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Proper repair of DNA double-strand breaks is critical for maintaining genome integrity and

avoiding disease. Modification of damaged chromatin has profound consequences for

the initial signaling and regulation of repair. One such modification involves ubiquitination

by E3 ligases RNF8 and RNF168 within minutes after DNA double-strand break

formation, altering chromatin structure and recruiting factors such as 53BP1 and BRCA1

for repair via non-homologous end-joining (NHEJ) and homologous recombination (HR),

respectively. The WD40 protein WRAP53β plays an essential role in localizing RNF8

to DNA breaks by scaffolding its interaction with the upstream factor MDC1. Loss of

WRAP53β impairs ubiquitination at DNA lesions and reduces downstream repair by both

NHEJ and HR. Intriguingly, WRAP53β depletion attenuates repair of DNA double-strand

breaks more than depletion of RNF8, indicating functions other than RNF8-mediated

ubiquitination. WRAP53β plays key roles with respect to the nuclear organelles Cajal

bodies, including organizing the genome to promote associated transcription and

collecting factors involved in maturation of the spliceosome and telomere elongation

within these organelles. It is possible that similar functions may aid also in DNA repair.

Here we describe the involvement of WRAP53β in Cajal bodies and DNA double-strand

break repair in detail and explore whether and how these processes may be linked. We

also discuss the possibility that the overexpression of WRAP53β detected in several

cancer types may reflect its normal participation in the DNA damage response rather

than oncogenic properties.
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THE LEAD ROLE FOR WRAP53β: SCAFFOLDING RNA-PROTEIN
COMPLEXES

Function Through Organization
Structural organization within the nuclear space contributes significantly to functional regulation
(Misteli, 2005; Nunez et al., 2009; Van Bortle and Corces, 2012). For example, organizing
appropriate ribonucleoprotein complexes into the nuclear organelles known as Cajal bodies
controls and accelerates reactions involved in pre-mRNA splicing and telomere elongation
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(Carmo-Fonseca et al., 1992; Jády et al., 2004; Kiss et al., 2006;
Matera and Shpargel, 2006; Stanek and Neugebauer, 2006).
Similarly, upon DNA damage, repair factors are concentrated
into foci, providing an environment beneficial for repair (Bekker-
Jensen et al., 2006; Altmeyer et al., 2015).

Cajal bodies contain transcription factors and polymerases
(Polak et al., 2003; Machyna et al., 2013; Hutten et al., 2014)
and like other nuclear bodies, can be formed in association
with transcription (Shevtsov and Dundr, 2011). For Cajal bodies,
this nucleation occurs at specific genomic loci, including genes
encoding small nuclear (sn)RNAs, small nucleolar (sno)RNAs,
small Cajal body-specific (sca)RNAs and histones (Frey and
Matera, 1995, 2001; Smith et al., 1995; Machyna et al.,
2013). When transcribed, these loci are brought together in a
transcriptional center within the Cajal body that accelerates RNA
production (Sawyer et al., 2016a,b; Wang et al., 2016). The RNAs
transcribed are subsequently processed, modified (methylated,
pseudouridinylated) and/or function within the Cajal bodies
themselves (Darzacq et al., 2002; Jády et al., 2003; Dominski
and Marzluff, 2007; Enwerem et al., 2015). Similarly, RNAs are
transcribed from sites of DNA damage (Francia et al., 2012; Wei
et al., 2012; Michelini et al., 2017; Bonath et al., 2018), which
can hybridize with the damaged DNA (Ohle et al., 2016; Lu
et al., 2018), be processed by DICER and DROSHA (Francia
et al., 2012; Michelini et al., 2017; Lu et al., 2018) or become
methylated byMETTL3 (Xiang et al., 2017), thereafter, regulating
damage repair.

The Genome and Cajal Bodies Come
Together With WRAP53β
The scaffold proteinWRAP53β (WD40-encoding RNA antisense
to p53) (alias WRAP53, WDR79, and TCAB1), initially
discovered in our laboratory as an antisense gene to p53
(Mahmoudi et al., 2009), plays several key roles in Cajal bodies.
First, this protein is vital for their formation (Mahmoudi
et al., 2010), bringing the necessary proteins and gene loci
into close proximity (Mahmoudi et al., 2010; Wang et al.,
2016). Loss of WRAP53β disrupts Cajal bodies, suppresses
clustering of sn/sno/scaRNA/histone loci and downregulates

Abbreviations: 53BP1, p53-binding protein 1; ATM, Ataxia-telangiectasia

mutated; ATR, Ataxia telangiectasia and Rad3 related; BARD1, BRCA1-

associated RING domain protein 1; BRCA1, Breast cancer type 1 susceptibility

protein; BRCC36, BRCA1/BRCA2-containing complex subunit 36; CHD4,

Chromodomain-helicase-DNA-binding protein 4; CHK1, Checkpoint kinase 1;

CHK2, Checkpoint kinase 2; DUB, Deubiquitinating enzyme; FHA domain,

Forkhead-associated domain; H1, Histone 1; H2A, Histone 2A; H2B, Histone

2B; H2AX, Histone variant 2AX; γH2AX, Phosphorylated histone H2AX; HR,

Homologous recombination; MDC1, mediator of DNA damage checkpoint 1;

METTL3, N6-adenosine-methyltransferase 70 kDa subunit; MRN, Complex with

MRE11 homolog double strand break repair nuclease, RAD50 double strand break

repair protein and Nibrin; NBS1, Nibrin; NHEJ, Non-homologous end joining;

PARP, Poly (ADP-ribose) polymerase; POH1, proteasome 19S subunit; RAD17,

DNA repair protein RAD17 homolog; RAD51, DNA repair protein RAD51

homolog; RAP80, Receptor-associated protein 80; RNF8, Ring finger protein 8;

RNF20, Ring finger protein 20; RNF40, Ring finger protein 40; RNF168, Ring

finger protein 168; scaRNA, Small Cajal body-specific RNA; SMN, Survival of

motor neuron protein; snRNA, Small nuclear RNA; snoRNA, Small nucleolar

RNA; UBE4A, Ubiquitin conjugation factor E4A; WRAP53β, WD40-encoding

RNA antisense to p53; XRCC4, X-ray repair cross-complementing protein 4.

transcription from these sites. Second, WRAP53β plays essential
roles in maintaining Cajal bodies and targeting factors to these
organelles (Figure 1A; Mahmoudi et al., 2010; Henriksson and
Farnebo, 2015), probably by stabilizing interactions between
Cajal body components. The direct interaction between the Cajal
body marker Coilin and the splicing-related survival of motor
neuron (SMN) protein is stabilized by WRAP53β (Mahmoudi
et al., 2010), which can bind several proteins and RNAs
simultaneously through its seven WD40 repeats (Figures 1A,B).
WRAP53β also binds the telomerase RNA (TERC) and locates
the telomerase complex to Cajal bodies and further on to
telomeres (Venteicher et al., 2009).

Extensively interacting chromosomal loci are often fragile
and enriched in DNA repair factors, indicating that they
are primed for rapid DNA repair (Sobhy et al., 2019).
WRAP53β is involved in DNA repair and its presence
at Cajal body-associated gene loci may thus allow rapid
repair. In addition, assembly of WRAP53β at DNA lesions
may facilitate damage-induced genome reorganization
and/or clustering of DNA breaks, which promotes efficient
recognition and repair of lesions (Aymard et al., 2017;
Stadler and Richly, 2017). WRAP53β may also stimulate
transcription of RNA from the break site and/or its processing
or concentrate repair factors into specialized foci to accelerate
necessary reactions.

SPOTLIGHT ON DNA REPAIR: WRAP53β

CONTROLS LOCAL UBIQUITINATION

Regulation of Protein Recruitment and
Repair Pathway Choice by Ubiquitination
Among the most toxic DNA lesions are double-strand
breaks, repaired either by non-homologous end joining
(NHEJ) or homologous recombination (HR) (reviewed
e.g., by Ciccia and Elledge, 2010; Ceccaldi et al., 2016).
Following such breakage, the damaged chromatin is
modified chemically, including by ubiquitination, which
facilitates recruitment of repair factors. Ubiquitination
involves stepwise enzymatic activation, conjugation,
and ligation of the small ubiquitin protein to lysine
residues by E1, E2, and E3 enzymes, respectively (Pickart
and Eddins, 2004). The presence of lysine residues in
ubiquitin itself allows formation of various types of
polyubiquitin chains, with ubiquitin chains linked at
K48 typically targeting proteins for degradation, whereas
K63-linked chains often signal protein recruitment
(Panier and Durocher, 2009; Smeenk and van Attikum, 2013).

RNF8, the first ubiquitin ligase to arrive at DNA breaks (Huen
et al., 2007; Kolas et al., 2007; Mailand et al., 2007), initially
catalyzes K63-linked ubiquitin chains on histone H1 (Thorslund
et al., 2015), which recruits RNF168 to ubiquitinate histone
H2A at K13/K15 (Mattiroli et al., 2012; Uckelmann and Sixma,
2017), thereby potentiating the local ubiquitin signal (Uckelmann
and Sixma, 2017). This triggers recruitment of 53BP1 (via K15
ubiquitination of H2A), which then restricts DNA end resection
and promotes NHEJ repair (Figure 1C; Nakamura et al., 2006;
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FIGURE 1 | (A) Schematic illustration of the different WRAP53β complexes, their localization and function. Note: scaRNA and TERC are RNA molecules. (B)

Schematic illustration of the domains, binding, phosphorylation and ubiquitination sites in the WRAP53β protein. The sites for post-translational modifications were

(Continued)
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FIGURE 1 | obtained from PhosphoSitePlus on April 17, 2019. The location of WD40 repeats were predicted using the WD40-repeat protein Structures Predictor (Wu

et al., 2012; Wang et al., 2013, 2015; Ma et al., 2019); (WDSP, May 2nd 2019): WD40 1 (amino acid residues 159–197), WD40 2 (residues 207–259), WD40 3

(residues 266–305), WD40 4 (residues 313–354), WD40 5 (residues 358–397), WD40 6 (residues 402–442), WD40 7 (residues 450–510). (C) Schematic view of the

functions of WRAP53β in Cajal bodies, at the break site and in surrounding chromatin. Ubiquitin-dependent recruitment of DNA repair factors occurs at regions

flanking the break site. WRAP53β binds γH2AX and also scaffolds the interaction between MDC1 and RNF8, which is important for the recruitment of RNF8 to DNA

breaks. Once there, RNF8 and RNF168 ubiquitinate proteins at damaged chromatin, which stimulates recruitment of downstream factors 53BP1, RAD51, and

BRCA1. BRCA1 forms several sub-complexes with different functions, of which the BRCA1-A complex (containing BRCA1, RAP80, BRCC36, and additional proteins

not discussed here) restrict resection. Recruitment to the break site appears to be ubiquitin-independent and the factors recruited here include XRCC4, which

promotes NHEJ, or DNA break sensor proteins, such as the MRN complex that promote HR. Pools of WRAP53β and BRCA1 also locate at this site for reasons

unknown. Functions performed by WRAP53β in Cajal bodies could potentially be performed at break sites. The recruitment of RAD51, a downstream protein of

WRAP53β, to DNA lesions appears to occur via both ubiquitin-dependent and independent mechanisms.

Kolas et al., 2007; Fradet-Turcotte et al., 2013). Intriguingly,
ubiquitin chains also recruit RAP80 along with the key HR factor
BRCA1 (Sobhian et al., 2007; Wang and Elledge, 2007).

The choice of repair pathway beyond this point remains
unknown. In addition to the known determinants [i.e., cell
cycle phase, site of damage (e.g., gene-rich/poor regions) and
local concentration of factors required], the BRCA1 recruited
to ubiquitin as part of the BRCA1-A complex appears to be
involved in fine-tuning the choice of repair pathway, since
this complex attenuates end resection (Figure 1C; Sobhian
et al., 2007; Wang and Elledge, 2007; Hu et al., 2011). In
contrast, BRCA1 recruited via resected DNA belonging to other
complexes (i.e., BRCA1-B, BRCA1-C, BRCA1-D) promotes end
resection, strand invasion and RAD51 loading, crucial steps
in the HR pathway (Greenberg et al., 2006; Sy et al., 2009;
Zhang et al., 2009; Xie et al., 2012; Cruz-García et al., 2014;
Savage and Harkin, 2015; Zhao et al., 2017). Moreover, BRCA1
has E3 ligase activity and, with the E3 ligase BARD1, can
ubiquitinate H2A to remove 53BP1, thereby promoting HR
(Densham et al., 2016).

Other ubiquitin ligases also promote HR and influence
NHEJ by fine-tuning ubiquitination of damaged chromatin. For
example RNF20 and RNF40 ubiquitinate histone H2B (Moyal
et al., 2011; Nakamura et al., 2011; So et al., 2019), while UBE4A
edits ubiquitin chains at breaks (Baranes-Bachar et al., 2018).

Deubiquitinating enzymes (DUBs) are also involved in the
choice of repair pathway. Thus, removal of ubiquitin chains
by POH1 promotes HR by displacing 53BP1 and RAP80
to the periphery of the repair foci (Butler et al., 2012;
Kakarougkas et al., 2013; Nakada, 2016). Some BRCA1 complexes
contain DUBs, including BRCC36, which functions together
with the BRCA1-A complex; removal of this DUB results in
unrestrained end resection and hyperactive HR (Figure 1C;
Shao et al., 2009; Ng et al., 2016).

These observations emphasize the central role of
ubiquitination in the DNA damage response, in which the
RNF8/RNF168-pathway is a key upstream actor, regulating
several steps of both NHEJ and HR repair. Notably,
the RNF8 protein is unstable, so continuous splicing is
required for its presence at DNA lesions (Pederiva et al.,
2016). Consequently, even short term inhibition of splicing
impairs repair (Pederiva et al., 2016), which can explain
the defective repair associated with knockdown of various
splicing factors detected in several genome-wide siRNA screens
(Paulsen et al., 2009; Adamson et al., 2012).

Alteration of Chromatin Structure
by Ubiquitination
The structure of chromatin around DNA lesions influences the
DNA damage response. Initial compaction stimulates early steps
in this process, such as recruitment of the MRN complex, while
persistent compaction is unfavorable to downstream repair and
recovery, and attenuates phosphorylation of CHK2 (Burgess
et al., 2014). Moreover, a collar of compact chromatin is formed
around the DNA lesions, potentially to restrict repair to this
site, since repair factors, including 53BP1, only localize within its
decompacted interior (Lou et al., 2019).

Interestingly, this compaction around the break site is
dependent on RNF8 (Lou et al., 2019), indicating a role for
ubiquitination in regulating the higher-order structure of
damaged chromatin. Since RNF8 can promote relaxation
of chromatin by recruiting the remodeling factor CHD4
(Luijsterburg et al., 2012), it is possible that interior
decondensation by RNF8 triggers the formation of a
heterochromatic border around DNA breaks. Altogether,
the ubiquitin response not only stimulates recruitment of repair
factors and influences the choice of DNA double-strand break
repair pathway but also appears to shape the local chromatin for
proper progression of the DNA damage response.

WRAP53β Orchestrates Ubiquitination of
Damaged Chromatin via RNF8
WRAP53β was first implicated in DNA repair by several
screens for novel repair proteins (Matsuoka et al., 2007; Paulsen
et al., 2009; Adamson et al., 2012). Its direct involvement
in the repair of DNA double-strand breaks by both HR and
NHEJ was later confirmed and shown to involve scaffolding
interactions between RNF8 and MDC1 (Henriksson et al., 2014)
by simultaneously and independently binding the FHA domains
of both proteins through its own WD40 domain (Figure 1B;
Henriksson et al., 2014). In this manner, WRAP53β promotes
assembly of RNF8 at DNA lesions, ubiquitination of damaged
chromatin and downstream recruitment of 53BP1, BRCA1, and
RAD51 (Figure 1A; Henriksson et al., 2014; Hedström et al.,
2015). RNF8 and MDC1 can interact directly, but do not in the
absence ofWRAP53β, which appears to stabilize their interaction
in a manner similar to the SMN-coilin interaction (Figure 1A).
WRAP53β does not influences RNF8 levels, excluding indirect
effects on splicing.
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BEHIND THE SCENES: WRAP53β PLAYS
MULTIPLE ROLES AT DNA BREAKS

WRAP53β Influences DNA Repair
Beyond RNF8
Notably, depletion ofWRAP53β reduces HR andNHEJ efficiency
more than knockdown of RNF8 (Henriksson et al., 2014),
indicating that WRAP53β plays additional roles, probably
ubiquitin-independent, in DNA repair. Indeed, two distinct
WRAP53β fractions are present at DNA double-strand breaks;
one in regions surrounding the break (also positive for
γH2AX/MDC1/RNF8) and another at the break site itself
[normally devoid of/low in γH2AX/MDC1/RNF8 (Henriksson
et al., 2014; Goldstein and Kastan, 2015), but instead enriched
in NHEJ factors (e.g., XRCC4) and DNA break sensors
(e.g., NBS1, part of the MRN complex) (Goldstein et al.,
2013)]. WRAP53β is recruited to the break site itself more
rapidly and remains there longer than in the surrounding
regions (Figure 1C; Henriksson et al., 2014).

Interestingly, like WRAP53β, BRCA1 is recruited to both
regions and to a higher extent to the break site. Its recruitment to
the surrounding regions depends on the RNF8/RNF168/RAP80-
pathway (and on ATM and PARP), while its accumulation at the
break site is mediated by the MRN complex. BRCA1 appears to
stimulate cell cycle checkpoints at the flanking regions and re-
ligation of the breaks at the break site (Xu et al., 2001; Goldstein
and Kastan, 2015). Thus, WRAP53β and BRCA1 both participate
in the RNF8-mediated ubiquitination pathway, while promoting
other aspects of repair at the break site itself (Figure 1C).

What Regulates WRAP53β?
Recruitment of WRAP53β to repair foci, probably the regions
surrounding DNA double-strand breaks, requires ATM,
H2AX and MDC1 (Henriksson et al., 2014). Importantly,
upon DNA damage, WRAP53β is phosphorylated by ATM
at serine 64 (Matsuoka et al., 2007; Coucoravas et al., 2017)
and a phosphomutant of WRAP53β (S64A) cannot rescue
defects in DNA repair when the wild-type protein is knocked
down (Rassoolzadeh et al., 2015; Coucoravas et al., 2017).
ATM-mediated phosphorylation of WRAP53β does not
influence its interaction with RNF8 and MDC1. However,
WRAP53β also binds γH2AX and this interaction is enhanced
by phosphorylation (Figure 1B; Rassoolzadeh et al., 2015;
Coucoravas et al., 2017). Since WRAP53β binds RNF8 and
MDC1 even before damage, these three proteins might pre-
form a complex that can be activated and recruited to DNA
breaks by ATM in a multistep manner, e.g., phosphorylation of
MDC1 allows direct RNF8-MDC1 interaction, phosphorylation
of WRAP53β stimulates WRAP53β-γH2AX interaction and
phosphorylation of γH2AX allows MDC1-γH2AX interaction
(Rassoolzadeh et al., 2015; Coucoravas et al., 2017).

PhosphorylatedWRAP53βS64 locates to both DNA breaks and
Cajal bodies. However, the unphosphorylated form accumulates
in Cajal bodies to a greater extent (Coucoravas et al., 2017),
indicating that phosphorylation of WRAP53β by ATM relocates
this protein from Cajal bodies to DNA breaks. WRAP53β targets
several factors to Cajal bodies and maintains the structure of

this organelle and these functions may be affected by WRAP53β
relocation. For example, ionizing radiation moves WRAP53β to
DNA breaks, while telomerase (Wong et al., 2002) and several
other Cajal body components (including coilin, SMN, fibrillarin,
and snRNAs) move to and around nucleoli (in nucleolar caps).
This indicates that exit of WRAP53β from Cajal bodies displaces
associated proteins to other sites. Moreover, Cajal bodies become
disrupted several hours after DNA damage (Gilder et al., 2011).

In addition to S64, 23 other residues of WRAP53β are
phosphorylated and four ubiquitinated by unknown enzymes
for unclear reason (Figure 1B) (data from UniProt and
PhosphoSitePlus websites) (Hebert and Poole, 2017). WRAP53β
appears to be rate-limiting for both HR and NHEJ and,
accordingly, its overexpression enhances the efficiency of both
pathways by stimulating RNF8-mediated ubiquitination at
damaged chromatin (Rassoolzadeh et al., 2016). Further studies
on the complex interplay between the functions of WRAP53β
in DNA repair, the Cajal body and telomere maintenance are
required and post-translational modifications may be important
in this context.

WRAP53β ACTING OFF-SCRIPT: LOSS OF
TUMOR SUPPRESSION AND ACTIVATION
OF THE DNA DAMAGE RESPONSE IN
CANCER

Loss of Tumor Suppression by WRAP53β
Inactivating germline mutations inWRAP53β cause dyskeratosis
congenita, characterized by bone marrow failure, premature
aging and predisposition for cancer (Zhong et al., 2011).
Moreover, downregulation of WRAP53β RNA or its loss from
the nucleus in patients with head and neck, breast, and ovarian
cancer is correlated with shorter survival (Garvin et al., 2015;
Hedström et al., 2015; Silwal-Pandit et al., 2015). Furthermore,
numerous genetic alterations in WRAP53, mainly deletions
or mutations, are present in multiple cancers (Figure 2A)
(cBioPortal, https://www.cbioportal.org/) (Cerami et al., 2012;
Gao et al., 2013), further evidence that loss-of-WRAP53β-
function promotes cancer development/progression. In addition,
attenuated expression of WRAP53β correlates with resistance
of patients with head and neck cancer and metastasized rectal
cancer to radiotherapy (Zhang et al., 2012; Garvin et al., 2015).

At the same time, WRAP53β is overexpressed in other
cancer types (see further below), but the clinical relevance
remains unclear. Although we have suggested that WRAP53β
has oncogenic properties (Mahmoudi et al., 2011), we now
believe that this is a misinterpretation of the data, which
instead reflects participation of WRAP53β in the DNA damage
response (Figure 2B).

Does WRAP53β Appear to be Oncogenic
by Activating the DNA Damage Response?
Precancerous lesions are characterized by activation of DNA
damage signaling and repair, often due to replication stress,
which is believed to constrain tumor progression. This
phenomenon includes formation of 53BP1 foci and activation
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FIGURE 2 | (A) The frequency of genetic alterations in WRAP53 associated with various cancer types (minimum threshold of 2%) (From cBioPortal, accessed April

17, 2019). The numbers in parenthesis represent the number of patients analyzed. (B) Proposed model for the involvement of WRAP53β and the DNA damage

response in the development of cancer. Aberrant cell proliferation may cause replication stress, formation of DNA double-strand breaks and activation of the DNA

damage response. Overexpression of WRAP53β as part of the response stimulates repair, growth arrest and/or apoptosis, but some damaged cells may escape (e.g.,

due to downregulation of WRAP53β), leading to genomic instability and potential progression into cancer.

of the ATM/ATR checkpoint; premalignant tumor samples stain
positively for the phosphorylated forms of ATM, CHK1, CHK2,
RAD17, p53, and H2AX (Bartkova et al., 2005; Gorgoulis
et al., 2005). Potential inactivating mutations in key DNA
damage response proteins, such as p53 and ATM (Olivier
et al., 2010; Choi et al., 2016) allow survival of damaged and
genetically unstable cells that upon clonal expansion progress
into carcinoma (Bartkova et al., 2005; Gorgoulis et al., 2005).

WRAP53β is overexpressed in a variety of cancer cell lines and
primary head and neck, lung and colorectal cancers (Zhang et al.,
2012; Rao et al., 2014; Sun et al., 2014, 2016; Zhu et al., 2018).

In addition, knockdown of this protein promotes apoptosis
and reduces proliferation of cancer cell lines and xenografts
(Mahmoudi et al., 2011; Sun et al., 2014, 2016; Wang et al.,
2017; Yuan et al., 2017; Chen et al., 2018; Zhu et al., 2018).
Such observations appeared to indicate that WRAP53β may act
as an oncogene. However, in the vast majority of studies to
date overexpression ofWRAP53βwas not significantly associated
with worse patient survival.

Instead, overexpression of WRAP53β may reflect its
involvement in DNA repair and thus be a response to the
stress of rapid proliferation. Further support for this proposal
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includes the following: (1) upregulation of WRAP53β promotes
activation of the ATR-CHK1 pathway in nasopharyngeal
carcinoma induced by Epstein Barr Virus (Wang et al., 2017);
(2) upregulation of WRAP53β correlates with activation of the
DNA damage response pathway in ovarian cancer (Hedström
et al., 2015); (3) subsequent downregulation of WRAP53β
in patients with ovarian cancer is significantly associated
with higher mortality, while intitial upregulation was not,
indicating that downregulation drives tumor progression
(Hedström et al., 2015); and (4) similarly, downregulation
of WRAP53β in patients with metastasized rectal cancer
promotes resistance to radiotherapy and is associated with
higher mortality, while initial upregulation did not influence
patient survival (Zhang et al., 2012). Moreover, enhanced
expression of WRAP53β in cancer cells may be linked to their
greater number of Cajal bodies, reflecting a higher demand for
associated functions (Spector et al., 1992).

Potential re-activation of telomerase is, as far as we can see, the
only reasonable mechanism by which upregulation of WRAP53β
could actually promote tumorigenesis. However, the telomerase
gene is not an oncogene, since its product does not by itself
cause uncontrolled growth and is active in normal embryonic
stem and germline cells (Harley, 2002). Several studies have
reported a correlation between overexpression of WRAP53β and
increased telomere length or telomerase activity, but it remains
to be determined whether telomerase activity is correlated with
prognosis (Qiu et al., 2015; Wang et al., 2017; Sun et al., 2018).

CONCLUDING REMARKS—WRAPPING IT
ALL UP

The scaffolding protein WRAP53β organizes the genome so
that formation of Cajal bodies is stimulated, the expression of
associated genes enhanced and their products concentrated in
these organelles. Similarly, WRAP53β concentrates factors
important for repair of DNA double-strand breaks via
ubiquitination of damaged chromatin. Upon DNA damage,

a fraction of WRAP53β is phosphorylated, promoting its role
in DNA repair, with several other pools of WRAP53β having
different localizations and functions, orchestrated by various
post-translational modifications. This complexity explains
how this protein performs so many tasks within the cell in a
coordinated fashion, as well as why disease may occur when it is
lost or dysfunctional.

In addition to dyskeratosis congenita and sporadic cancer,
loss of WRAP53β has been linked to the pathogenesis of spinal
muscular atrophy (Mahmoudi et al., 2010; Di Giorgio et al.,
2017). Furthermore, this protein is part of a repair machinery
that organizes and resolves persistent DNA damage in neurons
(Mata-Garrido et al., 2016) and accumulation of such damage
is believed to contribute to neurodegenerative disorders such
as spinal muscular atrophy and amyotrophic lateral sclerosis
(Fayzullina and Martin, 2014; Mitra et al., 2019).

Thus, more in-depth understanding of the role of WRAP53β
in DNA repair and other processes may help decipher the
complicated mechanisms underlying tumorigenesis, premature
aging and neurodegeneration and thereby lead to novel
treatment strategies.
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