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Large-scale conformational changes are essential to link protein structures with their
function at the cell and organism scale, but have been elusive both experimentally and
computationally. Over the past few years developments in cryo-electron microscopy
and crystallography techniques have started to reveal multiple snapshots of increasingly
large and flexible systems, deemed impossible only short time ago. As structural
information accumulates, theoretical methods become central to understand how
different conformers interconvert to mediate biological function. Here we briefly survey
current in silico methods to tackle large conformational changes, reviewing recent
examples of cross-validation of experiments and computational predictions, which show
how the integration of different scale simulations with biological information is already
starting to break the barriers between the in silico, in vitro, and in vivo worlds, shedding
new light onto complex biological problems inaccessible so far.

Keywords: conformational change, proteins, molecular dynamics simulation, coarse-grained (CG) methods,
structural ensemble

CONFORMATIONAL CHANGES: LINKING SHAPE AND FUNCTION

Protein structure and dynamics are essential to understand living organisms at the molecular
level. Already 60 years ago Feynman envisioned that life is, roughly speaking, not only about
atomic organization, but also about the “jiggling and wiggling of atoms” (Feynman et al., 1963).
The central paradigm of structural biology stated that the 3D-fold of a protein is encoded in the
sequence (Dill and Chan, 1997; Wright and Dyson, 2015); the explosion of structural data in the
past decades has dramatically expanded this classical view, confirming Feynman’s prediction. Far
from being static structures, it is now clear that proteins rather behave as living entities (Henzler-
Wildman and Kern, 2007), ever-changing on temporal and spatial scales spanning several orders
of magnitude: from local loop fluctuations in enzyme active sites (Aglietti et al., 2013; Pal et al,,
2016) to concerted beta-sheets motions (Fenwick et al., 2014) or large-scale allosteric motions in
transmembrane receptors (Bugge et al., 2016). Importantly, growing evidence indicates that these
large conformational changes are intrinsically encoded in the overall 3D-shape (Bahar et al., 2010),
and that external stimuli -binding, post-translational modifications, electrochemical gradients,
etc.—just drive these “natural” motions further to trigger output responses. Signal transduction,
membrane transport or synaptic communication, almost every cell process relies on switches that
cycle between distinct states to allow for bioregulation (Figure 1A). The way that proteins change
to sense and respond to such stimuli is therefore central to connect the micro-, meso-, and macro-
scales in biology. However, their elucidation from atomic “jiggling and wiggling” is far from trivial.
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During the past decade, structural determination techniques
have made incredible progresses in resolving structures of
increasing complexity and flexibility. Currently, high-throughput
time-resolved X-ray crystallography (Levantino et al., 2015;
Neutze et al., 2015; Ourmazd, 2019), cryo-Electron Microscopy
(cryo-EM; Nogales and Scheres, 2015; Murata and Wolf,
2018; Shoemaker and Ando, 2018), and Nuclear Magnetic
Resonance (NMR; Baker and Baldus, 2014; Jiang and Kalodimos,
2017; Opella and Marassi, 2017), together with complimentary
techniques like Small Angle X-ray Scattering (SAXS; Vestergaard,
2016), Forster Resonance Energy Transfer (FRET; Okamoto
and Sako, 2017), double electron-electron resonance (DEER;
Jeschke, 2012), mass spectrometry (Kahsai et al, 2014) or
fluorescence microscopy (Lewis and Lu, 2019) are allowing
to resolve and gain dynamic information from extremely
challenging systems. Despite such advances, the experimental
study of protein transitions is still demanding. A complete
understanding of equilibrium dynamics requires sampling both
the structure space available and the underlying free-energy
landscape (FEL; Frauenfelder et al., 1991; Zhuravlev and Papoian,
2010a; Nussinov and Wolynes, 2014; Roder et al., 2019) along
its relevant dimensions (Figures 1B,C). Ideally, a completely
rational and quantitative FEL characterization should stem from
first principles, for example, using methods like Molecular
Dynamics (MD; Karplus and McCammon, 2002; Orozco, 2014),
in which Newton’s equations are integrated over time for an
atomistic model of the system based on physical potentials.
In practice, atomistic-level sampling of the functional FEL of
biomolecules poses by itself a huge conceptual and technical
problem in silico. Collective rearrangements and allosteric events
in proteins can involve scales around ms-is and up to 10%A.
Note that this is far beyond what classical MD can address in
terms of time and size: roughly two orders of magnitude larger
than average simulated interatomic distances (~1-10A), and up
to 9-12 orders of magnitude larger than the smallest simulated
timestep (fs oscillations) (Sweet et al., 2013). Importantly,
functional transitions often occur in this blurred frontier between
theory and experimentation.

Scalable codes, graphic processing units (GPUs),
parallelization and optimized simulation algorithms (Pierce
et al., 2012; Sweet et al., 2013; Kutzner et al., 2015; Pall et al.,
2015; Pouya et al, 2017) are however making increasingly
feasible to simulate systems with millions of atoms for few us,
or even whole bacterial cytoplasms in the submicrosecond range
(Yu et al,, 2016). Still, for most proteins, these timescales cover
a small part of the structural landscape, and longer simulations
are only accessible with special-purpose supercomputers like
Anton (Shaw et al, 2009; Dror et al, 2012). Apart from
these technical aspects, there is a fundamental “sampling
problem,” not efficiently addressed by long simulations:
transition paths in a multidimensional landscape are intrinsically
stochastic—there are multiple possible transition routes, subject
to random fluctuations that unpredictably push over energy
barriers. Multiple evidences indicate that the way in which
the configuration space is sampled is thus more critical than
simulation length. For example, while in ps-long MD, full
transitions are still rarely observed, in certain conditions e.g.,

upon relaxation after removing ligands (Nury et al., 2010;
Calimet et al., 2013; Degiacomi, 2019) or introducing mutations
(Smolin and Robia, 2015; Orellana et al., 2019b) they can occur
in significantly shorter times. Similarly, coarse-grained (CG)
methods like Elastic Network Models (ENMs; Mahajan and
Sanejouand, 2015), are also capable to predict with striking
accuracy, just from the overall shape of a protein, not only
the conformational changes observed experimentally but also
entire sequences of on-pathway intermediates (Orellana et al.,
2016). This suggests that large-scale motions like those defining
protein functional FELs may be better understood as collective,
supra-atomistic and higher-scale phenomena. Whatever the
theoretical framework chosen to explore this issue, the validation
of in-silico predicted mechanisms is becoming a central question,
as quantitative analysis become essential to rationalize the
growing dynamical information from techniques like cryo-EM
(Frank, 2018; Bonomi and Vendruscolo, 2019).

Let’s now imagine the reader wants to know how a series of
conformations for a given protein are related, to get insight into
some biological mechanism. It is appropriate then to ask: Can
in silico methods really predict conformational transitions? Have
such in-silico transitions been validated and how? This review
is intended to provide the non-specialist with some answers to
these questions, first raised by Weiss and Levitt (2009). On the
first part (Table 1), we will briefly review theoretical methods to
predict transition pathways, focusing on the two most common
approaches to explore the FEL between two states: either increase
atomistic MD sampling (Maximova et al., 2016) or coarse-
grain the model of the system (Zheng and Wen, 2017). On the
second part (Table 2), we will discuss recent examples from our
group and others attempting cross-validation between theory
and experiments in this context. This review does not aim to
provide an in-depth description of specific methods which can
be found elsewhere (Bernardi et al., 2015; Maximova et al., 2016;
Mori et al., 2016; Zheng and Wen, 2017; Harpole and Delemotte,
2018). We rather intend to provide general readers, and specially
experimentalists, with a broad overview of the most accessible
approaches to explore a transition for a typical protein, along with
possible validation strategies. Our goal is to help the reader grasp
the current potential of in silico methods to explain biological
phenomena from microscopic scales, and the exciting boundaries
we are reaching.

FROM STATIC SNAPSHOTS TO
MULTI-STATE STRUCTURAL ENSEMBLES

Since the first structure was determined by X-ray crystallography
in the late 50s (Kendrew et al.,, 1958), the number of protein
structures deposited every year in the Protein Data Bank
(Berman et al., 2000) has been growing exponentially, from
a few dozens in the 90s up to over 10,000 structures/year
in the past 2 years. As of 2019, we know around 140
thousand native-like protein structures, with resolutions as low
as 0.5A. For a majority of them however, the conformers
solved represent the equilibrium end-structures along their
functional cycles, typically composed of at least two different
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FIGURE 1 | Large-scale conformational changes and different scale sampling methods. (A) Three examples of transitions of different scales linked to biological

function: left, large-scale domain rearrangement in EGFR upon ligand binding; center, rearrangement of tandem repeats in sugar porters; right, cooperative pentamer

motions in pentameric ligand-gated ion channels. The majority of conformations trapped by structural techniques correspond to the extreme, lowest-energy states of
(Continued)
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FIGURE 1 | biological cycles. (B) Experimental conformational landscapes for the hinge-bending transition of the Ribose Binding Protein (RBP) as computed from
Principal Component Analysis: the open to closed RBP conformational change upon ribose binding (Left); RBP conformational landscape and eBDIMS
coarse-grained (CG) transitions (Center) as projected onto the PCs derived from the 9 solved structures (Right). Note how eBDIMS paths approach the sequence of
experimental intermediates. (C) Comparison of sampling strategies: NMs and path-finding CG-methods (Left); atomistic MD unbiased (500 ns from each unbound
state) (Center) and 1 ps-biasing to the closed state (Right). Note how the first NM derived from both RBP end-states (Left) points to the experimental intermediates;
note also how eBDIMS paths (gray) roughly follow the MD/X-ray sampled area. Adapted by the author with CC BY license from Orellana et al. (2016).

TABLE 1 | Summary of common in silico methods to explore protein conformational changes ('CV-based, ~only for setup/short run).

Goal Methodology Approach Variants Examples Web server
Transition Molecular Conventional MD - - http://www.charmm-gui.org/?doc=
Ensembles Dynamics input **
http://mmb.irbbarcelona.org/MDWeb/ **
Long timescale MD Special computer Anton
architectures -
GPUs -

Path- Geometric
generation morphing

MA-path finding

CG-path finding

Hybrid methods

Enhanced sampling

Stereochemical
restraints

Step-wise generation of
transition path

Simplified protein
representation

Specialized algorithms
System coarse-graining

Multi-replicate methods

Directed sampling

FEL modification

Linear interpolation
Rigid-body interpolation

Geometric targeting
Robot motion planning

Perturbation methods
Chain-of-states

Iterative NMA
Simulations (MC, BD)

Pulling and minimization

Long-timestep
MARTINI simulations

Replica-exchange

Weighted ensemble

Essential dynamics

Dynamic importance sampling®
Adaptive sampling (MSM

and others)*

Accelerated MD (aMD)
Umbrella sampling (US)*
Metadynamics*, MSM-MTD

MolMovDB

FATCAT

FRODA

Probabilistic roadmap
algorithms, etc.

Steered MD*, Targeted MD*
String method*, Nudged
elastic band*

iMODS

NMSIMs

CABS-flex

dvD

eBDIMS

Climber

http://molsim.sci.univr.it/mangesh/
index.php **
http://cgmartini.nl/index.php/322-
charmm **

http://www2.molmovdb.org/

http://fatcat.godziklab.org/

http://www.charmm-gui.org
http://molsim.sci.univ.it/mangesh
http://biocomp.chem.uw.edu.pl/
CABSflex2/index
http://mmb.irbbarcelona.org/GOdMD/
https://ebdims.biophysics.se/

meta-stable states (Figure 1A): active/inactive, bound/unbound,
open/closed, etc. For such average proteins (Figure 1B), the
native apo state frequently populates the deepest basin and
spontaneously samples another of comparable or reduced
depth, favored by stimuli like binding, post-translational
modifications, etc. that shift the population (Nussinov and
Wolynes, 2014). Structural determination techniques usually
trap conformations near one of such low-energy basins, while
the short-lived intermediates connecting them—which can be
key to grasp mechanisms (see e.g., Machtens et al., 2015;
Orellana et al., 2019b)—are often elusive both experimental
and computationally.

To explore the conformational space, structures are typically
solved in multiple conditions e.g., introducing mutations,
modulating pH, ions, or complexing with molecules—from
ligands to antibodies, affibodies, or small drugs. This contributes
to enormous redundancy in the PDB, but at the same time, it is a
powerful approach to catch intermediates along transitions. For
a growing number of intensely studied proteins the multitude of
conditions that has been used to determine their 3D-structures
has gradually covered the entire conformational landscape.
Especially cryo-EM is allowing to routinely obtain protein
snapshots in multiple states with each data deposition [see e.g.,
the Glycine Receptor (GlyR; Du et al, 2015) in Figure 1A]

Frontiers in Molecular Biosciences | www.frontiersin.org 4

November 2019 | Volume 6 | Article 117


http://www.charmm-gui.org/?doc=input
http://www.charmm-gui.org/?doc=input
http://mmb.irbbarcelona.org/MDWeb/
http://molsim.sci.univr.it/mangesh/index.php
http://molsim.sci.univr.it/mangesh/index.php
http://cgmartini.nl/index.php/322-charmm
http://cgmartini.nl/index.php/322-charmm
http://www2.molmovdb.org/
http://fatcat.godziklab.org/
http://www.charmm-gui.org
http://molsim.sci.univ.it/mangesh
http://biocomp.chem.uw.edu.pl/CABSflex2/index
http://biocomp.chem.uw.edu.pl/CABSflex2/index
http://mmb.irbbarcelona.org/GOdMD/
https://ebdims.biophysics.se/
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles

510" UISIONUOL MMM | S8OUSIOSOI JBINOBIOA Ul SIORUOIH

/11 8oy | 9 8WN[OA | 6102 J8quIeAoN

TABLE 2 | Examples of cross-validation of in silico-predicted properties with experiments to specifically probe conformational changes.

System Simulation MD observation and hypotheses Observables Experimental validation References
technique
Heterotrimeric ws-Long MD Spontaneous opening/closing of Interdomain distances DEER spectroscopy confirms multiple peaks for inter Dror et al., 2015
Ga-GDP Mutant simulations Ga-GDP in absence of GPCR domain distance distributions with spin labels
Domain separation disrupts the Nucleotide-exchange rates Fluorescence GTP-binding kinetics of a G-protein
GDP-site facilitating nucleotide release tether construct that restricts domain separation slows
down nucleotide exchange
EAAT Essential dynamics Substrate transport intermediate forms Anion currents Trp-scanning mutagenesis and fluorescence Machtens et al.,
MD the anion-selective conduction pathway quenching of predicted pore-forming residues confirms 2015
their interactions with anions
Single channel conductance and anion selectivity of
mutations of pore-lining residues
Importin sub-ps MD Spontaneous transition toward Intramolecular distances FRET of a dual-fluorophore labeled importin confirms Halder et al., 2015
extended conformations in water, and contraction in hydrophobic environment
compaction in apolar environment
SemiSWEET ws-Long MD Spontaneous transition from 3D-structure of previously Crystallographic validation with structure of a mutant in Latorraca et al.,
outward-open to inward-open state, unobserved inward-open state the inward-open state 2017
through an occluded intermediate
Transport activity Alanine mutagenesis of key residues in the extra- and
intra-cellular gates and the sugar binding pocket
Arrestin us-Long MD Motions at the two GPCR-binding Separation between labels at the Mutagenesis Latorraca et al.,
interfaces (gate-loop and C-loop) are binding interfaces Fluorescence spectroscopy 2018
allosterically coupled via interdomain
twisting
GLIC ws-Long MD Potentiation in Propofol-sensitive lon currents Electrophysiology with voltage-clamp Heusser et al.,
Mutant simulations mutations is caused by conformational Mutagenesis 2018
changes expanding transmembrane
binding sites
Enzymatic Accelerated MD Flexibility near the active site mediates Enzymatic activity Increased enzyme rigidity upon inhibitor binding Arqué et al., 2019

micromotors
PTEN

EGFR

Multirun ns-MD

ws-Long MD

catalysis and coupled motion

Conformational change upon
phosphorylation that facilitates binding
to Ki-67

Local intrinsic disorder of the EGFR
kinase

Higher dimerization and
phosphorylation activity of

L834R mutant

Motor activity

Protein-protein interaction

Local disorder

Dimerization

reduces catalytic rates and motor speed

Mutation of the predicted interacting sequences
abrogates binding and biological effects

H/D exchange measurements

Light scattering + BN-PAGE

Ma et al., 2019

Shan et al., 2012

(Continued)
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untested mutations

and, although limited to a few protein families, this is revealing
the first glimpses into structural ensembles that cover nearly-
complete conformational landscapes (Frank, 2018; Bonomi and
Vendruscolo, 2019; Hofmann et al., 2019).

Obtaining multiple snapshots of a protein is however just the
first step to characterize its transitions. The second consists on
understanding their relationships, which also implies identifying
the relevant collective variables (CVs; Kitao and Go, 1999;
Zhuravlev and Papoian, 2010b; Noé and Clementi, 2017) for
each system. This task is comparable to taking multiple pictures
of a moving animal in diverse situations, and then trying to
reconstruct its biomechanics; one needs first to find a way to
measure, classify and organize the images, so that an ordered
sequence can be reconstructed. How are we going to efficiently
describe the system? What are we going to measure to detect
changes from one functional state to another? Fortunately, large-
scale transitions can be often described by a remarkably low
number of CVs (Henzler-Wildman and Kern, 2007). This is
not surprising since, for most proteins, functional movements
are collective: each level of protein motion translates into the
next, creating wider and slower movements. For example, local
atomic vibrations are transmitted via hydrogen bond networks
that make up secondary structures, creating higher amplitude
motions; as shown in Fenwick et al. (2011, 2014) the coupled
movements of interacting atoms in beta-sheet motifs create
collective bending and twisting motions, which propagate to
higher collective movements linked to allosteric regulation.
Another recurring motif in large-scale protein transitions are
open-to-closed motions upon binding (Flores et al., 2006;
Amemiya et al., 2011), which in their simplest version consist in
rigid-body displacements around a cracking hinge (Figure 1A,
left). The hinge region, often located near a binding pocket,
is typically an interdomain linker; in more complex transitions
wider intra/inter-molecular surfaces can reshape as hinges
e.g., in the “rocker-switch” motions between tandem repeats
of solute transporters (Drew and Boudker, 2016; Figure 1A,
center). Linker or interface reshaping propagate across structures
triggering large-scale rearrangements. Usually, such rigid-body
transitions are tracked with ad-hoc defined angles, distances,
etc. However, while for simple hinge-bending transitions, an
angle defined by moving rigid bodies can render a fair
description of the process, the situation changes when systems
undergo complex concerted changes: to accurately describe e.g.,
gating for ion channels like GlyR (Figure 1A, right) typically
demands multiple variables describing extra- and intra-cellular
motion features, much harder to define. In such cases, if the
protein in question has solved structures in different basins,
Principal Component Analysis (PCA; Jolliffe, 2002; Abdi and
Williams, 2010), can provide a “natural” representation of the
conformational landscape (Sankar et al., 2015) in the form of
experimentally-encoded CVs. Compared to other approaches for
semi-automated conformer annotation (e.g., based on machine
learning; Ung et al, 2018), PCA does not need a priori
system-tailored structural descriptors, requiring minimal user
intervention PCA. PC-projections approach was recently applied
in spliceosome cryo-EM to perform conformer classification,
understand its dynamics and obtain a fist assessment of the
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FEL straight from experimental data (Haselbach et al., 2017,
2018). Moreover, PCs from multi-state ensembles behave as
intrinsic complex coordinates that “contain” the heuristic CVs
typically defined for each system. As we will discuss later,
when such ensemble-analysis are combined with path-sampling,
they can illuminate relationships between multiple basins and
accurately assign intermediate states, allowing reconstruction
of the landscape and its transitions into its experimentally-
defined CVs (Figure 2). For example, the Ca>" pump SERCA,
with over 70 structures and at least four different states
along its complex pumping cycle, constitutes an exceptional
example of a multi-basin ensemble where such analysis is critical
to unambiguously assign and order experimental on-pathway
intermediates (see Orellana et al., 2016). Importantly, PCA of
such “structurally-rich” or multi-state ensembles provides a much
needed and stringent test for any modeling technique to explore
protein FELs. In the next two sections, we will review the
two most popular and accessible approaches to perform such
in silico exploration to “connect” experimental basins and “fill
in” the conformational landscape: first, sampling with classical
MD and its many derivatives, and second, path-finding with
computationally simpler methods.

EXPLORING THE LANDSCAPE: SAMPLING
LONG VS. TRICKED

MD simulations, based on the rigorous formalism of molecular
physics, constitute possibly the most accurate and accessible
approach to model protein motions with atomic detail. Although
still an idealized description of reality—proteins diffusing in a
crowded and complex cellular soup—MD is based on a careful
parameterization of covalent and non-covalent forces on the
atomic scale (Beauchamp et al., 2012; Lindorft-Larsen et al., 2012;
Monticelli and Tieleman, 2013). Since the first eye blink 9.2 ps
simulation of the small BPTI (McCammon et al., 1977), MD
has evolved dramatically over the past 40 years up to become
almost a “computational microscope” (Dror et al., 2012): it is
expected that for relatively small systems like GPCRs, MD will
reach the second scale within 5 years (Martinez-Rosell et al.,
2017). Nevertheless, for average protein machines, transitions are
difficult to sample due to inherent stochasticity and high-energy
barriers, involving challenging time and length scales. Although
specialized computers like Anton allow simulations of ever-larger
systems, longer than ever, and have indeed brought novel insights
for key drug targets like GPCRs (Dror et al., 2015), Voltage-gated
channels (Jensen et al., 2012) or Kinases (Shan et al., 2012, 2014),
conformational changes are still hard to catch. As a rule of thumb,
“everyday” simulations invariably require algorithmic “tricks”
to explore transitions with reasonable efficiency. More than
computational power or simulation length, efficient sampling
remains a bottleneck.

The next brief enumeration of MD-strategies to overcome
this problem and explore large transitions should provide the
reader with a clear picture of its complexity and its many
potential pitfalls. Without aiming to be exhaustive (for detailed
reviews see e.g., Bernardi et al., 2015; Maximova et al., 2016;

Mori et al., 2016; Harpole and Delemotte, 2018), the most
common “tricks” (Pietrucci, 2017) to explore transitions are
broadly: first, to speed up or optimize exploration of the FEL,
without modifying it; second, to actually change the FEL to
easily move and jump across its “hills and valleys” (Table 1). In
both cases, the search can be biased or directly pushed along
some a priori “direction,” i.e., a CV. Among the first group are
many multi-replicate methods, well-suited for highly scalable
software implementations thanks to their intrinsically parallel
algorithms. Replica exchange MD (REMD) often called “parallel
tempering” [first applied to MD in Sugita and Okamoto (1999),
reviewed in Ostermeir and Zacharias (2013)], exchanges multiple
trajectories run in parallel (typically at different temperatures)
to escape local minima. Weighted ensemble methods (WEM)
originally developed for simpler Brownian Dynamics (BD;
Huber and Kim, 1996; see also Zuckerman and Chong, 2017),
use quasi-independent trajectories in which individual runs
spawn daughter trajectories upon reaching new “bins” of the
configuration space. Mention apart deserves adaptive-MD, a
general term which includes a wide array of multi-run schemes
aimed to speed up rare events without explicit biasing (Bowman
et al., 2010; Pronk et al., 2011; Doerr et al., 2016). The main
idea behind adaptive-MD is that simulations are guided toward
underexplored FEL regions via iterative on-the-fly analysis;
similarly, WEM partition of the FEL into bins also needs previous
CV-reduction. Therefore, to identify meaningful CVs to check
how simulations proceed becomes central, with risks to generate
overly smooth landscapes or distort transition mechanisms (see
Hruska et al, 2018; Zimmerman et al, 2018). One analysis
approach used to guide sampling in adaptive-MD, are Markov
State Models (MSMs; Pande et al., 2010), a statistical method
to describe dynamics as memory-less transitions between states.
MSMs can infer long-timescale dynamics from sets of shorter
simulations, providing yet another shortcut to the sampling
conundrum (Chodera and Noé, 2014). In contrast to these
costly multi-replicate schemes, biasing methods directly guide
single simulations through relevant CVs. For example, Essential
Dynamics (Amadei et al., 1993; Daidone and Amadei, 2012)
extracts with PCA the “essential” CVs (Essential Modes), which
are used to bias the sampling toward collective motions. In
Dynamic importance sampling (DIMS; Zuckerman and Woolf,
2000; Perilla et al., 2011) a progress variable or CV is used
to select the most productive movement toward the target in
a MC-scheme, while in Temperature-Accelerated MD (TAMD;
Maragliano and Vanden-Eijnden, 2006) temperature is increased
specifically along selected CVs.

A completely different approach is taken in FEL-modifying
approaches like Umbrella sampling (US; Torrie and Valleau,
1977), which introduces harmonic biasing potentials along CV's
in overlapping “umbrella” windows. Accelerated MD methods
(aMD; Hamelberg et al., 2004; Pierce et al.,, 2012) change the
relative height of the basins by adding “boost” potentials when the
system’s energy falls, locally flattening the FEL. In metadynamics
(MTD), free energy wells are filled with “computational sand” to
prevent returning back to previously explored CV-regions (Laio
and Parrinello, 2002; Laio and Gervasio, 2008). The accelerated
weight histogram (AWH; Lindahl et al., 2014, 2018) adaptively
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FIGURE 2 | Integrative multi-scale structural biology. Experimental techniques are solving an increasing number of structures trapped in different energy basins, which
through ensemble-analysis like PCA can yield intrinsic CVs for landscape exploration (Top Center). Transition pathways computed e.g., from CG-models (Right)
connect experimental states allowing for intermediate assignment, provide insights into collective motions and can facilitate identification of key regions for mutational
analysis. Long or enhanced MD simulations sample the configuration space with atomistic detail and allow reconstructing the complete FEL. Integration of
microscopic data on conformational changes generates higher-scale predictions on protein shape, activity and interactions (Bottom) that can be tested through
structural and molecular biology (microscopy techniques, SAXS, functional assays, etc. See examples in Table 2).

bias simulations to fit a target distribution, filling up energy
minima in a similar spirit as MTD (see Figure 1C), while
in conformational flooding (Grubmiiller, 1995), a destabilizing
potential is added to the starting state, lowering the transition
barrier. From all above methods, MTD has been maybe the

most widely applied to study large transitions in a number of
pioneering works, from the opening/closing of kinases (Berteotti
etal., 2009) or actin monomers (Pfaendtner et al., 2009) to flexible
binding and dissociation events (Limongelli et al., 2010, 2012;
Formoso et al., 2015).
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Moreover, all these different approaches can be combined
in virtually infinite ways, giving rise to hybrid methods like
Bias-Exchange MTD (Piana and Laio, 2007), MSM-driven MTD
(Sultan and Pande, 2017), and many others. The main shared
concern for the above listed methodologies is that trajectories
may not accurately reproduce the biologically relevant motions
(i.e., trapped experimentally), since they either modify the way
sampling is done by decreasing its randomness, or directly
change the underlying landscape, which can require re-scaling
to remove biasing. Particularly, the bias-introducing methods
require extra caution to not produce unrealistic high-energy
intermediates (Ma and Karplus, 2002; Ovchinnikov and Karplus,
2012). A tightly connected issue stems from the choice of CVs,
which is critical (Pan et al., 2014) but nevertheless, is frequently
defined ad-hoc for each system. Typically, CVs are defined
in terms of e.g., radius of gyration, distances, angles, rMSDs
changing across sets of trial trajectories, which are expected to
correlate or “describe” the transition. MSMs (Sultan and Pande,
2017), or machine-learning (Chen et al, 2018) can also be
applied to solve this “dimensionality reduction” problem and
identify relevant CVs. Another alternative is to define CVs from
experimental data e.g., NMR chemical shifts (Granata et al., 2013)
or SAXS intensities (Kimanius et al., 2015). In summary, CV
definition is a non-trivial problem. For all these reasons, unbiased
long simulations, which neither perturb the FEL nor require
previous CV knowledge, are often preferred alternatives in many
studies aiming for experimental validation, as we will review in
the last section.

PATH-FINDING METHODS: THROWING
ROPES OVER MOUNTAINS

Apart from the host of methods to enhance MD conformational
sampling, there is another fundamental strategy to explore
protein transitions: to simplify either the simulation algorithm
or the system, in order to obtain just a feasible pathway between
states. Finding transition paths has been compared to “throwing
ropes over mountain passes in the dark” (Bolhuis et al., 2002;
Dellago and Bolhuis, 2007), since indeed, such methods produce
one-dimensional trajectories, like ropes in the conformation
space (Figure 1C). Instead of sampling transition ensembles
covering broad areas of the FEL, the goal of path-sampling
methods is to generate sequences of structures connecting
end-states. Such rope-like transitions, apart of providing first
mechanistic insights, can serve as seeds for further MD (e.g., with
US, MTD or “swarms-of-trajectories” Pan et al., 2008; Maragliano
et al.,, 2014) to reconstruct the FEL.

Very broadly, path-generating methods (Weiss and Koehl,
2014; Table 1) can be also classified into two groups: (i) geometric
morphing algorithms, which generate stereochemically correct
morphs between structures, without any potential function, and
(ii) those methods based on some potential energy, that actually
attempt to approach minimum energy paths (MEPs) connecting
basins. Among the latter, there are path-finding schemes based
on MD inspired by the same ideas of enhanced sampling,
along with a series of CG-methods, which take a entirely

different approach, simplifying description of structures and
their interactions.

The first online tool to compute transition pathways
appeared within the MolMov Database (MolMovDB; Gerstein
and Krebs, 1998; Krebs and Gerstein, 2000), and applied the
simplest possible morphing: a linear interpolation in Cartesian
coordinates, followed by energy minimization. As could be
expected, MolMovDB paths project as perfectly straight lines
in the experimental PC-landscape, and thus do not correspond
at all to realistic transitions (Figure 1C, left). FATCAT also
uses a interpolation of rigid-body motions (Ye and Godzik,
2004). More sophisticated are methods like FRODA (Wells et al.,
2005) or geometric targeting (Farrell et al., 2010), which move
atoms toward the target by enforcing geometric constraints to
keep stereochemistry, while robot motion-planning algorithms
(Cortés et al., 2005; Haspel et al, 2010; Al-Bluwi et al,
2012) exploit analogies between molecular bonds and robot
links to perform fast molecular kinematics. Note that none of
these geometric path-finding methods, which usually generate
atomistic paths thanks to high computational efficiency, aims
to provide a physical approximation to the FEL. This is not
the case for MD-derived perturbation methods (Huang et al.,
2009) like targeted (Schlitter et al, 1994), steered (Izrailev
et al., 1997), or adiabatic MD (Marchi and Ballone, 1999;
Paci and Karplus, 1999), where an MD simulation is directly
pushed to the target by time-dependent potentials along a
CV. In the so-called “chain-of-states” methods (Tao et al,
2012) like the nudged elastic band (Maragakis et al., 2002)
or the string methods (Ren and Vanden-Eijnden, 2005; Ren
et al., 2005; Ovchinnikov et al, 2011), serial images of the
system are minimized to find MEPs; in the “path-method,
a guess path coordinate and two CVs that are functions of
it are introduced to locally explore and optimize pathways
(Branduardi et al., 2007; Bonomi et al., 2008). Although all these
enhanced MD-derived path- sampling methods can be faster
than conventional MD, finding proper CVs, biasing definitions
or initial paths is again critical, and thus their implementation is
not straightforward.

In contrast with the MD-inspired methods, CG-approaches,
more than as alternative methods, should be rather considered
a different way of looking at the sampling problem, literally,
from a more collective scale. Coarse-graining simplifies the
description of a system to capture its behavior with a minimum
of parameters (Tozzini, 2010; Orozco et al, 2011; Saunders
and Voth, 2013). By simplifying both potentials and structure
description (Kmiecik et al, 2016), CG-methods accelerate
computation increasing orders of magnitude the accessible scales;
metaphorically speaking, they would be analogs to approaches
like cryo-EM or SAXS, in which detail can be sacrificed to
gain information from very large or flexible systems. Although
hampered by loss-of-resolution regarding time and chemical
properties, CG-methods can thus provide deep insights into
complex systems behavior, as they distill multidimensional
information to its very essential features. Although there are CG-
force fields like the popular MARTINI implemented into real MD
schemes (Marrink and Tieleman, 2013; Ingdlfsson et al., 2014),
in general CG-models are used in the context of much simpler
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algorithms, typically produce one-dimensional pathways, and are
often available as webservers (Table 1).

To generate quick and efficient transitions, CG path-finding
methods (Zheng and Wen, 2017) use a host of conceptually
diverse protein representations: from a few heavy atoms (e.g.,
CABS model; Jamroz et al., 2013; Kmiecik et al.,, 2016) to
residue beads (typical of ENMs) or rigid domains; and the
same holds true for algorithmic approaches, that span from
matrix diagonalization to MC or BD simulations. The only
thing they have in common is skipping MD computational
limitations, at the cost of losing information about time and
energy. Among CG-methods, ENMs (Chennubhotla et al., 2005;
Bahar et al., 2010) stand out due to conceptual simplicity and
power to predict large changes through Normal Mode Analysis
(NMA; Case, 1994). NMA is a molecular mechanics technique
based on harmonic potentials, which was first used to predict
infrared spectra and soon became also applied to analytically
compute near-equilibrium protein atomic oscillations (Brooks,
1983; Levitt et al., 1985): solving a simple eigenvalue problem,
a vector describing the directions of movement for every atom
could be obtained. Inspired by “beads-and-springs” polymer
models (Flory et al, 1976; Go and Scheraga, 1976), further
coarse-graining of the protein description up to the C-alpha
backbone lead to the minimalist ENM-NMA (Tirion, 1996; Bahar
etal., 1997; Atilgan et al., 2001). Typically, ENMs reduce protein
architecture to a network of Ca-carbons connected by springs,
which model covalent and non-covalent interactions. In spite
of this simplicity, it soon became evident that ENMs can not
only predict residue fluctuations, but are also capable of guessing
with striking precision the directions of large-scale transitions
between e.g., X-ray open and closed pairs (Tama and Sanejouand,
2001). Later work has shown that ENMs reproduce as well
the flexibility from experimental X-ray and NMR ensembles,
or long MD simulations (Rueda et al., 2007; Orellana et al.,
2010; Mahajan and Sanejouand, 2015; Sankar et al, 2018)
and importantly, track the pathways for conformational change
(Orellana et al., 2016; see NM projections, Figure 1C, left).
Therefore, ENMs have been at the core of CG-strategies to
find transition paths; however, being limited to an equilibrium
basin, pathway generation requires iterative deformation along
selected NMs, or implementation into some simulation scheme.
Iterative ENMs range from simple interpolations like NOMAD-
Ref and others (Kim et al,, 2002; Lindahl et al., 2006; Seo
and Kim, 2012) to more complex two-state approaches like
iENM or ANMPathway (Yang et al., 2009; Tekpinar and Zheng,
2010; Das et al., 2014) or MinActPath (Franklin et al., 2007;
Chandrasekaran et al., 2016), which assumes harmonic potential
at the end-states and solves the action minimization problem to
find the crossing points. A common issue for such CG-methods
is that they typically produce stereochemical distortions, which
can be reduced using internal coordinates like in iMODS (Lépez-
Blanco et al., 2014), structure corrections in NMSIMs (Ahmed
et al,, 2011; Kriiger et al., 2012), or conjugate peak refinement
like in the plastic network model (PNM; Maragakis and Karplus,
2005). In general, these approaches share the ENM power to
capture allosteric transitions, but also display a shared weakness:
a trend to reproduce similar one-dimensional paths rather than

random pathway ensembles (Figure 1C, center). One solution to
this problem is using NMs to bias simple e.g., Discrete Dynamics
(dMD) simulations (Sfriso et al., 2012, 2013) in order to obtain a
wider ensemble, although still, mode selection, as CV selection in
enhanced MD schemes, poses a problem. Recently, we proposed
an ENM-driven simulation approach, eBDIMS (Orellana et al.,
2016, 2019a), also performing in parallel a thorough validation of
path-finding algorithms against multi-state ensemble PCA. Based
on a refined ENM force-field (Orellana et al., 2010), eBDIMS
generates paths driven by interresidue distances, using a DIMS-
Langevin scheme with a friction term mimicking solvent. This
avoids unrealistic deformations, at the same time that ENM-
modes are spontaneously sampled, generating random and non-
linear trajectories.

Mention apart deserve hybrid methods like Climber (Weiss
and Levitt, 2009), which iteratively pulls the interresidue
distances adding harmonic restraints to an internal energy
function, based on the atomistic ENCAD atomistic force-field
(Levitt et al, 1995). In our comparative studies we found
that eBDIMS and Climber, starting from entirely different
approaches (CG- vs. atomistic, Langevin integration vs. iterative
pulling/minimization), generate surprisingly convergent, non-
linear, and asymmetric paths in PC-space. Remarkably, these
paths closely overlap with solved experimental intermediates,
which delimit the areas typically sampled by MD (see Figure 1C,
center and right). Overall, our findings strongly suggested that
these non-linear path-finding methods converge to actual MEPs,
which are populated by trapped experimental intermediates. This
raises a important question: how is it possible that such simple
C-alpha based harmonic models like eBDIMS, can predict the
directions of non-equilibrium conformational changes, while
MD often requires powerful computing or enhanced sampling?
On one hand, it has been suggested that dynamical systems
theory assures the conservation of quasi-periodic motions upon
small perturbations (Bastolla, 2014), and thus, ENMs are valid
beyond the equilibrium, and in a wider set of conditions
than was previously thought. On the other hand, the evident
power of CG-methods to predict large-scale transitions and
intermediates trapped by cryo-EM and crystallography, not only
demonstrates such validity, but more importantly, it confirms
that the collective shape-encoded dynamics of proteins, is maybe
an essential determinant driving their underlying biologically
functional transitions. Therefore, CG-methods are not just a
quicker alternative to MD, but can provide an essential tool to
dissect multi-scale problems like protein large transitions (Voth,
2009), specially in schemes where they are integrated with MD
and experiments [see e.g., our recent experience (Orellana et al.,
2019b) briefly discussed below].

CROSS-VALIDATION OF SIMULATIONS
AND EXPERIMENTS: TOWARD
INTEGRATIVE BIOLOGY

Although the “raison d’étre” of most theoretical methods to
model protein transitions is to gain insight into molecular
mechanisms and connect them to biology, attempts to validate
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them are still rare, and thus, any in silico predictions usually
remain in the computational realm as mere hypotheses and are
looked at with suspicion by experimentalists (see Lowe, 2015
critique on Kohlhoff et al., 2014). Traditionally, MD provided
dynamic information on microscopic scales often inaccessible by
experimental probes (e.g., atomic details on hydrogen bonding,
loop fluctuations, etc.), and thus were un-testable. As larger
scale events like conformational changes are simulated, MD can
generate semi-quantitative estimates of observables that can be
more easily measured experimentally. Therefore, current MD can
significantly contribute to the understanding and interpretation
of experimental data; and alternatively, it can also be driven
by experiments (Hollingsworth and Dror, 2018). However, in
comparison with the large efforts concentrated on pushing
the simulation length and sampling, little has been done to
systematize and validate in parallel the information obtained,
especially when approaching the scales in which transitions
happen and propagate over.

Simulating the physical world always involves a degree of
approximation and uncertainty (Berendsen, 2007); but the same
is true for biological experiments. This constitutes maybe the
core reason separating the in silico world from actual biology:
the extraordinary difficulty posed by integration of atomic-level
data on motion with higher-scale experiments, which typically
average out dynamic properties over time and space. Recently,
a thorough critical analysis of factors influencing the agreement
of simulations and experimental data was presented by van
Gunsteren et al. (2018). We will not discuss here related issues
associated to force-field parameterization (Lindorft-Larsen et al.,
2012), convergence of the simulations (Knapp et al, 2011;
Sawle and Ghosh, 2016), prediction of microscopic observables
(Childers and Daggett, 2018), or the multiple caveats of modeling
more realistic e.g., crowded complex environments (Chavent
et al., 2016), electrochemical gradients (Delemotte et al., 2008;
Khalili-Araghi et al., 2013), etc. We aim rather to revisit some
experimental approaches that have recently provided hands-on
direct or indirect validation of in silico predicted large-scale
transitions (Table 2).

While there has been extensive work on force-field
parameterization e.g, benchmarking predictions about
microscopic properties, studies benchmarking the performance
of atomistic simulation methods to sample conformational
transitions are limited and often reduced to small proteins
(Pan et al., 2016). A related issue with MD- benchmarking is
also the abovementioned difficulty to identify relevant CVs for
complex systems, especially when only one of the conformational
states is known. Note that, in contrast to MD, benchmarking
against large-scale changes not only has routinely been done
for CG-methods, but also constituted the main basis for their
parameterization and in consequence, are extremely effective at
predicting transitions along with their CVs. Independent of the
strengths and weaknesses of each method, however, the main
issues to validate transition pathways are essentially two: on
one hand, the scarcity of experimental data about on-pathway
intermediates; on the other, the uncertainty determining
the relevant CVs to monitor changes and their associated
observables. Although a transition pathway should be ideally

supported by direct structural data (either crystallography,
cryo-EM, NMR, or SAXS), this is often difficult and the only
feasible option is to attempt indirect “soft” validation, either
from distance parameters e.g., via single-molecule FRET, FACS,
or from functional assays, which can test predictions about
protein activity, as we briefly review next.

DIRECT PATH-VALIDATION: PROTEIN
DATA BANK ENSEMBLES AND
LANDSCAPES

Classically, in silico pathways like those generated by path-
sampling were evaluated on the sole basis of stereochemical
quality, or by tracking progression along ad-hoc system-
defined coordinates (Das et al, 2014; Seyler and Beckstein,
2014). As mentioned above, the selection of heuristic CVs for
dimensionality reduction is problematic (Seyler et al., 2015), and
in practice, structural quality or progression along user-defined
CVs does not assure that a pathway samples the biologically
relevant routes. Weiss and Levitt clearly stated this question
a decade ago: “Can morphing methods predict intermediate
structures?” (Weiss and Levitt, 2009), proposing for the first time
to benchmark against proteins with at least three distinct states
solved, and asses how close sampled pathways spontaneously
approach known intermediates in terms of rMSD. Although
this procedure definitely poses a more accurate test for in silico
pathways, it cannot assess the feasibility of the movements or
to what extent they correspond to biological motions. Based
on these ideas, we proposed to go beyond two- or three-
state benchmarking by introducing ensemble-level analyses that
consider all structural information available in the PDB for
a given protein, extracting at the same time their intrinsic
CVs using PCA (Orellana et al., 2016). This kind of validation
provides an extremely stringent test to evaluate sampling both by
MD and path-finding algorithms and, thanks to the increasing
amount of multi-state structural data available, we foresee that it
could become widely applicable in the near future with cryo-EM.
As a case apart of “hard” pathway validation, it is necessary to
mention the study on a SWEET transporter by Latorraca et al.
(2017), in which the spontaneous transition toward the inward-
open state was first observed in silico with Anton simulations,
and subsequently validated by determining an X-ray structure
trapped in the same conformation. Although such an approach
is not feasible to routinely validate pathways, it has provided
maybe the strongest evidence to date in favor of the power of
MD simulations to accurately sample the conformational space
of proteins.

SOFT VALIDATION: FROM FRET AND
ANTIBODY BINDING TO FUNCTIONAL
ASSAYS AND ANIMAL MODELS

MD simulations have been traditionally validated and compared
with microscopic information on relatively local protein
flexibility like NMR couplings, B-Factors, etc. During the last
years however, simulations have started to generate predictions
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of a scale that is suitable for experimental validation through
non-structural techniques, finally crossing the boundaries with
molecular biology. A quick glimpse into recent examples of
cross-validation of conformational changes between simulation
and experiments (Table 2) clearly shows how finally, we are
starting to break the barriers separating both, providing new
insights into biomedically relevant systems, including key drug
targets. Functional conformational changes usually involve either
large rigid-body motions of structural elements or more local
unfolding, loop fluctuation transitions. While the first can expose
or bury molecular surfaces for dimerization, interaction with
other proteins or ligands etc., the second may have more
subtle effects on structure-function relationship e.g., at enzyme
active sites. Observing such changes in silico, has given rise to
quantitative or qualitative predictions that mainly fall into two
categories: concerning interactions with other proteins or small
molecules (dimerization, binding), and/or regarding activity—
catalysis, phosphorylation, ion transport, etc.

Maybe one of the first examples attempting soft validation
of in silico transitions aroused from short simulations of
open/closed changes in Hsp70, confirmed by Trp-fluorescence
changes upon ATP binding (Woo et al., 2009). A more complex
validation strategy was taken by Laine et al. (2010), designing and
testing a series of inhibitors against the different conformations
of an allosteric site throughout an in silico transition path. In
a groundbreaking study of the EGF-Receptor (EGFR kinase
domain; Shan et al., 2012), Anton simulations revealed a third
intermediate state characterized by local aC-helix disorder;
further simulations of mutations indicated that they suppress
this disorder to enhance dimerization and activation. In this
case, proving intrinsic disorder and mutation effects required
Hydrogen/Deuterium (H/D) exchange mass spectrometry
(Wales and Engen, 2006), while enhanced dimerization was
shown by Blue Native Gel electrophoresis (Wittig et al., 2006).
Later work by the Shaw group, cross-validating NMR data and
simulations (Arkhipov et al., 2013; Endres et al., 2013), provided
new insights into EGFR transmembrane dimerization. Shorter
ps-simulations by Kaszuba et al. (2015) also led to predictions
about the impact of glycans on EGFR conformation, which were
tested by monitoring the accessibility of glycosylation-sensitive
surface-epitopes. Recently, we combined first a mutational
screening partly based on ENMs, followed by MD simulations
of “dynamically” hot EGFR ectodomain mutations (Orellana
et al.,, 2014, 2019b) in a multiscale CG-MD scheme similar to
that proposed by Saunders and Voth (2013). This approach
highlighted how, as happens often experimentally, mutagenesis
can help to trap intermediate states. In this case, the MD-trapped
transition state, happened to be the target for a therapeutically
relevant antibody, mAb806, which had been long hypothesized
to bind a third ectodomain conformer distinct from the known
crystal structures and enriched in tumor cells. This provided
a rare opportunity to directly extrapolate an MD prediction
to animal models by testing mAb806 therapeutic impact,
with surprising success (Binder et al., 2018; Orellana, 2019);
moreover, the integration of functional experiments, SAXS and
MD revealed unsuspected functional and allosteric convergence
of ectodomain deletions and missense mutations. A similar

example, in which a protein is known to perform a certain
biological activity but the corresponding conformation remains
elusive, is illustrated by the work by Machtens et al. (2015),
which extended previous MTD findings by Grazioso et al. (2012).
In this case, excitatory aminoacid transporters (EAATs) were
known to transport anions but the specific conduction path was
not obvious in end-state X-ray structures. ED simulations of
a prokaryotic glutamate transporter homolog, Glt,,, revealed
a potential channel in an intermediate state (independently
trapped with crystallography), and the predicted pore-lining
residues were confirmed with Trp-scanning mutagenesis,
fluorescence quenching, and electrophysiology. Another indirect
approach to validate MD-predicted changes consists on assessing
intra or intermolecular distances with FRET, used e.g., to
confirm the compaction of importin in apolar solvents (Halder
et al., 2015) or DEER, an approach that allowed to prove the
opening/closing dynamics in heterotrimeric G-proteins (Dror
etal., 2015) and its modulation by nucleotide binding.

Although not the subject of this review, it is worth to
mention the advances on simulations of spontaneous ligand
binding events and protein-protein interactions, which constitute
a special case regarding experimental validation and can
occasionally provide indirect validation for conformational
changes related to binding. For example, either long simulations
or enhanced sampling techniques like aMD or MTD have
captured spontaneous binding of small molecules to protein
kinases or GPCRs (Dror et al., 2011, 2013; Shan et al., 2011, 2012;
Kappel et al., 2015), dimerization in membranes (Lelimousin
et al., 2016), or protein-protein interactions (Ma et al., 2019),
approaching or reproducing crystallographic binding poses or
NMR ensembles. In these cases, the PDB coordinates of known
complexes, together with free energies of binding, drug efficacies,
etc. (Shukla et al., 2015) can provide a hard-validation for MD.

CONCLUDING REMARKS

We have provided a brief overview of the multiple approaches
that are used to explore the conformational landscapes of
proteins and their transitions in silico, and reviewed different
methods used for their validation. On one hand, it becomes
clear that the accumulated structural information and flexibility-
capturing techniques like cryo-EM are revealing first glimpses
on functional landscapes. On the other hand, computational
methods have reached maturity and are entering a stage in
which they can start to contribute to real biology, modeling
longer and larger scales. We have revisited the many approaches
available to explore the FEL of proteins, optimizing hardware,
software and algorithms pursuing the dream of the seconds-long
sampling. From a completely different standpoint, simulations
in crowded cell-like soups of multiple copies of the same
protein, although still in the ns-scale, are already a reality
that holds promise to reveal dynamical complexity in local
microenvironments, providing yet another approach to the
sampling problem (Yu et al., 2016; Feig et al., 2018). We have also
briefly mentioned machine learning algorithms, paradigmatic of
a series of novel fast-developing non-physically based strategies
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which are gaining ground to study transitions, either alone or
in combination with MD or CG-methods: from co-evolution
analysis (Morcos et al., 2013; Sutto et al., 2015; Sfriso et al.,
2016) to cross-correlation, network and community approaches
(Potestio et al., 2009; Morra et al., 2012; Rivalta et al., 2012;
Papaleo, 2015; Negre et al., 2018), neural networks and deep
learning (Ung et al., 2018; Degiacomi, 2019), or integrative
sequence and structural analysis (Flock et al., 2015). These
approaches, not primarily intended to generate conformational
pathways or obtain a physical FEL, have shown their power
to reveal new alternative conformations and dissect allosteric
mechanisms, and thus are also greatly contributing to the
exploration of protein flexibility space. We have reviewed some
of the many flavors of CG- models and algorithms, and how they
can provide low-resolution but stunningly accurate pathways.
Finally, we have discussed recent examples where simulations
have trapped intermediate states before confirmation by X-ray
crystallography (Latorraca et al., 2017), or by in vivo tumor
models (Orellana et al., 2019b). Altogether, the explosion of

structural data, along with the ever expanding toolkit of in
silico methods, computer capabilities and growing integration
between simulations and experiments—driving or being driven
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