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We present a multi-scale simulation procedure to describe membrane-related biological

processes that span over a wide range of length scales. At macroscopic length-scale,

a membrane is described as a flexible thin film modeled by a dynamic triangulated

surface with its spatial conformations governed by an elastic energy containing only

a few model parameters. An implicit protein model allows us to include complex

effects of membrane-protein interactions in the macroscopic description. The gist of

this multi-scale approach is a scheme to calibrate the implicit protein model using finer

scale simulation techniques e.g., all atom and coarse grain molecular dynamics. We

previously used this approach and properly described the formation of membrane tubular

invaginations upon binding of B-subunit of Shiga toxin. Here, we provide a perspective of

our multi-scale approach, summarizing its main features and sketching possible routes

for future development.

Keywords: dynamic triangulated surfaces, Martini coarse-grain simulation, Shiga toxin, simulation of continuum

model, membrane remodeling, implicit protein model

INTRODUCTION

Many biological processes involve large scale changes in lateral chemical organization and
geometrical shapes of biological membranes (McMahon and Boucrot, 2015; Chavent et al., 2018).
The modeling of these processes, by computer simulation, is a challenging task since they typically
involve a wide range of length and time scales that cannot be captured in full by any single
current simulation technique (Enkavi et al., 2019; Marrink et al., 2019). At large length scales,
computational, and analytical techniques based on continuum models have played a great role in
our understanding of these processes and has revealed many important generic phenomena (Seifert
et al., 1991; Bozic et al., 1992; Ramakrishnan et al., 2013, 2015). Nevertheless, these predictions
are often obscured by the simplicity of the model and by the approximations needed to make
them mathematically tractable. In addition, such phenomenological models contain few model
parameters that are typically hard to relate to their molecular origin. At small length scales,
particle-based computer simulations techniques e.g., molecular dynamics (MD) and dissipative
particle dynamics (DPD), are robust techniques to elucidate complex membrane behaviors but
with a limited capacity to predict large length scale cooperative phenomena (Gao et al., 2007; Li
et al., 2016; Enkavi et al., 2019; Marrink et al., 2019). To overcome these limitations, we have used
a multi-scale simulation procedure that bridges the gap between the particle and continuum based
models and allows the simulation of large biological membrane patches while retaining details from
the atomistic length scale (Pezeshkian et al., 2016). Here, we summarize the main features of the
method, extend its capacity to describe a wider range of processes and sketch possible routes for
further development.
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METHODS

In our multi-scale approach, the large-scale physical properties
of a membrane are described by a coarse-grained model which
captures the elastic energy of membrane conformations and the
energetics of the lateral organization of its chemical constituents.
Such a model only contains a few model parameters which
are calibrated using atomistic and mesoscopic simulations
(Marrink et al., 2007).

Simulation of Continuum Model
A continuous membrane is discretized by a dynamical
triangulated surface (DTS) containing Nυ vertices, NT triangles,
NL links which together form an irregular planer triangulated
network (Figure 1A). The difference between dynamical
and static triangulation is that the mutual link between two
neighboring triangles can flip (Alexander moves). This allows to
sample through all possible triangulations for a given Nυ , NT ,
NL. Link flipping and positional updates of the vertices gives the
fluid character with full translational invariance in the plane of
the surface (Figure 1B). In this representation, a vertex can be
visualized as a segment of a bilayer containing hundreds of lipids,
this means that the resolution of the model is limited to the
length-scales above few nanometers. To ensure self-avoidance
of the surface each vertex is equipped with a spherical bead.
Using a set of discretized geometrical operations, each vertex
is furthermore assigned with a normal vector N̂υ , surface area
Aυ (one third of the area of its neighboring triangles), principal
curvatures (c1υ , c2υ) and principal directions (X1 (υ) , X2(υ))
(Ramakrishnan et al., 2010) (Figure 1A). This suffices to
construct an elastic energy function associated with membrane
bending that allows us to obtain the surface equilibrium
configurations using numerical update algorithms. In this work,
we have employed the Metropolis Monte Carlo algorithm
(Ramakrishnan et al., 2010; Bahrami et al., 2012; van der Wel
et al., 2016), but many other updating schemes are possible
(Noguchi and Takasu, 2001; Cooke et al., 2005; Noguchi and
Gompper, 2006; Peng et al., 2013; Mauer et al., 2018).

Elastic Energy
TheHelfrich Hamiltonian (Helfrich, 1973) is the classic approach
to describe membrane shape phenomena. The membrane elastic
energy Eb can be expressed in the terms of two surface invariants,
the mean curvature H = 0.5(c1 + c2), and Gaussian curvature,
K = c1c2. A discretized form of the Helfrich Hamiltonian can be
written as:

Eb =
κ

2

Nυ
∑

1

(

2Hυ − C0
)2
Aυ + κG

Nυ
∑

1

KυAυ (1)

The second term of this equation only depends on the
surface topology and does not change by continuous membrane
deformation (Gauss-Bonnet theorem). The mean curvature
elastic constant κ is called the bending elasticity, which carries the
dimension of energy. The constant C0 is called the spontaneous
curvature, which represents a possible asymmetry between the
two monolayers, e.g., differing solvent conditions. C0 = 0

for a symmetric membrane. Equation (1) can be expanded in
numerous ways depending on the membrane process at play.
For example, for processes where a significant part of the total
membrane surface undergoes deformations much faster than
the flip flop rate of any monolayers chemical component, a
monolayer area difference elastic term must be included (Seifert
et al., 1991; Bozic et al., 1992). The difference in the area of the
monolayers can be obtained as

1A = h

Nυ
∑

υ

2HυAυ (2)

Where h is the membrane thickness. Up to second order,
the area-difference elastic energy is expressed as Es =

kr
2h2A0

(1A− 1A0)
2, with kr denoting the area compression

modulus (Svetina and Žekš, 2014). Another relevant energy
term that can be included is the elastic energy associated with
change in the volume (V) of a closed surface (vesicle), EV =
KV
2V0

(V − V0)
2 where both the volume compression modulus KV

and the equilibrium volume V0 are set by the osmotic conditions
of the solvents in an experiment. For a triangulated surface, the
volume can be easily obtained as

V = 1

3

NT
∑

T=1

(
−→
RT .N̂T)AT (3)

Here,
−→
RT is the position of any point on the triangle T, N̂T and

AT are the normal vector and area of the oriented triangle T,
respectively. For analysis of bounded membrane patches or semi-
flatmembranes in a periodic boundary box, a contribution τAp to
the energy in Equation (1) becomes important. Ap and τ are the
projected area and frame tension of the membrane, respectively.

When we are dealing with membranes with highly curved
regions, e.g., formation of narrow necks prior to scission
during a fission process, Equation (1) requires modification.
In these regions, the curvatures of different monolayers can
be significantly different. A practical approach to include this
mismatch is to treat the bending energy associated with each
monolayer separately. Using mid-plane principal curvatures, the
mean curvature of each of the monolayers can be determined as
Safran (1994):

Hup =
H + 2Kh

1+ hH + Kh2
, Hlow = −H + 2Kh

1− hH + Kh2
(4)

Implicit Protein Model
Membrane proteins can locally influence bilayer shape through
direct and indirect couplings. Direct impacts include local
rigidification (Zhang et al., 2015), local membrane curvature
imprint (Pezeshkian et al., 2017b; Corradi et al., 2018; Wang
et al., 2018), local change in membrane thickness (Corradi
et al., 2018) etc. Indirect effects arise from their interactions
with other proteins that have the capacity to affect the
membrane shape through cooperative phenomena. In our multi-
scale simulation approach, these couplings are identified and
quantified through atomistic and mesoscopic simulations and
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FIGURE 1 | (A) Triangulated surface representation of a vesicle. Each vertex represents a segment of a bilayer containing hundreds of lipids. On each vertex, surface

normal (N̂), principal directions X1 (υ) , X2(υ) and their associated principal curvature (c1υ , c2υ ) can be determined. (B) Top: Alexander move, mutual link between

neighboring triangles is flipped and two new triangles are generated. Bottom: vertex move, a chosen vertex (red bead) is moved in a random direction (C) Proteins are

modeled as an inclusion that can lay on a vertex and can jump to the neighboring vertex via Kawazaki moves. (D) Vertex based model of curvature map induced by

proteins with lateral symmetry higher than 2 (top) and π-symmetric proteins (middle). The inclusion associated with these proteins should have a character of a

two-dimensional vector in the plane of a vertex (bottom). The angle between the protein direction and the membrane main principal direction.

they are included in the system energy as new terms added
to Equation (1). In the modeling, a protein or nanoparticle
(an inclusion) is assigned to a vertex in the triangulation.
Each vertex can at most occupy one inclusion, which naturally
handles the in-plane excluded volume effect between inclusions.
It also introduces a natural length scale to the model since
we can associate the smallest possible area of a vertex with
the projected area of the inclusion in question. Inclusions
can move laterally through updates of the triangulation or
by jumps between the neighboring vertices via Kawazaki
moves (Figure 1C).

When an inclusion is situated in a vertex, it may change
the elastic energy contribution from the vertex. For membrane
proteins, the simplest model is to locally increase membrane
bending rigidity (Frolov and Zimmerberg, 2008; Schweitzer et al.,
2015). The most important effect of membrane proteins, that
greatly influences the large-scale membrane shape, is to induce
a local membrane curvature (Kozlov et al., 2014). This induced
curvature can be in-plane rotationally symmetric or asymmetric.
As a consequence of Eulers curvature formula, vertex-based
inclusions, except π-symmetric inclusions (symmetric upon
rotation by 180 degrees in the plane of the membrane,
Figure 1D), can only induce symmetric curvature (Peliti and
Prost, 1989). It may seem that this is a shortcoming of the
model. Nevertheless, highly asymmetric curvature imprints
decays quickly in the membrane plane (Dasgupta et al., 2017;
Corradi et al., 2018) and does not appear in a macroscopic
membranemodel. The impact of these inclusions can bemodeled
by adding a local energy contribution eυ = −κHC0Aυ to
the bending energy per vertex, where C0 is the local curvature
imprint of the protein and needs calibration from finer scale
simulations. Notice that C0 can only be identified with C0

in Equation (1) for a fully covered membrane. π-symmetric
inclusions can locally bend the membrane differently in different
directions (Frolov and Zimmerberg, 2008). Such inclusions can

thus be given an orientation in the plane in the direction

with maximal directional curvature imprint (C‖
0) while the

perpendicular direction in the plane gives the lowest directional
curvature imprint (C⊥

0 ) (Figure 1D). The membrane curvature
in these directions can easily be obtained by Eulers curvature
formulaC‖ = c1υ cos 2(θ)+c2υ sin 2(θ) andC⊥ = c1υ sin 2(θ)+
c2υ cos 2(θ) where θ is the angle between the orientation of the
inclusion and the direction of the main principal curvature of
the membrane. Such inclusion will give rise to an additional
local contribution to the total elastic energy in Equation (1),

eυ = [ κ1
2

(

C⊥−C⊥
0

)2 + κ2
2

(

C‖ − C
‖
0

)2
]Aυ , where κ1 and

κ2 are the directional bending rigidities imposed by the inclusion
on the membrane. To complete the modeling, we need to
include interactions between the inclusions. Here, we will only
focus on the pair interactions but nevertheless the method can
be extended to multi-body interactions. The pair-interactions
between inclusions can be divided into two types: (i) as a
function of distance between the proteins in the 3-dimensional
space, e.g., electrostatic and van der Waals forces, (ii) as a
function of a distance alongside the geodesic direction between
two inclusions in the membrane, e.g., membrane mediated
interactions (Haselwandter and Wingreen, 2014; Johannes et al.,
2018). The former type of interactions can be modeled simply
by a constant interaction energy when two inclusions are in
proximity in the 3D space. This is a practical and valid choice,
since the resolution of the model is well-below a range to capture
the protein specific interactions. The second type of interactions
is more challenging since it depends on the local curvature of the
membrane. A particular consequence of this is that interactions
between two neighboring non-isotropic inclusions can first be
calculated after parallel transport between them, where the in-
plane orientations of the inclusion is kept fixed along theirmutual
geodesic curve (Ramakrishnan et al., 2010). The interaction
between two inclusions on the neighboring vertices is only a
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function of angle between their in-plane orientations alongside
geodesic direction: 12 = 2i − 2′

j, where 2i is the orientation
of inclusion residing on vertex i, 2′

j represents the orientation of
inclusion residing on vertex j after parallel transport to vertex i.
This energy function can be written in term of Fourier series as

εij (12) = −ε0 − µ0

M
∑

k=1

ak

M
cos

[

kQij12 + 4k

]

(5)

The first term (−ε0) models the isotropic part of the interaction
between two inclusions while the second term is to model
anisotropic interactions e.g., caused by steric factors and the
distribution of the peptide groups in a protein (Domanski et al.,
2017). M is a constant integer and its value depends on the
chosen degree of coarse graining. Larger M allows to include
more structural details of the protein shape in the interactions
with other proteins. 4k are the phase shift and µ0ak/M are
amplitude of the Fourier modes and both need fitting from
finer simulation techniques. By setting

∑M
k=1 ak = M, µ0 can be

defined as the lowest energy level of the anisotropic part of the
interaction. Qij is the least common multiple of the degree of the
i,j proteins symmetry in the plane of the membrane (N). Note
that the interaction energy in Equation (5) can also be used to
model lipid domain formations in multicomponent membranes
(Ramakrishnan et al., 2010; Hansen et al., 2017).

Different approaches can be used to model proteins on
triangulated surfaces e.g., introducing a curvature field and
additional length scale to the model (Tourdot et al., 2014),
however we prefer our procedure since it allows the calibration
of all parameters solely through a bottom up approach. This
increases the predication power of the model without need to
tune the inputs parameters to reach the excepted outcome.

Calibration
To start a DTS simulation for a membrane containing different
lipids and proteins, all the mentioned model parameters need
to be calibrated using results from experiments or simulations
of finer scales. Below we discuss several of these parameters

(κ ,C‖
0 , C

⊥
0 , ε0, µ0, N, ak, 4k).

Bending rigidity κ : Bending rigidity is known for many one
component lipid bilayers from both experiment and simulations.
However, for new lipid bilayers, fluctuation spectrum analysis
is a powerful technique to extract this parameter. Both, coarse
grained and all-atom MD simulation can be used to calibrate
this parameter (Brandt et al., 2011; Watson et al., 2012;
Venable et al., 2015).

Local curvature imprint (C‖
0 , C

⊥
0 ): All-atom MD simulation

has proven successful for calibration of these model parameters
(Pezeshkian et al., 2016, 2017b; Kociurzynski et al., 2019).
From an MD simulation trajectory, membrane curvature can
be measured using different approaches. An accurate method
is to use the first moment of the lateral membrane pressure
profile, κC0 =

∫

z5(z)dz (Safran, 1994). However, this approach
has several problems. First, a converged lateral pressure profile
requires very long simulations even for pure membrane systems.
Secondly, it only provides the mean value of the induced

curvature (C‖
0 + C⊥

0 ) unless the protein orientation is restricted
(Bruhn et al., 2016; Ali Doosti et al., 2017). The second method
is a geometrical approach and consists of fitting the upper and
lower monolayer of the membrane to an analytical function and
calculating the time-average curvature map on the surface of the
bilayer. Note, since the typical radius of the curvature induced by
proteins is much larger than a feasible MD simulation box size,
the total average curvature of the fitted surface is zero. Therefore,
one should only average the curvature of the surface up to a
distance, in which the presence of the protein changes the lipid
density, from the center of the proteins (Pezeshkian et al., 2016,
2017b; Corradi et al., 2018).

Protein-protein interaction parameters (ε0, µ0, N, ak, 4k): An
efficient approach to calibrate these parameters is to use coarse
grained MD or DPD simulations. Typically, large simulation
boxes are needed because the system size should be large enough
so that the proteins do not interact (including membrane-
mediated interactions) with their periodic image. Secondly a long
simulation is required to disentangle the diffusive approach from
the systematic interaction. In addition, mesoscale simulations
allow us to derive a potential of mean force (PMF) profile
that can be used to calibrate (ε0, µ0) (de Meyer et al., 2008;
Periole et al., 2012; Domanski et al., 2017). In-plane symmetry
of the protein structure (N) can be found from the crystal
structure. ak and 4k can be calibrated from both the density
map or from free energy profile as a function of angle between
the proteins.

Example: Shiga Toxin Induced Tubular
Membrane Invaginations
The bacterial Shiga toxin is a member of the AB5 protein
family that is composed of an enzymatically active A-subunit,
and a receptor-binding B-subunit. STxB is homopentameric
and mediates intracellular toxin trafficking via binding to the
glycolipid globotriaosylceramide (Gb3) at the plasma membrane
of target cells. Shiga toxin can enter the cell by both clathrin-
dependent and independent endocytosis. The formation of
tubular membrane invaginations is the first step in the clathrin-
independent STxB uptake (Römer et al., 2007). Previously,
we have used this multi-scale simulation approach to describe
formation of membrane tubular invaginations upon STxB
binding. Here we shortly discuss the scheme and results.

• Using the STxB crystal structure, we measured the projected
area of STxB to be 38.5 nm2 (we approximated the lateral shape

as a circle). The smallest area of a vertex is equal to
√
3
2 l2 (l

is the minimum length of a link, or a vertex size). Therefore,
l ≈ 6.7 nm.

• Local curvature induced by STxB was measured using all
atom MD simulations (Pezeshkian et al., 2016). The radius of
curvature is found to be R ≈ 29.4 nm = 4.39 l.

• DPD simulation was used to find STxB-STxB interactions.
Using this method and experiments on unilamellar vesicles,
we provide evidence that thermal Casimir-like force arising
from membrane surface fluctuations are responsible for STxB
clustering (Pezeshkian et al., 2017a). The computed PMF
profile shows that the potential depth, taken to represent the
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FIGURE 2 | (A) Tubular membrane invaginations induced by Shiga toxin. The color code for the beads is the same as in Figure 1B. All atom molecular dynamic

simulations were used to obtain local curvature induced by the protein (Pezeshkian et al., 2016). Protein-protein interaction was calibrated using DPD simulations. (B)

The final structure of a budding vesicle after a DTS simulation is back-mapped to the particle based CG Martini model.

isotropic strength of the pair interaction, is around 2.5 kBT
(Figure 2A). STxB is a pentamer (2π /5-symmetric), therefore
N=5. Based on these numbers, we defined the simplest form
of the interaction energy as εij = −2.5+ (1+ cos 5[2i − 2′

j])
in units of kBT.

• Using the above input parameters, we performed a Monte
Carlo simulation of DTS in the constant frame tension
ensemble (τ = 0) and could reproduce the behavior as seen
in the experimental setups, namely formation of a tubular
membrane invagination (Römer et al., 2007). We also found
the minimum requirements for the formation of tubular
membrane invaginations, i.e., (1) capacity of the individual
proteins to induce local membrane curvature (2) their ability
to cluster, by any mean, upon binding to the membrane
(Figure 2A) (Pezeshkian et al., 2016).

BACK-MAPPING TO CG MODEL

The main assumption of this multi-scale simulation approach
is that local properties of the membrane do not strongly

get affected by large-scale membrane configurational changes.
However, local lateral organizations of complex membranes
chemical constituents can change upon large scale membrane
deformations (Baoukina et al., 2018). In order to overcome this
limitation, we have developed an algorithm that back-maps a
DTS structure to its corresponding Martini CG model (Marrink
et al., 2007; Marrink and Tieleman, 2013). This algorithm
makes it possible to use DTS to equilibrate the slow large-scale
membrane conformational change and exploit theMartini model
to equilibrate the local lipid distributions. As a first attempt to
explore this procedure, we performed a DTS simulation on a
vesicle with a smaller volume/surface ratio of a perfect sphere
(0.7) and a spontaneous curvature of 0.025 nm−1. Under this
condition, the DTS simulation predicted the formation of a
vesicular bud (Figure 2B) (Seifert et al., 1991; Markvoort et al.,
2009; Bahrami et al., 2017). We then back-mapped the DTS
structure to its corresponding Martini model and after a short
energy minimization, it was ready for an MD simulation. The
detail of this procedure is out of the scope of this article and will
be published elsewhere.

Frontiers in Molecular Biosciences | www.frontiersin.org 5 July 2019 | Volume 6 | Article 59

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


Pezeshkian et al. Multi-Scale Simulation of Membrane Remodeling

SUMMARY AND PERSPECTIVES

We described an extended version of our multi-scale simulation
procedure that uses a bottom up scheme to calibrate DTS
model parameters (Pezeshkian et al., 2016). The approach
is well-suited for investigating membrane involved biological
processes that take place at a large-range of time and
length scales that cannot be captured by any single current
simulation techniques.

One of the clear advantages of exploiting DTS at macroscopic
length scales is the speed. DTS allows us to simulate micron
size vesicles, decorated with membrane proteins, on a single
CPU core. This length-scale is hardly reachable (using much
more computational power) by any particle-based computer
simulation techniques (Cooke et al., 2005; Ayton and Voth,
2009). Nevertheless, the approach still suffers from several
limitations that need to be resolved. For example, DTS
simulations with dynamic topology has been only developed for
several special purposes (Jeppesen and Ipsen, 1993; Shillcock
and Boal, 1996; Gompper and Kroll, 1998; Shillcock and Seifert,
1998) that limits its applications, as a generic method, to
describe processes that involve membrane topological changes,
e.g., membrane scission and poration (Boye et al., 2017). Another
limitation is the current implicit protein model that is only
applicable for membrane proteins. One possibility is to adopt
one protein to few beads strategy e.g., essential dynamics coarse-
graining (Zhang et al., 2008) to extend the range of the DTS
protein mapping. Another route to increase the molecular level

detail is through dynamic coupling of macroscale and CG
models. We shortly described a back-mapping algorithm that
converts a DTS topology to a Martini structure. This algorithm
opens up a new perspective to perform a dual resolution
Martini/DTS simulation, so that DTS performs the large-scale
moves while local moves of the chemical components is handled
by the CGMartini model.
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