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Peptides mediate up to 40% of known protein-protein interactions in higher eukaryotes
and play a key role in cellular signaling, protein trafficking, immunology, and oncology.
However, it is challenging to predict peptide-protein binding with conventional
computational modeling approaches, due to slow dynamics and high peptide flexibility.
Here, we present a prototype of the approach which combines global peptide docking
usingClusPro PeptiDock and all-atom enhanced simulations using Gaussian accelerated
molecular dynamics (GaMD). For three distinct model peptides, the lowest backbone
root-mean-square deviations (RMSDs) of their bound conformations relative to X-ray
structures obtained from PeptiDock were 3.3–4.8 Å, being medium quality predictions
according to the Critical Assessment of PRediction of Interactions (CAPRI) criteria.GaMD
simulations refined the peptide-protein complex structures with significantly reduced
peptide backbone RMSDs of 0.6–2.7 Å, yielding two high quality (sub-angstrom) and
one medium quality models. Furthermore, the GaMD simulations identified important
low-energy conformational states and revealed the mechanism of peptide binding to
the target proteins. Therefore, PeptiDock+GaMD is a promising approach for exploring
peptide-protein interactions.

Keywords: peptide-protein binding, peptide docking, PeptiDock, gaussian accelerated molecular dynamics

(GaMD), peptide flexibility

INTRODUCTION

Peptides mediate up to 40% of known protein-protein interactions in higher eukaryotes. Peptide
binding plays a key role in cellular signaling, protein trafficking, immune response, and oncology
(Petsalaki and Russell, 2008; Das et al., 2013). In addition, peptides have served as promising
drug candidates with high specificity and relatively low toxicity (Ahrens et al., 2012; Fosgerau and
Hoffmann, 2015; Kahler et al., 2018; Lee et al., 2019). The number of peptide-based drugs being
marketed is increasing in recent years (Ahrens et al., 2012; Fosgerau and Hoffmann, 2015; Kahler
et al., 2018; Lee et al., 2019). Therefore, understanding the molecular mechanism of peptide-protein
interactions is important in both basic biology and applied medical research.

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org/journals/molecular-biosciences#editorial-board
https://www.frontiersin.org/journals/molecular-biosciences#editorial-board
https://www.frontiersin.org/journals/molecular-biosciences#editorial-board
https://www.frontiersin.org/journals/molecular-biosciences#editorial-board
https://doi.org/10.3389/fmolb.2019.00112
http://crossmark.crossref.org/dialog/?doi=10.3389/fmolb.2019.00112&domain=pdf&date_stamp=2019-10-30
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles
https://creativecommons.org/licenses/by/4.0/
mailto:miao@ku.edu
https://doi.org/10.3389/fmolb.2019.00112
https://www.frontiersin.org/articles/10.3389/fmolb.2019.00112/full
http://loop.frontiersin.org/people/715541/overview
http://loop.frontiersin.org/people/705913/overview


Wang et al. Modeling of Peptide-Protein Binding

Rational design of peptide-derived drugs usually requires
structural characterization of the peptide-protein complexes. X-
ray crystallography and nuclear magnetic resonance (NMR) have
been utilized to determine high-resolution structures of peptide-
protein complexes. These structures are often deposited into the
Protein Data Bank (PDB) and also collected in specific databases
focused on peptide-protein complex structures, including the
PeptiDB (London et al., 2010), PepX (Vanhee et al., 2010), and
PepBind (Das et al., 2013). Particularly, PeptiDB is a set of
103 non-redundant protein-peptide structures extracted from the
PDB. The peptides are mostly 5–15 residues long (London et al.,
2010). PepX contains 1,431 non-redundant X-ray structures
clustered based on the binding interfaces and backbone
variations. There are 505 unique peptide-protein interfaces,
including those for the major histocompatibility complex (MHC)
(14%), thrombins (12%), α-ligand binding domains (8%), protein
kinase A (5%), proteases and SH3 domains (Vanhee et al., 2010).
The PepBind contains a comprehensive dataset of 3,100 available
peptide-protein structures from the PDB, irrespective of the
structure determination methods and similarity in their protein
backbone. More than 40% of the structures in PepBind are
involved in cell regulatory pathways, nearly 20% in the immune
system and∼30%with protease or other hydrolase activities (Das
et al., 2013). These databases have greatly facilitated structure-
based modeling and drug design of peptide-protein interactions.
However, the number of currently resolved structures is
only a small fraction of the peptide-protein complexes, as
limited by the difficulties and high cost of X-ray and
NMR experiments.

Computational methods have been developed for predicting
the peptide-protein complex structures. In this regard, modeling
of peptide binding to proteins has been shown to be distinct
from that of extensively studied protein-ligand binding and
protein-protein interactions. Notably, small-molecule ligands
are able to bind deeply buried sites in proteins, but peptides
normally bind to the protein surface, especially in the largest
pockets. On the other hand, protein partners usually have well-
defined 3D structures before forming protein-protein complexes,
despite possible conformational changes during association. In
contrast, most peptides do not have stable structures before
forming complexes with proteins (Petsalaki and Russell, 2008).
The biggest and immediate challenge for modeling of peptide-
protein binding is that peptide structures are not known a priori.
Furthermore, peptide-mediated interactions are often transient.
The affinity of peptide-protein interactions is typically weaker
than that of protein-protein interactions, because of the smaller
interface between peptides and their protein partners. Therefore,
new and robust computational approaches are developed to
address the above challenges in the modeling of peptide-
protein binding.

Molecular docking has proven useful in predictions of
peptide-protein complex conformations (Ciemny et al., 2018).
The commonly used approaches include template-based docking
such as GalaxyPepDock (Lee et al., 2015), local docking
of peptides to pre-defined binding sites such as Rosetta
FlexPepDock (Raveh et al., 2011), HADDOCK (Trellet et al.,
2013), andMDockPep (Xu et al., 2018), and global docking of free

peptide binding to proteins such as CABS-dock (Kurcinski et al.,
2015), PIPER-FlexPepDock (Alam et al., 2017), and PeptiDock
(Porter et al., 2017). The template-based docking is highly
efficient, but often limited to the availability of templates (Lee
et al., 2015). Local docking is able to generate good quality models
that meet the Critical Assessment of PRediction of Interactions
(CAPRI) criteria (Janin et al., 2003). However, it requires a priori
knowledge of the peptide binding site on the protein surface. In
comparison, global peptide docking provides sampling of peptide
binding over the entire protein surface without the need for pre-
defined binding sites, but it is challenging to account for the
system flexibility. In this regard, ClusPro PeptiDock has been
developed for docking of motifs (short sequences) of peptides,
which are found to sample only a small ensemble of different
conformations (Alam et al., 2017). Structural ensemble of a
peptide motif is built by retrieving motif structures from PDB
that are very similar to the peptide’s bound conformation. A
Fast-Fourier Transform (FFT) based docking is then used to
quickly perform global rigid body docking of these fragments
to the protein. PeptiDock is thus able to alleviate the peptide
flexibility problem through ensemble docking of the peptide
motifs. Nevertheless, it remains challenging to account for the
high flexibility of the peptides. Overall, peptide docking often
generates poor predictions that require further refinement to
obtain CAPRI-quality models.

Molecular dynamics (MD) is a powerful technique that
enables all-atom simulations of biomolecules. MD simulations
are able to fully account for the flexibility of peptides and
proteins during their binding (Knapp et al., 2015; Wan et al.,
2015; Salmaso et al., 2017; Yadahalli et al., 2017; Kahler et al.,
2018). MD has been used to refine binding poses of peptides
in proteins in the pepATTRACT (De Vries et al., 2017) and
AnchorDock (Ben-Shimon and Niv, 2015) docking protocols.
However, it is challenging to sufficiently sample peptide-protein
interactions through conventional MD (cMD) simulations,
due to the slow dynamics and limited simulation timescales.
Computational approaches that combine many cMD simulations
provide improved sampling of peptide-protein interactions,
including supervised MD (Salmaso et al., 2017) and weighted
ensemble (Zwier et al., 2016). Notably, weighted ensemble of a
total amount of ∼120 µs MD simulations has been obtained to
investigate binding of an intrinsically disordered p53 peptide to
the MDM2 Protein (Zwier et al., 2016). The simulation predicted
binding rate constant agrees very-well with the experiments.
However, expensive computational resources would be needed
for applications of cMD simulations in large-scale predictions of
peptide-protein complex structures.

On the other hand, enhanced sampling MD methods have
been developed to improve biomolecular simulations (Christen
and Van Gunsteren, 2008; Gao et al., 2008; Liwo et al.,
2008; Dellago and Bolhuis, 2009; Abrams and Bussi, 2014;
Spiwok et al., 2015; Miao and Mccammon, 2016). Multi-
ensemble Markov models (Paul et al., 2017), which combine
cMD with Hamiltonian replica exchange enhanced sampling
simulations, have been used to characterize peptide-protein
binding and calculate kinetic rates of a nano-molar peptide
inhibitor PMI to the MDM2 oncoprotein fragment (Paul et al.,
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2017). While cMD is able to simulate fast events such as
peptide binding, enhanced sampling simulations can capture
rare events such as peptide unbinding. The steered MD
(Cuendet et al., 2011), temperature-accelerated MD (Lamothe
and Malliavin, 2018) and MELD (Modeling by Employing
Limited Data) using temperature and Hamiltonian replica
exchange MD (Morrone et al., 2017) have also been applied to
study peptide-protein binding. In comparison, more enhanced
sampling methods have been applied in studies of protein-
ligand binding and protein-protein interactions, including the
umbrella sampling (Torrie and Valleau, 1977; Kastner, 2011;
Rose et al., 2014), metadynamics (Laio and Parrinello, 2002;
Alessandro and Francesco, 2008; Saleh et al., 2017a,b,c),
adaptive biasing force (Darve and Pohorille, 2001; Darve et al.,
2008), steered MD (Cuendet and Michielin, 2008; Gonzalez
et al., 2011), replica exchange MD (Sugita and Okamoto,
1999; Okamoto, 2004), accelerated MD (aMD) (Hamelberg
et al., 2004; Miao et al., 2015), and Gaussian accelerated MD
(GaMD) (Miao et al., 2015; Miao and Mccammon, 2017, 2018;
Pang et al., 2017). Overall, enhanced sampling simulations of
peptide binding to proteins have been under explored. Peptide-
protein binding shows distinct characteristics as described
above and requires the development of improved enhanced
sampling approaches.

Here, we present a prototype of a novel computational
approach that combines global peptide docking using PeptiDock
and all-atom enhanced sampling simulations using GaMD to
model peptide-protein binding. Three model peptides have been
selected from the PeptiDB database of non-redundant peptide-
protein complex structures (London et al., 2010). They include
peptide motifs “PAMPAR” (Peptide 1), “TIYAQV” (Peptide 2)
and “RRRHPS” (Peptide 3), which bind to the SH3 domain, X-
linked lymphoproliferative syndrome (XLP) protein SAP and
human PIM1 kinase, respectively. Starting with the lowest RMSD
conformation selected from top 10 models of PeptiDock, GaMD
significantly refines the peptide-protein complex structures.
Furthermore, the simulations provided important insights into
the mechanism of peptide binding to target proteins at an
atomistic level. Thus, PeptiDock+GaMD is a promising approach
for exploring peptide-protein interactions.

METHODS

A Computational Approach Combining
PeptiDock and GaMD
A new computational approach was designed to predict peptide-
protein complex structures by combining peptide docking with
PeptiDock and all-atom enhanced sampling simulation with
GaMD (Figure S1). Initial peptide-protein complex structures
were obtained using the ClusPro PeptiDock server. The first
step in the PeptiDock protocol is fragment search: the PDB
database is searched for fragments containing the target peptide
motif. The templates are clustered and an FFT-based rigid
docking is applied to the cluster centroids. Top-scoring poses
are clustered again and the centroids of the largest clusters
are chosen as the final results (Porter et al., 2017). For the

purpose of this study—to show the viability of the protocol—
only one pose within top 10 models of PeptiDock, known
to be near native, was selected for further refinement using
GaMD simulations.

System Setup
Three model peptides were selected from the PeptiDB database
of non-redundant peptide-protein complex structures (London
et al., 2010). They included peptide motifs “PAMPAR” (Peptide
1), “TIYAQV” (Peptide 2) and “RRRHPS” (Peptide 3), which
bind to the SH3 domain, XLP protein and human PIM1 kinase,
respectively. The free X-ray structures of target proteins is 1OOT,
1D1Z and 2J2I, respectively. The corresponding bound structures
are 1SSH, 1D4T (Poy et al., 1999) and 2C3I (Pogacic et al., 2007),
respectively. The free X-ray structures of the target proteins
were used in the peptide docking and GaMD simulation. Both
capped/neutral and uncapped/zwitterion terminus models were
investigated in the GaMD simulations. In the neutral terminus
model, the N- and C-termini were capped with ACE and
NHE, respectively.

Peptide Docking
The standard ClusPro PeptiDock protocol was used for all three
systems. In the first step, receptor structures were specified:
1OOT chain A (Peptide 1), 1D1Z chain A (Peptide 2) and
residues 125-305 of 2J2I chain B (Peptide 3). The next step
was specifying motifs—the templates for searching fragments in
PDB database. The motif was specified as subsequence of the
peptide with one or more wildcard symbols. Wildcards could
be of two forms: “X,” denoting any amino acid substitution,
and “[...],” denoting substitution by any amino acid from the
list. e.g., “[FT]” means that either Phe or Tyr can take this
place. It is recommended to adjust the motif to yield between
100 and 1,000 hits, while preserving the essential features for
binding. For the studied systems, the following motifs were used
for fragment search: “PXMPXR” for Peptide 1 [107 hits, see
Ref. Hou et al., 2012], “TI[YF]XX[VI]” for Peptide 2 [686 hits,
see Ref. Poy et al., 1999] and “RXRHXS” for Peptide 3 [198
hits, see Ref. Bullock et al., 2005]. Since PDB contains bound
structures of the studied systems, a number of PDB entries were
explicitly excluded from template search, as listed in Table S4.
The next steps were performed automatically by the server
(Porter et al., 2017), being the same for all systems. The extracted
fragments were changed to the target peptide sequence using
backbone-dependent rotamer library (Dunbrack and Karplus,
1993). The extracted fragments (hits) were clustered using the
greedy algorithm according to their pairwise root-mean-square
deviation (RMSD), with 0.5 Å cluster radius. The centroids of
top 25 clusters were docked to the receptor using rigid-body
FFT docking (Kozakov et al., 2006), exhaustively sampling all
possible mutual orientations of the receptor and ligand, and
ranking them using a special scoring function with a mixture of
physics-based and knowledge-based terms (Kozakov et al., 2006;
Chuang et al., 2008). The top-scoring poses of each fragment
were pooled together and clustered based on their pairwise
RMSDs, with 3.5 Å cluster radius. The clusters were ranked
according to their sizes (Kozakov et al., 2005). The centroids of
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ten largest clusters were subjected to energy minimization with
a CHARMM19-based force field using the ABNR algorithm. To
demonstrate the protocol, only the lowest RMSD conformation
obtained from top 10 PeptiDock models of each peptide was
selected for refinement using GaMD simulations. The ranks of
docking poses with the lowest peptide backbone RMSDs used
were 9, 5, and 10 for Peptides 1, 2 and 3, respectively. It
is important to note that each of the top-10 docking models
will be refined and scored in a full version of the protocol in
further studies.

GaMD Enhanced Sampling Simulations
GaMD was applied to refine the peptide-protein complex
structures. Complexes were solvated in explicit water using
tleap from the AMBER 18 package (Case et al., 2018). The
Na+ and Cl− ions were added to neutralize the system
charge. The AMBER ff14SB force field parameters (Maier et al.,
2015) and TIP3P model (Jorgensen et al., 1983) were used
for the proteins/peptides and water molecules, respectively.
Each system was minimized using steepest descent for 50,000
steps and conjugate gradient for another 50,000 steps. After
minimization, the system was heated from 0 to 310K in 1 ns
simulation by applying 1 kcal/(mol•Å2) harmonic position
restraints to the protein and peptide heavy atoms with a
constant number, volume and temperature (NVT) ensemble.
Each system was further equilibrated using a constant number,
pressure and temperature (NPT) ensemble at 1 atm and 310K
for 1 ns with same restraints as in the NVT run. Another
2 ns cMD simulations were performed to collect potential
energy statistics (including the maximum, minimum, average,
and standard deviation). Then 18 ns GaMD equilibration
after applying the boost potential was performed. Finally,
four independent 300 ns GaMD production simulations with
randomized initial atomic velocities were performed on each
peptide system. Simulation frames were saved every 0.2 ps for
analysis. Snapshots of all four GaMD production simulations
(1,200 ns in total) were combined for clustering to identify
peptide binding conformations, for which the hierarchical
agglomerative algorithm in CPPTRAJ (Roe and Cheatham,
2013) was applied. The cutoff was set to 3.5 Å for the
peptide backbone RMSD to form a cluster. The PyReweighting
toolkit (Miao et al., 2014) was applied to reweight four GaMD
simulations combined and recover the original free energy
or potential of mean force (PMF) profiles of each peptide-
protein system. The RMSDs of the peptide and protein backbone
were used as reaction coordinates. Detailed descriptions of
GaMD theory and energetic reweighting were shown in
Supplementary Material.

RESULTS

Prediction of Peptide Binding
Conformations Through Docking and
GaMD Simulations
There were no significant conformational changes in the
protein during binding of Peptides 1 and 3 (Figures 1A,C). In

comparison, binding of Peptide 2 induced a large structural
rearrangement of the loop involving residues 67–74 in the
protein (Figure 1B). In addition, Peptide 3 is highly charged
as its first three N-terminal residues in the sequence are
all arginine. These features of Peptides 2 and 3 raised the
difficulty in accurate prediction of their peptide-protein complex
structures. Peptide docking with PeptiDock showed different
levels of accuracy: RMSDs of the peptide backbone compared
with the bound X-ray structures were 3.3, 3.5, and 4.8 Å for
the three peptides, respectively (Figures 1A–C and Table 1).
The first two were of acceptable quality predictions according
to the CAPRI peptide docking criteria (Janin et al., 2003),
and the third one was slightly above acceptability cutoff. It
should be noted that our flexible protein-peptide docking
protocol PIPER-FlexPepDock (Alam et al., 2017) mentioned
above is successful in obtaining high-quality model only in
the case of Peptide 1, whereas the other two cases are
challenging due to either significant receptor flexibility (Peptide
2) or remoteness of rigid-body docking poses to the native
conformation (Peptide 3).

Next, GaMD simulations were performed to refine the
docking models. Analysis of simulation trajectories showed
that the GaMD simulations were able to effectively refine the
peptide binding pose. For Peptides 1 and 2, RMSDs of the
peptide backbone relative to the X-ray structures decreased
to <1 Å during the GaMD simulations (Figures 2A,B).
Peptide 1 bound tightly to the protein target site throughout
the four GaMD simulations. Peptide 2 reached the native
conformation within ∼10, ∼90, ∼120, and ∼170 ns in the
four GaMD simulations and stayed tightly bound during
the remainder of the simulations. In comparison, Peptide 3
exhibited higher fluctuations and sampled the near-native
conformation transiently during the GaMD simulations
(Figure 2C). Nevertheless, the minimum RMSDs of peptide
backbone compared with X-ray structures were identified to
be 0.20, 0.22, and 0.73 Å for the three peptides, respectively
(Figures 2A–C).

Furthermore, GaMD simulation snapshots of the peptide
conformations were clustered using the backbone RMSDs
relative to the X-ray structures. This procedure was similar
to analysis of the peptide docking poses. The 10 top-ranked
clusters of peptide conformations with the lowest free energies
were obtained. The 1st top-ranked cluster exhibited peptide
backbone RMSDs of 0.94 and 0.61 Å for Peptides 1 and 2,
respectively (Figures 1D–E and Table 1). For Peptide 3, the
3rd top-ranked cluster showed the smallest peptide backbone
RMSD of 2.72 Å (Figure 1F and Table 1). According to the
CAPRI criteria (Janin et al., 2003), structural predictions for
Peptides 1 and 2 were of sub-angstrom high quality and
medium quality for Peptide 3. Therefore, GaMD simulations
significantly refined docking conformations of the three peptide-
protein complex structures. The simulation predicted bound
conformations of the peptides were in excellent agreement with
experimental X-ray structures with 0.6–2.7 Å in the peptide
backbone RMSDs. In comparison, docking poses of the three
peptides obtained from PeptiDock showed RMSDs of 3.3–4.8 Å
(Table 1).
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FIGURE 1 | Docking poses (red) of three peptide motifs obtained using PeptiDock are compared with X-ray structures (green): (A) Peptide 1 “PAMPAR”, (B) Peptide 2
“TIYAQV,” and (C) Peptide 3 “RRRHPS”; Binding poses (red) of three model peptides obtained using the “PeptiDock+GaMD” are compared with X-ray structures
(green): (D) Peptide 1, (E) Peptide 2, and (F) Peptide 3.

TABLE 1 | Comparison of 10 top-ranked clusters of three model peptides using the PeptiDock+GaMD approach.

System Quantity Cluster ID

1 2 3 4 5 6 7 8 9 10

Peptide 1a Peptide backbone RMSD (Å) 0.94 2.79 3.10 2.78 3.62 4.04 6.27 4.68 7.48 –

PMF (kcal/mol) 0.00 3.45 3.36 3.69 3.81 4.51 3.54 5.37 5.63 –

Peptide 2 Peptide backbone RMSD (Å) 0.61 3.22 4.58 5.85 4.15 5.86 5.75 6.29 6.48 5.16

PMF (kcal/mol) 0.00 1.38 1.47 0.91 1.67 2.03 3.00 3.07 3.23 2.85

Peptide 3 Peptide backbone RMSD (Å) 4.51 7.11 2.72 9.29 7.48 11.94 9.84 4.23 8.21 8.02

PMF (kcal/mol) 0.00 0.27 0.65 0.74 1.91 2.21 0.99 2.14 1.46 1.60

aOnly nine clusters were obtained for Peptide 1 from the GaMD trajectories and thus there were no RMSD or PMF values (–) for cluster 10.

Peptide Binding Mechanism Revealed
From GaMD
Free energy profiles were calculated from the GaMD simulations
using the protein and peptide backbone RMSDs relative to the
bound X-ray structures as reaction coordinates. For Peptide 1,
only one low-energy minimum was identified near the native
bound state (Figure 2D). This was consistent with the clustering
result that the peptide backbone RMSD of the 1st top-ranked
cluster was only 0.9 Å.

For peptide 2, two low-energy minima were identified,
corresponding to peptide backbone RMSDs of 0.5 and 4.2
Å, respectively (Figure 2E). As described above, the binding
of Peptide 2 induced a significant conformational change in
the protein loop of residues 67–74 (Figure 1B). Thus, the
loop backbone RMSD and peptide backbone RMSD relative
to the bound X-ray structure were also used as reaction
coordinates to compute another two-dimensional free energy
profile (Figure 3A). The protein loop was highly flexible,

Frontiers in Molecular Biosciences | www.frontiersin.org 5 October 2019 | Volume 6 | Article 112

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


Wang et al. Modeling of Peptide-Protein Binding

FIGURE 2 | Time courses of peptide backbone RMSD obtained from four 300 ns GaMD simulations on (A) Peptide 1, (B) Peptide 2, and (C) Peptide 3. 2D potential
of mean force (PMF) regarding the peptide backbone RMSD and protein backbone RMSD for (D) Peptide 1, (E) Peptide 2, and (F) Peptide 3. The black stars indicate
the initial binding poses obtained using PeptiDock.

sampling a large conformational space. The loop backbone
RMSD ranged from ∼0.2–∼8.0 Å. This loop sampled two low-
energy conformations, including the “Open” (bound) (RMSD
< 1 Å) and “Closed” (free) states (RMSD ∼3–6 Å) (Figure 3).
Compared to the “Open” state, the “Closed” loop moved closer
to the core domain of protein (Figure 3B). GaMD simulations
successfully captured the conformational change of this loop.
The peptide and protein loop accommodated each other to form
the final bound conformation (Figure 3), suggesting an “induced
fit” mechanism.

For Peptide 3, GaMD sampled a broad low-energy well,
centered at the ∼4.3 and ∼1.0 Å RMSDs for the peptide
and protein backbone relative to the bound X-ray structure
(Figure 2F). Overall, this peptide-protein complex underwent
high fluctuations, visiting a large conformational space.
Nevertheless, GaMD simulations sampled the native binding
pose of Peptide 3, for which the peptide backbone RMSD
decreased to ∼1 Å at ∼60 ns and 160 ns during one of the
GaMD production runs (Sim1) (Figure 2C). In contrast to
binding of Peptide 2 that involved induced fit of the protein
receptor, binding of Peptides 1 and 3 did not induce significant
conformational change of the receptors.

Effects of the Terminal Residue Charges on
Peptide Binding
In addition to the neutral terminus model as described
above, we simulated another model of the three peptides
with zwitterion terminal residues that were charged. Compared

with the neutral terminus models, larger fluctuations were
observed in the zwitterion terminus models of the three peptides
(Figures S2–S4). For Peptides 2 and 3, their backbone RMSDs
could reach large values of ∼40 and ∼20 Å, respectively.
These results suggested that the peptides could dissociate from
the initial near-native bound pose obtained from docking.
Furthermore, 10 top-ranked clusters of peptide conformations
with the lowest free energies were also calculated through
structural clustering and energetic reweighting (see Methods
for details). For Peptide 1, the 1st top-ranked cluster exhibited
the smallest backbone RMSD of 1.22 Å relative to the X-
ray structure (Figure S5A and Table S1). The 2nd top-ranked
clusters exhibited the smallest backbone RMSDs of 0.62 and
3.88 Å for Peptides 2 and 3, respectively (Figures S5B,C and
Tables S2–S3). In summary, peptides with zwitterion terminal
residues underwent higher fluctuations and the simulation
predicted bound conformations deviated more from the native
X-ray structures compared with the neutral terminal models.

Improved Sampling Efficiency of GaMD
Compared With Conventional MD
In addition to GaMD simulations, another set of cMD
simulations of the same lengths were performed for comparison
in their sampling efficiency to refine peptide binding
conformations. The peptides were simulated with neutral
terminal residues. Compared with GaMD, cMD needed typically
longer simulation time to refine the binding mode of Peptide 1
(Figure S6A). The cMD mostly failed to refine binding poses of
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FIGURE 3 | (A) 2D PMF calculated for binding of Peptide 2 regarding RMSDs of the peptide backbone and protein loop (residues 67–74) relative to the X-ray structure
(PDB: 1D4T). (B) Representative conformation of “Closed” state (blue) in compared with initial conformation from “PeptiDock” (red) and X-ray structure (green).

Peptides 2 and 3, for which RMSD decrease was not observed in
3 out of 4 cMD simulations of Peptide 2 (Figure S6B) and all 4
cMD simulations of Peptide 3 (Figure S6C). The 1st top-ranked
cluster exhibited peptide backbone RMSD of 0.96 Å for Peptide
1 (Table S1). For Peptide 2, the 2nd top-ranked cluster showed
the smallest peptide backbone RMSD of 2.79 Å, suggesting a
medium-quality model similar to the docking pose was obtained
(Table S2). For Peptide 3, the 6th top-ranked cluster showed
the smallest peptide backbone RMSD of 4.68 Å, being closely
similar to the PeptiDock result (Table S3). Therefore, cMD was
significantly less efficient in refining docking poses of peptides
compared with GaMD.

DISCUSSION

We have demonstrated that GaMD can successfully refine
PeptiDock docking poses, and thus established the possibility
of PeptiDok+GaMD combination to predict peptide-protein
complex structures and explore the peptide binding mechanism.
Three peptides with different difficulty levels were selected as
model systems. Peptide 1 was the easiest one as the peptide is
rigid and there was no conformational change in the protein
during peptide binding. Both Peptides 2 and 3 were challenging
for predicting bound conformations accurately. The binding
of Peptide 2 involved a significant structural rearrangement of
the residue 67–74 loop in the protein. Peptide 3 with dense
residue charges proved difficult for both docking and GaMD
simulations. Nevertheless, the GaMD refinement achieved high
quality models for both Peptides 1 and 2, and medium quality
prediction for Peptide 3. This approach showed promise to be
widely applicable for other peptide-protein binding systems.

It is difficult for the current docking programs to account
for large conformational changes of proteins during peptide
binding (Ciemny et al., 2018). Even in the flexible docking

calculation, only movements of protein side chains are often
taken into account. This raised a challenge in the modeling of
Peptide 2. On the other hand, cMD simulations could account
for flexibility of the peptide and protein and had been applied
to refine docking poses of peptides in proteins (Ben-Shimon and
Niv, 2015; De Vries et al., 2017). However, cMD could suffer
from insufficient sampling and limited simulation timescales.
Indeed, cMD is significantly less efficient in refining docking
poses of the peptides compared with GaMD, especially for
Peptides 2 and 3. Thus, the GaMD enhanced sampling method
has been used in this study. Remarkably, GaMD effectively
captured the loop movement of Peptide 2 (Figure 3) and greatly
refined the peptide docking poses (Figure 1E). In addition, high-
performance GaMD simulations were performed using AMBER
18 on the GPUs. With NVIDIA Pascal P100 GPU cards, each of
the 300 ns GaMD simulations took about 38.1, 43.5, and 53.2 h
for Peptides 1, 2 and 3, respectively.

In summary, PeptiDock+GaMD has been demonstrated on
predicting the peptide-protein complex structures and revealing
important insights into the mechanism of peptide binding to
proteins, using three distinct peptides as model systems. In the
future, all top-10 models of the ClusPro PeptiDock will be refined
with GaMD and a larger number of protein-peptide systems will
be evaluated systematically. Furthermore, the effects of different
force fields (e.g., CHARMM36m) and solventmodels (e.g., TIP4P,
implicit solvent, etc.) (Kuzmanic et al., 2019) are to be further
investigated. Since excellent performance was obtained using the
CHARMM19-based force field in the previous study of protein-
peptide docking with ClusPro PeptiDock (Porter et al., 2017), we
continued to use it as implemented in the ClusPro PeptiDock
server for docking calculations in the present study. For
refinement of the docking poses with GaMD, because AMBER18
was applied for running the simulations, the widely used AMBER
ff14SB force field was selected instead. Nevertheless, it might be
better to use newer and the same force field for different stages
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of the modeling protocol, which will be tested in future studies.
Development of novel protocols to increase the accuracy of
peptide-protein structural prediction will facilitate peptide drug
design. Advances in the computational methods and computing
power are expected to help us to address these challenges.
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