in the acylenzyme intermediate is further hydrolyzed during
the deacylation step, leading to an ineffective β-lactam ring-
opening product detached from the enzyme. Catalytic functions
of key residues at and surrounding an active site have been
investigated extensively with some ongoing controversy (Oefner
et al., 1990; Herzberg and Moult, 1991; Lamotte-Brasseur et al.,
1991, 1992, 1994; Strynadka et al., 1992, 1996; Matagne et al.,
1998). The active site of TEM-1 contains several conserved
residues that are important for catalysis: Ser70, Lys73, Lys234,
Glu166, and Ser130 (Fisette et al., 2010). Here and in the rest
of the article, the sequence numbering of Ambler et al. (1991)
is used to be consistent with the general literature about TEM-
1 (Savard and Gagné, 2006; Doucet et al., 2007; Fisette et al.,
2010). It is also believed that some residues, including Asn170,
Ala237, Ser235, and Arg244, help to stabilize the acylenzyme
intermediate. Although not fully determined, the contribution
of these residues to TEM-1 catalytic mechanisms have been
investigated extensively (Zafaralla et al., 1992; Stec et al., 2005;
Marciano et al., 2009; Stojanoski et al., 2015; Palzkill, 2018).
In addition, an allosteric site consisted of helixes 11 (residue
219–226) and 12 (residues 271–289) of TEM-1 were proposed
(Horn and Shoichet, 2004). Two novel inhibitors were reported
to destabilize the TEM-1 at high temperature. The two inhibitors
can bind to the allosteric site in TEM-1, which locates in between
helices 11 and 12. The allosteric site is 16 Å away from the
active site. It was proposed that TEM-1 conformational changes
were transmitted by a key catalytic residue, Arg244 (Horn and
Shoichet, 2004). In another study, the allosteric site of TEM-
1 was further detected through binding with a β-lactamase
inhibitor protein (BLIP). It was suggested that the connections
between active site and allosteric site may be modulated by
the helix 10 region (residues 218–230) and Tpr229 in TEM-
1 (Meneksedag et al., 2013). The allosteric site helixes 11 and
12 were also proposed as a cryptic pocket formation of TEM-1
(Oleinikovas et al., 2016). In addition, the residues P226-W229-
P252 were identified as a PWP triad to stabilize the helix 10
region (Avci et al., 2016, 2018).

One important aspect of TEM-1 for its function is dynamics.
Therefore, the molecular dynamics (MD) simulations were
carried out to characterize dynamical properties of TEM-1
binding with benzyl penicillin molecule. A so-called � loop
spans residues 163 through to 180 (including the key Glu166
residue for catalysis), and forms one edge of the active site
(Dideberg et al., 1987; Herzberg and Moult, 1987; Moews
et al., 1990; Jelsch et al., 1993; Vanwetswinkel et al., 2000).
Some earlier MD simulations showed that the � loop was

rather stable even with the absence of the ligand (Díaz et al.,
2003). The whole TEM-1 has also been shown to be unusually
rigid with limited motions on the picosecond-to-nanosecond
time scale through a nuclear magnetic resonance (NMR)
spectroscopy study (Savard and Gagné, 2006). Through more
extended simulations and NMR studies, a variety of motions
displayed by � loop are revealed to be potentially important
for catalysis (Fisette et al., 2010). Another simulation study of
TEM-1 binding with benzylpenicillin suggested that a substrate
binding led to increased flexibility of � loop while making
TEM-1 globally more rigid (Fisette et al., 2012). In addition
to benzylpenicillin as a substrate, simulations were also carried
out for TEM-1 bound with another two antibiotics, amoxicillin
and ampicillin, to reveal that even the subtle differences in
chemical structures of ligands could also regulate the substrate
recognition (Pimenta et al., 2013).

One overlooked aspect of TEM-1’s function is the binding
with antibiotics and their hydrolysis product. Penicillin, for
example, could bind with TEM-1 as favorable substrate, while the
hydrolysis product of penicillin needs to leave the binding pocket
for the turnover of this enzyme. Given the rigidity and sensitivity
of the TEM-1 structure to the ligand, the response of protein
dynamics to the ligand, in different chemical states through
catalysis, could be significant and important for its function,
however, this remains under-appreciated. One of the reasons for
this is probably due to the fast turnover rate, which does not
allow for a reliable experimental probe of the protein binding
with ligands during its quick catalytic cycles. MD simulations
provide an alternative way to scrutinize the difference between
the binding modes of protein with similar ligands. However, due
to the rigidity of TEM-1 and the similarity between two ligands
of interest, some special analysis tools would be necessary for the
purpose of comparison.

Machine learning methods are computational tools that
construct data-driven prediction models based on training
data. In recent years, machine learning methods have been
successfully applied in computational chemistry (Husic and
Pande, 2018), including pharmaceutical data analysis (Burbidge
et al., 2001), protein–ligand binding affinity prediction (Ballester
and Mitchell, 2010; Decherchi et al., 2015) and MD simulations
based on machine learning analysis of quantum-mechanical
forces (Li et al., 2015; Cortina and Kasson, 2018; Shcherbinin
and Veselovsky, 2019). Recently, we have introduced two
widely applied machine learning algorithms, a decision tree and
an artificial neural network, to build classification models to
differentiate two allosteric states of the second PDZ domain
(PDZ2) in the human PTP1E protein as a dynamics-driven
allosteric protein (Zhou et al., 2018). Despite the lack of a
significant conformational change between two states of PDZ2,
it was demonstrated that both algorithms could build effective
prediction models and provide reliable quantitative evaluation of
the contributions from individual residues to overall difference
between the two states.

In this study, we applied another machine learning algorithm,
random forest, to build models. Random Forest (Breiman, 2001)
is a supervised learning algorithm that relies on an ensemble
method to create an entire forest of random uncorrelated
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decision trees, in order to achieve a more accurate and stable
prediction. It has been found to be very useful in a wide scope
of applications, due to its superior performance in classification
and regression problems, as well as its ease of use and flexibility.
The recognition of TEM-1 against ligands in different states
is interrogated through simulations studies. The random forest
method as an effective machine learning technique has been
applied to analyze the simulations of TEM-1 in different binding
states and evaluate the contribution from every residue and
related secondary structures to the recognition of ligands in
different states of TEM-1. Potential key residues could be
identified based on their feature importance generated from
the machine learning model of the simulation data of TEM-
1 in different states. The TEM-1 hydrolysis mechanism is of
great interest and has been subjected to extensive computational
studies focusing on the TEM-1 active site or nearby residues
(Díaz et al., 2001; Meroueh et al., 2005; Roccatano et al., 2005;
Sgrignani et al., 2014). However, the potential contribution from
protein dynamics in different states to catalysis has been largely
overlooked. We hypothesize that TEM-1 in different catalytic
states, including binding states with reactant and product, are
differentiable and could provide further mechanistic details if
subjected to appropriate analyses.

Therefore, the current study focuses on the development
of classification models to differentiate dynamics of TEM-1
in different functional states and on obtaining information to
correlate protein dynamics with individual residues regardless
their positions relate to the active site. The dynamics of
different states are compared with each other in the training
process, governed by the random forest method. In the random
forest method, the contribution from each residue to the
overall classification model was measured as importance of
features (Zhou et al., 2019). A higher importance value of a
feature represented a higher contribution in classifying different
functional states. Using the feature importance, important
structures and residues identified by this computational study
are also in agreement with previous studies of this enzyme. The
analysis about active and allosteric sites of TEM-1 also sheds
new light on the allosteric component of TEM-1 functions. The
remainder of the paper is organized in four parts: computational
methods, results, discussion, and conclusion.

COMPUTATIONAL METHODS

Molecular Dynamics (MD) Simulations
Three states of TEM-1 were subject to molecular dynamics (MD)
simulations. TEM-1 bound with benzyl penicillin (Figure 1A)
is referred to as the reactant state; TEM-1 bound with product
of hydrolyzing benzyl penicillin (Figure 1B) is referred to
as the product state, and TEM-1 alone without a ligand is
referred to as the apo state. No crystal structure is available
for TEM-1 binding with penicillin either as a reactant or
product. The complex structure related to TEM-1 catalysis
against penicillin with the best quality is an intermediate
structure (PDB ID: 1fqg), which has been used for various
computational studies. Therefore, this crystal structure was used
to generate all three states of TEM-1, based on a hypothesis

FIGURE 1 | Chemical structures of (A) Benzyl penicillin, (B) the hydrolysis
product of benzyl penicillin.

that equilibrium simulations could lead to sufficient sampling
in these functional states. CHARMM molecular simulation
program suite, version 40b1, was used to prepare and set up
the systems (Halgren, 1992). Hydrogen atoms were added to
the crystal structure of TEM-1 bound with benzyl penicillin
using the hydrogen position construction facility (HBUILD) of
the CHARMM. The benzyl penicillin ligand was removed to
create the apo state of TEM-1. The benzyl penicillin structure
was also modified using CHARMM internal coordinate editing
functions to produce the benzyl penicillin hydrolysis product.
CHARMM36 force field was used for TEM-1(Best et al.,
2012). The CHARMM General Force Field (CGenFF) was
generated for the benzyl penicillin and the benzyl penicillin
hydrolysis product using online server ParamChem (https://
cgenff.paramchem.org/). All systems are solvated in a water box
using a TIP3P model with the addition of sodium and chloride
ions to balance the charge and reproduce typical physiological
ion concentrations.

The simulation boxes were subjected to 5,000 steps of
the steepest descent energy minimization and further energy
minimization using the adopted basis Newton-Raphson (ABNR)
method until the total gradient of the system was lower
than 0.02 kcal/mol•Å. Subsequently, the minimized simulation
systems were subjected to 24 picoseconds (ps) isothermal-
isobaric (NPT) ensemble equilibrium, gradually raising the
temperature from 100 to 300K. The system was then equilibrated
via NVT ensemble MD simulations at 300K. The time step
for MD simulations is 2 fs, with all the bonds associated
with hydrogen being fixed during the simulation using
SHAKE method (Ryckaert et al., 1977). Periodic boundary
condition was used in all simulations, and electrostatic
interactions were calculated using the particle mesh Ewald
method (Darden et al., 1993). For each state, five independent
100 ns NVT ensemble MD simulations were carried out as
the production runs after 10 ns of equilibration. OpenMM
simulation package was used to carry out the production MD
simulations (Friedrichs et al., 2009; Eastman and Pande, 2015;
Eastman et al., 2017).

Analysis of MD Simulations
Root-Mean-Square Deviation (RMSD)
RMSD is used to measure the difference in conformation for
each snapshot of the MD simulations from a reference structure.
For a molecular structure represented by Cartesian coordinate
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vector ri (i = 1 to N) of N atoms, the RMSD is calculated as
the following:

RMSD =

√

∑N
i=1 (r

0
i − Uri)

2

N
, (1)

Where r0i is the Cartesian coordinate vector of the ith atom in the
reference structure. The transformationmatrix U is defined as the
best-fit alignment between the TEM-1 structure along trajectories
with respect to the reference structure.

Root-Mean-Square Fluctuation (RMSF)
RMSF is used to measure the fluctuation of conformation for
each frame of the trajectories from the averaged structure.

RMSFi =
[

1

T

T
∑

t=1

∣

∣

∣
ri (t) − ri

∣

∣

∣

2
]

1
2

, (2)

Where T is the time period and ri is the averaged position of atom
i over the whole time period.

Principal Component Analysis (PCA)
For each state, PCA was performed by projecting each of the
extracted 25,000 frames from five independent trajectories on
the principal normal modes. The analysis was carried out using
mdtraj package (McGibbon et al., 2015) and scikit-learn library
in python (Pedregosa et al., 2011). PCA is a method to reduce
the dimensionality of the motion of molecules. It can extract the
dominant modes of the motion from a trajectory of molecular
dynamic simulation. The normal modes for PCA (Jolliffe, 2011)
were obtained through diagonalizing the correlation matrix of
the atomic position in one trajectory. The correlation matrix
element is calculated by

Cij =
cij

√
ciicjj

=
〈

rirj
〉

− 〈ri〉
〈

rj
〉

√

[

(〈

r2i
〉

− 〈ri〉2
)

(〈

r2j

〉

−
〈

rj
〉2

)]

, (3)

Where Cij is the Pearson correlation coefficient between atoms i
and j.

The distributions of three TEM-1 states simulations in the
PCA projection space are normalized and plotted as a density
contour graph. The distribution density function was estimated
by the Gaussian kernels (Scipy 1.2.1) (Turlach, 1993; Bashtannyk
and Hyndman, 2001; Scott, 2015; Silverman, 2018).

Random Forest Model
The random forest classification was used in this study to
develop classification models for the three states of TEM-1. The
python package scikit-learn v0.20.3 was used to carry out the
training and testing using this model. For each independent
100 ns simulation of all states, 5,000 frames were evenly
extracted as the training and testing data. For each state,
four simulations among five production runs were randomly
selected as the training set with the remaining simulation
used as the testing set. For each selected frame from the

simulation, all the pairwise distances among the α carbons
(Cα) of TEM-1 backbone are extracted as the features for
training purpose. A total of 263 TEM-1 amino acid residues
result in 34,453 pairwise distances as the training features.
As a pre-step before the classification, the feature selection
is carried out using the random forest classification model.
Following a previous study to build feature selection using
machine learning methods (Zhou et al., 2018), all features
are pre-screened to select features accounting for 98.0% as
total importance. The apo/product model has 901 features
out of the total of 34,453 features. Similarly, after the feature
selection, the reactant/product model has 1,170 features, the non-
product/product model has 964 features and the apo/reactant
model has 1,923 features for their classification models. The
final classification models were developed using these preselected
features. The number of preselected features for four training
models with all preselected features are provided in the
Supplementary Material.

A random forest algorithm was built on the decision tree
models. First, training data was randomly divided into numerous
sets and decision tree models were built based on each set. Then
all the decision tree models were combined to generate final
random forest classification model (Breiman, 2001; Geurts et al.,
2006; Louppe, 2014). The random forest algorithm implemented
in scikit-learn v0.20.3 (ensemble.RandomForestClassifier) was
employed in this study. The number of decision trees generated
in the random forest model (referred to as n_estimator) was
varied for the best performance with the highest training and
validation accuracy (Supplementary Figure 1). For each model,
the number of decision trees to obtain the highest accuracy of
validation was selected for the final classification model.

The random forest method was employed for two purposes in
this study, including feature prescreening and classification
model developing. In feature prescreening, the feature
importance generated from preliminary random forest training
process is assigned to each feature. All features are sorted
based on their feature importance. The features with the sum
of their importance accounting for 98% are selected for the
final classification model. These pre-screened features of each
classification model present in this study are listed in the
Supplementary Material. The final classification models were
trained using the pre-screened features and with new set of
feature importance generated from the training process. The new
set of feature importance is used for further analyses presented
in this study.

Scores
In this study, the scores including accuracy, precision, recall,
and F1 score were used to evaluate the performance of each
classification model. The python package v0.20.3 (Pedregosa
et al., 2011; Buitinck et al., 2013) was employed to generate these
four scores. The accuracy score is defined as

accuracy = 1

N

∑N−1

i=0
1(ŷi = yi), (4)

where N is the number of samples, ŷi is the predicted label and yi
is the true label for the ith sample.

Frontiers in Molecular Biosciences | www.frontiersin.org 4 July 2019 | Volume 6 | Article 47

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


Wang et al. β-Lactamase Functional Binding Modes

In a binary classification task, such as the classification models
in this study with two labels, the predictions of the model are
evaluated as the following. Positive/negative labels are used to
reflect the prediction made by the model. True/false are used
to represent whether the predicted labels correspond to the
observed labels (real labels). Accordingly, precision, recall and F1
scores are defined as the following.

precision = tp

tp+ fp
, (5)

recall = tp

tp+ fn
, (6)

F1 = 2
precision∗recall

precision+ recall
, (7)

Term tp (true positive) represents the situation that the model
gives positive prediction and the observed label is indeed positive.
Term fp (false positive) represents that the model gives positive
prediction, but the observed label is negative. Term fn (false
negative) represents that the model gives negative prediction, but
the observed label is actually positive. F1 score is a weightedmean
of the precision and recall.

Feature Importance
The importance of each feature is generated by random
forest algorithm based on Gini impurity (Equation 8). A
higher importance represents a more important feature
in distinguishing different states. The Gini importance
implemented in python package scikit-learn v0.20.3 was
used in this study and briefly introduced in the Equations (8–12)
as the following.

The feature importance was calculated as Gini impurity:

Gini impurity =
∑C

i=1
−fi(1− fi), (8)

where fi is the frequency of a label at a node, and C is the number
of labels.

In the random forest models, many decision trees are
constructed for training purpose. All the predictions from these
individual trees are collected to make the final random forest
classification model. The importance (nj) of a node j in each
decision tree was represented by Gini impurity:

nj = wjCj −
∑m

1
wm(j)Cm(j), (9)

wherewj is the weighted number of samples reaching node j, Cj is
the impurity value of node j, and m is the number of child nodes
of the tree.

The feature importance of feature i on decision tree is
calculated as:

fi =
∑s

1 nj
∑

k∈all nodes nk
, (10)

where s is the times of node j split on feature i.

The normalized feature importance in a decision tree is
calculated through:

norm fi =
fi

∑

j ∈all features in a tree fj
, (11)

The final feature importance in random forest classification is
calculated as:

Fi =
∑

j∈all trees norm fi

N
, (12)

where norm fi is the normalized feature importance values of
a decision tree, N is the total number of trees (Breiman, 2001;
Geurts et al., 2006; Pedregosa et al., 2011; Louppe, 2014).

In our classification models, the features are pairwise Cα

distances. To evaluate the importance of each amino acid residue,
all the feature importance of the pairwise distances relating to
each residue are summed up and divided by two to generate
the importance of a residue. Then the total importance of 263
residues were accumulated and the importance percentage of
each residue could be calculated based on the total importance.
The value of importance percentage represents the ability of
a residue to differentiate three states. In other words, the
importance could help to evaluate the contribution from a
residue to differentiate three states in dynamic motions.

RESULTS

TEM-1 Three States Simulations Analysis
The time evolution of the RMSD of TEM-1 in five independent
simulation sets in apo, reactant, and product states are plotted in
Figure 2. All RMSD values were calculated with reference to the
TEM-1 crystal structure. The averaged RMSD values are 1.5, 1.3,
and 1.1 Å for the apo, reactant, and product states, respectively.
The plots suggest that the TEM-1 is rather stable with low
RMSD fluctuations in all three states. Among three states,
the apo state displays the highest TEM-1 fluctuation, and the
product state displays the lowest TEM-1 fluctuation. To address
the concern of the simulation convergence, we also calculated
the accumulative entropy of TEM-1 in each state along each
independent simulation (Supplementary Figure 2). All three
states display clear convergence tendency in each simulation.

RMSF of individual residues was calculated for each state
using all five simulations and plotted in Figure 3. In agreement
with the RMSD results, TEM-1 in the apo state has the highest
fluctuation for most part of the protein (blue dashed line in
Figure 3). However, TEM-1 in both the reactant and product
states also displays higher fluctuation than the apo state in certain
part, revealing that the binding with ligands and the type of ligand
do exert a subtle impact on protein dynamics.

Then, we carried out PCA using all 15 simulations from three
states as an attempt to develop a model differentiating three
states of TEM-1. The simulations of each state are projected onto
the surface as contour plots with normalization using the first
principal component (PC1) and second principal component
(PC2) (Figure 4). Overall, all three states largely overlap with
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FIGURE 2 | The RMSD distribution of molecular dynamics simulations of TEM-1 in (A) apo state, and binding with benzyl penicillin in (B) reactant and (C) product
states. In each state, the RMSD are calculated in five independent 100 ns simulations labeled as set 1 to set 5.

FIGURE 3 | The RMSF of α-carbons (Cα) from 26 to 288 on TEM-1 β-lactamase in apo (blue dash line), reactant (red line) and product states (dot line), � loop
(residue 163–180) highlighted. All three states have overall similar distribution but with significant difference. The product shows the lowest overall RMSF. The apo
state show the highest overall RMSF.

each other on the PC1/PC2 surface, and each state has two
or three minima, which are referred to as attraction basins.
The reactant and product states cover similar areas and largely
overlap with each other, with their attraction basins close to
each other. The apo state has different attraction basins and
has much narrower distribution than the other two states. The
PCA results reflect that the TEM-1 structure is generally rigid
without significant global conformational change. However, the
subtle differences among the distributions of TEM-1 in different
states in the PCA space do indicate the shift in population
of TEM-1 in different binding states. The following analysis
using the random forest model provides more insight into these
subtle differences.

Random Forest Model
The training and testing results of the random forest model for all
three states, including accuracy, precision, recall, and F1 scores,
are plotted in Figure 5. Classification models were developed
to differentiate between apo and product states, reactant and
product states, non-product (combining the apo and reactant
states) and product states, as well as between apo and reactant
states. For the classification model to differentiate the reactant
and product states, the training with cross-validation provides
high performance, and testing provides better than 87% accuracy
in all categories (Figure 5A), suggesting that the TEM-1 reactant
and product states are highly differentiable using the Cα pairwise
distances as protein structural information. Slightly better scores
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FIGURE 4 | The projection of the simulations of TEM-1 in apo (red), reactant (green) and, product (blue) states onto Component 1 and Component 2 of combined
states. Components 1 and 2 are the first and second components from the principal component analysis (PCA) based on the simulations of all three states. The
projection on to components 1 and 2 are normalized.

are obtained for the classification model to differentiate the apo
and product states (Figure 5B). These results show that the TEM-
1 in the product state is clearly distinguishable fromTEM-1 in the
apo and reactant states. However, distinguishability between the
apo and reactant states of TEM-1 is significantly lower than the
first two pairs (Figure 5C), suggesting that these two states share
significant similarity in terms of protein backbone structural
distributions represented as Cα pairwise distances. To further test
this, both apo and reactant states are combined together to be
considered as non-product state vs. product state. A classification
model differentiating the non-product and the product states
is built with cross-validation performance measures close to
100% and testing performance measures ranging between 82 and
99% (Figure 5D), similar to the models for apo/product and
reactant/product pairs.

As part of preliminary study, two other widely applied
machine learning methods, artificial neural network and
support vector machine methods, were also applied to develop
classification models for TEM-1. Both methods produced
models with performance worse than random forest model
(Supplementary Figures 3, 4). In addition, the random forest
method provides importance numerical value for each feature,
which could be used to search for key residues and functional
groups in protein structure. Therefore, the remainder of the study
focuses on random forest model result.

Secondary Structures Contribution
In random forest classification models, each Cα pair is given an
importance value reflecting its contribution for the classification

model. These values could be used to evaluate, to some extent,
the importance of individual amino acid residues. We first
used these values to evaluate the contribution of secondary
structures in TEM-1, with regard to the differences among
different states. For each secondary structure, all the importance
values associated with residues in that structure are summed
together and divided by two as the overall importance. Three well
performing classification models, apo/product, reactant/product,
and non-product/product, are used for this comparison purpose.
The TEM-1 structure is divided into β-sheets, α-helices, coils and
turns as secondary structures and the residues inclusive in these
structures. The β-sheet and α-helices of TEM-1 are defined in
a previous study (Savard and Gagné, 2006), and are commonly
used in general literatures of TEM-1 (Simm et al., 2007; Fisette
et al., 2010, 2012). The definition of coils and turns in the database
of secondary structure assignments (DSSP) are used in this study
(Kabsch and Sander, 1983). There are some coils and turns with
just one or two residues. Some of them have small importance
values. For simplification, when such a short coil or turn is
adjacent to another coil or turn, they are combined as a new coil
or turn structure for analysis. However, if a short coil or turn is
between β-sheets or α-helices, it was kept by itself.

We further calculate the importance of individual secondary
structures and plot it in Figure 6. All five β-sheets in TEM-1
have importance values lower than 5% (Figure 6A), indicating
that the β sheets may not play an important role, with regard
to ligand binding. There are 11 helices with varying lengths in
TEM-1. Most helices have low importance (Figure 6B). The only
exception is helix (69–85), which has overall importance close
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FIGURE 5 | The performance of random forest classification models in accuracy, precision, recall, and F1 scores for training-validation set (blue shadow) and testing
set (red). (A) Reactant and product states model; (B) Apo and product states model; (C) Apo and reactant states model; (D) Non-product and product states model.

to 16% in the reactant/product model (Figure 6B), and also one
of the helices around the active site of TEM-1 (Figure 7 green
transparent surface).

There are 10 short fragments being considered as random
coils in TEM-1. Among this, residues 213–215 coil shows the
highest importance in all three models (Figure 6C), which
is illustrated and highlighted as cyan structure in Figure 7.
The second important coil is residues 129–131, with three
residues accounting for more than 8% importance in the non-
product/product model and around 5% in the other two models.
Both 213–215 and 129–131 (highlighted as red structure in
Figure 7) coils are adjacent to the active site.

There is a total of 15 turn structures in TEM-1, some with
significant difference among three classification models. The
importance of the residue 216–220 turn (highlighted as yellow
structure in Figure 7) is the highest on average among all turn
structures, followed by residues 102–108 turn (highlighted as
green structure in Figure 7). Both turns are positioned as gate to
cap the TEM-1 active site.

For a better understanding of each residue, the mapping of
importance percentage of each residue in TEM-1 obtained from
the machine learning training process is plotted in Figure 8

(divided into three parts A, B, and C). The serial numbers
of residues from the PDB file that start from 26 to 111 are
used in Figure 8A, from 112 to 198 are used in Figure 8B and
from 199 to the end 288 are used in Figure 8C. The overall
distributions of TEM-1 individual residue importance based on

different classification models resemble each other. Residue 213
has the highest percentage (9.3%) in the apo/product model
(Figure 8C), which is also the highest percentage for a single
residue among all three models. In reactant/product model,
residue 70 has the highest percentage as 8.4% (Figure 8A). In
all three models, residues 67–73, 103–107, 127–135, 162–171,
176–182, and 210–220 have relative high importance percentages
in all three models. Interestingly, these residue regions were
proposed to undergo conformational changes in a previous NMR
study (Savard and Gagné, 2006).

For each model, the top 10 residues with the highest
percentages are listed and illustrated with the TEM-1 structure
in Figures 9A–F. Most of the key residues identified through the
classificationmodel are not on either helices or strands secondary
structures. However, few active site residues are among the top 10
residues (illustrated in green in Figures 9D–F). The percentages
of active site residues are significantly different, which is plotted
for all three models (Supplementary Figure 5). Ser70 from the
TEM-1 active site has significantly high importance in the
reactant/product model. Ser70 in the other two models, and all
other active site residues, only display importance lower than 3%.
These are in the agreement that the TEM-1 active site is generally
rigid for the purpose of catalysis.

We further investigate the distribution of residues importance
with reference to the active site. The importance of residues
lying within a certain distance range (i.e., between 4 and
5 Å) from the active site residues are accumulated and
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FIGURE 6 | The total feature importance of individual secondary structure in TEM-1: (A) β-sheets; (B) α-helix; (C) Random coils; (D) Turns. Each secondary structure
is labeled by residue number. There are five β-sheets and 11 α-helices with varying sizes in TEM-1 structure.

normalized by the number of residues within a distance
range, which is shown in Figure 10A. There are clearly three
peaks of importance for the shells around 4, 7, and 10
Å away from the active site. The sums of importance of
residues away from the active site region in the three models
are plotted in Figure 10B. The accumulative importance of
residues surrounding the active site is smoothly increasing along
the distance.

The Conformational Analysis
In three states classifications, the key residues are identified
based on the feature importance obtained from the classification
models. However, the conformational changes in three states
are very important for detecting the catalytic mechanism of
TEM-1 bound with penicillin G complex. Therefore, further
conformational analysis is carried out based on the selected key
residues with top feature importance. Among the top 10 residues
based on their accumulative feature importance, Tyr105 as a
gatekeeper of the active site could stabilize the ligand binding
(Doucet and Pelletier, 2007; Doucet et al., 2007). However,

the interaction between Asn132 and Tyr105 may perturb the
stabilizations (Wang et al., 2002). And a mutant of Asn105 has
been proposed to create disruptive steric clashes with Asn132
and destabilize the ligand binding (Doucet and Pelletier, 2007).
Asn132 is also a special residue, which was proposed to provide
additional space for active site (Swarén et al., 1998). Therefore,
the distance between Cα atoms of Tyr105 and Asn132 was
selected for further analysis to reveal detailed conformational
change relevant to functional states. In addition, the interaction
between Lys73 and Asn132 was reported as important residues
for TEM-1’s catalytic function (Swarén et al., 1998). Accordingly,
the Cα atoms distance between Lys73 and Asn132 is subjected
to further analysis in this study. Two residues Gln39 and Thr269
among the top 10 residues are distal from the active site. Thr269
is really close to the allosteric site Helices 12 (Residue 272–
288) identified in previous study (Horn and Shoichet, 2004). To
reveal potential correlation between the active site and Gln39
as well as Thr269, the Cα atoms distance from Ser70 as the
center of active site to these two residues are also subjected to
further analysis.
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FIGURE 7 | The secondary structures of TEM-1 with significant total feature
importance. Residues 69 through 85 as α-helix (blue), residues 213 through
215 as random coil (cyan); residues 216 through 220 as turn (yellow);
Residues 129 through 131 as random coil (red), residues 102 through 108 as
turn (green), residues 160 through 165 as random coil (purple). The ligand
penicillin-G molecule is also illustrated as green transparent surface. The
residue 160–165 is behind of the residue 69–85 in this view.

The density distributions of Cα atom distances of Tyr105-
Asn132, Lys73-Asn132, Ser70-Gln39, Ser70-Thr269, and residue
pairs for all three TEM-1 states are plotted in Figure 11.
The Cα atom distance distribution of Tyr105-Asn132 has only
one main peak close to 6 Å for reactant state (Figure 11A).
However, the conversion from reactant to product leads to
a second peak between 8 and 9 Å. Interestingly, the apo
state without a ligand shows a similar distance distribution
to the product state of this pair with two peaks between
6–7 Å and 8–9 Å. The density distribution of Lys73-
Asn132 Cα atom distance has two peaks in the reactant
state, one close to 9 Å and one between 10 and 11 Å
(Figure 11B). The conversion to the product leads to only
one peak around 9.2 Å of this distribution. In apo state, this
distribution has a peak around 9.3 Å and a small shoulder
about 10.3 Å.

For Ser70-Gln39 pair, the distributions of their Cα atom
distance in all three states have only one peak (Figure 11C),
which are located at 23.8, 24, and 24.5 Å for the apo, reactant and
product states, respectively. Similarly, the density distributions
of Ser70-Thr269 Cα atom distance also have only one peak for
all three states, all between 19 and 20 Å (Figure 11D). These
analyses demonstrated that the key residues with high feature
importance do behave significantly in different functional states
of protein. The residues Lys73, Asn132, Gln39, Ser70, and Thr269
are illustrated in the TEM-1 apo, reactant and product aligned
structures with green transparent surface representing the ligand
penicillin G binding pocket (Figure 12).

We further investigated four groups including � loop
(residues 163–180), residues 213–220 including a turn and

random coil structure and residues 102–108 as a turn structure,
which are related to structures with high importance percentages
illustrated in Figure 7. The helix 12 (residues 272–288) with high
importance (>5%) in reactant/product model is also included.
To reveal a potentially significant conformational change of these
groups, the RMSD of these groups with the TEM-1 (1fqg) crystal
structure as a reference are calculated and plotted in Figure 13.
In TEM-1 bound with inhibitors, helix 11 (residues 219–226)
and helix 12 (residues 272–288) were identified as an allosteric
site (Horn and Shoichet, 2004). In the classification models
generated in this study, helix 11 has a low feature importance and
residues 213–220 have high importance. The RMSD distributions
of residues 213–220 and helix 12 as potential allosteric sites
are plotted in Figures 13B,C. The RMSD of residues 102–108
as a turn structure containing key residue Tyr105 is plotted in
Figure 13D. The positions of the four residues group in TEM-
1 are also illustrated in Figure 12. Interestingly, although �

loop has high importance percentage, the RMSD distributions
of � loop in three states are similar with each other displaying
one main peak around 0.7 Å (Figure 13A). It indicated that
� loop is not very flexible, agreeing with some NMR studies
(Roccatano et al., 2005; Bös and Pleiss, 2009; Fisette et al.,
2010). On the contrary, the RMSD distributions of 213–220 turn
are significantly different among three states. In the reactant
state, there are two main peaks around 1.2 and 2 Å and one
small peak around 2.5 Å. In the product state, the RMSD
distribution shift toward lower values with three peaks around
0.8, 1.3, and 2.5 Å. In the apo state, there is a dominant
peak around 1.3 Å with a smaller peak around 2.6 Å. This
clearly revealed significant conformational changes of this turn
structure. The RMSD densities of helix 12 (residues 272–288)
are similar in all three states with only one peak around 0.4
Å (Figure 13C), suggesting little conformational change of this
secondary structure. The RMSD densities of residues 102–108
turn have one dominant distribution in three states (Figure 13D).
The reactant and product states have the peak smaller than
0.4 Å. The apo state has the peak larger than 0.4 Å. These
analyses demonstrate that the conformational change may play
important role only in a limited local structure to differentiate
functional states.

DISCUSSIONS

The role of protein dynamics in catalysis is becoming essential
in understanding enzyme’s catalytic mechanisms. TEM-1 is one
of the proteins that has been interrogated for the correlation
between dynamics and functions both experimentally and
computationally (Farmer et al., 2017; Modi and Ozkan, 2018). In
a detailed study of TEM-1 using NMR, the backbone motion of
several TEM-1 mutants at Tyr105 was characterized and linked
to its enzymatic function, because the residue in TEM-1 plays
a key role in substrate differentiation and stabilization (Doucet
et al., 2007). Coincidently, Tyr105 is identified as the secondmost
important residue to differentiate the apo and product states in
the current study (Figure 9A). The NMR study of TEM-1 also
revealed that the mutations at residue 105 led to the change
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FIGURE 8 | The accumulative feature importance of each residue in TEM-1. The blue circles represent the apo and product states classification model, the red
triangles represent the reactant and product states classification model, and the green stars represent the non-product and product states classification model. On
the top of each sub-figure, the β-sheets and α-helices are labeled as red and blue rectangles, respectively. �-loop is highlighted in yellow. (A) Residues 26 through
115; (B) Residues 112 through 202; (C) Residues 199 through 288.

of backbone motion exceeding the TEM-1 active site and with
a wide range of motion time scales. Interestingly, many key
residues discovered in this study to be important for TEM-1
dynamical functional states are in a good agreement with the
comprehensive NMR study.

The comparison among NMR spectroscopy of TEM-1
mutants showed that the most significant effect on backbone
amide motion, marked as chemical shift differences, occur in
the residues in 68–80, 100–115, 120–140, 163–170, 213–218,
and 235–246 regions (Doucet et al., 2007). All these regions
have significant feature importance from all classification modes
developed in the current study (Figure 8). In general, the
chemical shift differences observed in NMR spectroscopy have
no direct connections with protein dynamics. But the backbone

amide chemical shift is sensitive to the hydrogen bonding
interactions in protein (Paramasivam et al., 2018). In another
study, it was proposed that TEM-1 with mutant Tyr105 displayed
effects on the backbone amide chemical shift of wild-type TEM-
1 and can reduce the catalytic efficiency of TEM-1 binding
with benzyl penicillin complex (Doucet et al., 2004). Although
the backbone amide chemical shift difference is caused by the
Tyr105 mutation of TEM-1 in the reference, there is indeed
a relationship between the chemical shift difference and the
catalytic efficiency for TEM-1 with benzyl penicillin complex.
Therefore, the correlation between feature importance of key
residues with the backbone amide chemical shift differences
may help us to further understand the meaning of the machine
learning based classification model. It is possible that the
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FIGURE 9 | Top 10 residues with the highest feature importance in TEM-1 β-lactamase based on classification models: (A) Apo/product model, (B) Reactant/product
model, (C) Non-product/product model; The structures of top 10 residues with the highest feature importance and their positions comparing with the active site of
TEM-1 in each model: (D) apo/product model, (E) reactant/product model, and (F) non-product/product model. The ligand penicillin-G molecule is also illustrated as
green transparent surface. The active site of TEM-1 is the pocket holding the penicillin-G molecule.

FIGURE 10 | The feature importance of residues with reference to the distance from active site for apo/product, reactant/product, and non-product/product
classification models. (A) The normalized feature importance of residues within certain distance from active site (using 1 Å window). For example, the importance
percentage 0.25% in 5 Å represents the importance percentage of all residues located in distance range 4–5 Å away from the active site; (B) Accumulative feature
importance of residues with a certain distance from the active site. For example, the importance percentage of 5 Å represents the importance percentage including all
the residues within 5 Å away from the active site.

backbone amide motion indicated by the NMR spectroscopy is
well-coupled with the backbone Cα motion, which is used to
construct features for the machine learning training models in

this study. Further comparison also shows remarkable agreement
at the individual residue level. Some conserved residues and
residues at the so-called active site wall showed significant NMR
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FIGURE 11 | The density distributions of pairwise α carbon atoms distance in apo (blue dot line), reactant (green dot dashed line) and product (red dashed line) states:
(A) Tyr105 and Asn132, (B) Lys73 and Asn132, (C) Ser70 and Gln39, (D) Ser70 and Thr269.

TABLE 1 | The key residues from current study and a NMR study.

Residues with high

feature importancea
Adjacent key NMR residuesb

Met68, Ser70 Thr71

Ser130, Asp131 Met129 Asn132

Asp163, Trp165,
Glu166

Arg164, Glu168

Arg178, Asp179 Thr181

Ala213, Asp214,
Ala217

Lys215, Val216, Gly218

Ser235 Lys234

Thr269 Met270

aCurrent study
bTable 4 in a NMR study (Doucet et al., 2007).

relaxation parameter changes between the wild type and the most
significantly different Y105D mutant (Doucet et al., 2007). Six
residues (Asn132, Tyr105, Lys215, Val216, Thr71, and Arg243)
among the 21 residues with the highest important features from
the classification modes in this study (Figure 9) are among the
key residues for the local dynamic effects identified in the NMR
study. Many more residues (a total of 14) selected by the feature
importance are also in the adjacent region within the key residues
selected in the NMR study (Table 1).

Comparison between the NMR spectroscopy between wild
type and Y105D mutant also revealed that significant local
differences in the regions of residues 70–80, 124–135, and
most importantly in 211–221. Our analysis shows that these
regions display high accumulative feature importance as various
secondary structures, such as residues 70–80 belonging to α-
helix, residues 124–135 spreading across random coil and α-helix,
and residues 211–221 containing both random coil and turn
structures (Figure 6).

� loop (163–180) is a key secondary structure close to the
ligand binding site in TEM-1 and important for its catalytic
function. A previous NMR and MD simulation work showed
that� loop displayed limited flexibility with the key translational
component (Bös and Pleiss, 2009) It was proposed that the� loop
is a key structural feature for substrate binding and recognition
(Fisette et al., 2012). It was observed in the same study that the
inter-� loop salt bridge between Arg164 and Asp179 is prone
to be affected by the substrate binding, while the Arg164-Thr71
interaction is stabilized by the ligand binding. Accordingly,
the � loop shows significant and various importance in our
three classification models, with the most significance in the
non-product/product model. Residues Asp163, Arg164, Trp165,
and Asp179 are very important residues (>3% in Figure 8B

� loop green highlighted part) for the non-product/product
differentiation model. Residues Trp165, Glu166, and Glu168 are
important residues (>2% in Figure 8B � loop green highlighted
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FIGURE 12 | The structure of TEM-1 in apo (blue), reactant (green) and
product (red) states. � loop (residues 163–180), helix 12 (residues 272–288),
residues 102–108, and residues 213–220 are highlighted in each state with
same colors. Also key residues Gln39, Thr269, Ser70, Lys73, Tyr105, and
Asn132 are labeled. The ligand penicillin-G molecule is represented as green
transparent surface.

part) for the apo/product differentiation model. In comparison,
the �-loop is somewhat less important in the reactant/product
model than in the other two models, indicating the importance
of differentiating the product from other states. In the non-
product/product model, both Arg164 (close to 0.3% percentages
of importance) and Asp179 (close to 0.8% percentages of
importance) are emphasized as important residues. The Asp179
and Arg164 locate at the entrance of the active site and
form the inter-� loop salt-bridge to stabilize the loop. In
reactant/product and apo/product models, the importance of
Arg164 and Asp179 are not obvious, the combination of apo
and reactant magnify their importance in non-product/product
model. We hypothesized that the interaction between Arg164
and Asp179 exist in all three states to stabilize the loop. Both
hydrolyzed benzyl penicillin and benzyl penicillin molecules
as substrates can strengthen the interaction. That may be the
reason why the overall � loop does not carry high importance
percentage in reactant/product model. The overall � loop
is more stable in reactant and product states than in the
apo state. In addition, Trp165 is highlighted in both non-
product/product and apo/product models, which indicates that
Tpr165 is a key residue to classify the apo/reactant and product
states. Therefore, it is likely that Tpr165 plays an important
role in de-acylation step of the catalytic mechanism, which is
also mentioned in experimental study (Petrosino et al., 1998).
Another key residue for acylation, Glu166, has a relative high
importance in apo/product model. We proposed that Glu166 is
not only as a general base in acylation (Minasov et al., 2002)
but also very important in the de-acylation step. These detailed

comparisons with experimental study provided further insight
into the functions of the � loop of ligand binding in addition
to enzyme catalysis.

The NMR study suggested the key � loop motion was in
the microsecond (µs)-millisecond (ms) time scale, which was
beyond the current simulation study. However, it was also
pointed out that the � loop dynamics is more focused and
less random than other secondary structures even at a large
time scale. The good agreement and complimentary comparison
between the classification models developed in this study and
previous NMR studies of TEM-1 suggests the effectiveness of the
machine learning method in the application of protein dynamics
and functional analysis. The usage of Cα distance as training
features from extensive MD simulations for training practically
bridges among protein dynamics with inter-residue correlation,
regardless the distance region within the framework of different
functional states.

Asn132 was identified as a residue controlling the size of the
TEM-1 active site cavity. Distance distribution analysis of Lys73
and Asn132 reveals that the binding with reactant effectively
compresses the active site into a closed active site and creates
a minor open state representing by two peaks of Cα distance
distribution in reactant state (Figure 11B). However, the product
binding state only has one main peak as a closed active site
without a minor open state. This could be a key dynamical
difference between reactant and product binding states. The
interaction between Tyr105 and Asn132 also related to the active
site. Opposite to the Lys73 and Asn132 Cα distance distribution,
the Cα distance distribution of Tyr105 and Asn132 changes
from single dominant peak in reactant state to double peaks in
the product state (Figure 11A). The difference of the apo state
distribution from both reactant and product states also sheds
light on these TEM-1 functional states. Helix 11 (residues 219–
226) and 12 (residues 272–288) were proposed as an allosteric
site with 3–7 Å shift in helix 11 and 1–3 Å shift in helix 12
comparing to the apo structure (Horn and Shoichet, 2004; Avci
et al., 2018). The significant conformational change of residues
213–220 as a turn and random coil structure adjacent to helix
11 could be coupled with the allosteric function residing in
this region. The similarity of the helix 12 RMSD distributions
shared by all three states warrants further study to elucidate
the allosteric mechanism associated with this local structure
(Figures 13B,C).

It could be a concern that the initial structures for apo,
reactant and product state, generated from the same crystal
structure (1FQG) in catalytic intermediate state, may not present
three target states well. To address this concern, we collected
a total of eight crystal structures of wild type TEM-1 in apo
states and five crystal structures of wild type TEM-1 binding
with various ligands from PDB, including the one with penicillin
used as starting structure in this study, as reference structures
for the simulations. The averaged RMSDs of each functional
state simulations with reference to these crystal structures
were calculated and plotted in Supplementary Figure 6. It is
interesting that the product state simulations consistently have
lower RMSDs with reference to all 13 crystal structures, including
both apo and holo states of TEM-1 and the structure used in this
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FIGURE 13 | The density distributions of residues groups’ RMSDs in apo (green dot dashed line), reactant (red dashed line) and product (blue dot line) states: (A)
RMSD of � loop (residues 163–180), (B) RMSD of residues 213–220, (C) RMSD of helix 12 (residues 272–288), (D) RMSD of residues 102–108.

study, than both apo and reactant state simulations. In addition,
both apo and reactant states simulations consistently have
similar RMSDs with reference to these TEM-1 crystal structures.
Although these results could prove either the simulations are
sufficient for the sampling of each state or not, these results
are consistent with our results that the apo and reactant states
are similar to each, and both are different from the product
state. It may suggest that binding with the catalysis product is
a dynamically stable state for TEM-1 and contributes to the
catalytic activities of TEM-1 against antibiotics. This could lead
to some intrinsic dynamical properties of TEM-1 in different
functional states, which warrant further in-depth studies.

CONCLUSION

In this study, we developed classification models for TEM-
1 β-lactamases in different binding modes against penicillin
using a machine learning method called random forest. Using
the backbone Cα distances of all residue pairs as the features
for the model training purpose, the developed classification
models effectively correlate the global protein dynamics with
the individual residue correlation, with regard to the different
binding modes. The feature importance generated from the
classification model training process was used to evaluate the
contribution from individual residues, as well as secondary

structures in TEM-1, to each model. It is shown that the random
coil structures carry the highest feature importance among
secondary structures, including α-helix, β-strands, and turns. It
may indicate that the motions of coils contribute significantly to
the differences among three states, and lead to more flexibility
of random coils than in other secondary structures. Accordingly,
the protein flexibility is proposed to be a key factor in ligand
recognition of TEM-1. Detailed comparison also revealed that
the individual key residues identified from the machine learning
models not only have a good agreement with the NMR study,
but also provide unprecedented insight into the function of
individual residues with regard to differentiating protein in
different binding modes. Specifically, it is suggested that some
catalytically important residues at the active site are also critical
for recognizing the hydrolyzed product of antibiotics. Overall,
this study demonstrates that machine learning methods provides
effective tools to analyze protein dynamics in different binding
modes and produce intriguing insight into the correlation
between protein functional states and various structural levels.
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