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Biological systems respond to environmental perturbations and to a large diversity of

compounds through gene interactions, and these genetic factors comprise complex

networks. In particular, a wide variety of gene co-expression networks have been

constructed in recent years thanks to the dramatic increase of experimental information

obtained with techniques, such as microarrays and RNA sequencing. These networks

allow the identification of groups of co-expressed genes that can function in the

same process and, in turn, these networks may be related to biological functions of

industrial, medical and academic interest. In this study, gene co-expression networks

for 17 bacterial organisms from the COLOMBOS database were analyzed via weighted

gene co-expression network analysis and clustered into modules of genes with similar

expression patterns for each species. These networks were analyzed to determine

relevant modules through a hypergeometric approach based on a set of transcription

factors and enzymes for each genome. The richest modules were characterized using

PFAM families and KEGG metabolic maps. Additionally, we conducted a Gene Ontology

analysis for enrichment of biological functions. Finally, we identified modules that shared

similarity through all the studied organisms by using comparative genomics.

Keywords: transcription factors, gene expression, metabolism, gene co-expression networks, WGCNA

INTRODUCTION

Organisms are dynamic systems that respond to intracellular and extracellular signals through
the regulated expression of their genes. In recent years, a large number of experiments utilizing
high-throughput technologies, including microarrays and RNA sequencing (RNA-seq), have been
performed to analyze this differential expression, allowing the identification of genes co-expressed
in a particular condition. Recent approaches have shown that there are underlying properties that
can only be explained by studying organisms as complex systems (Kitano, 2002; Trewavas, 2006).
In this context, a systematic analysis to understand the gene expression in a particular genome is
through Gene Co-expression Networks (GCNs), where the network G= (V, E) is composed of a set
of nodes (V) that represent the genes and a set of edges (E) that indicate significant co-expression
relationships (Stuart et al., 2003; Junker and Schreiber, 2008). These types of networks maintain
the structural properties of real networks, such as scale-free topology, which means that there are
some highly, connected nodes, namely hubs, and a large number of nodes with a small number of
connections (Van Noort et al., 2004; Tsaparas et al., 2006).

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org/journals/molecular-biosciences#editorial-board
https://www.frontiersin.org/journals/molecular-biosciences#editorial-board
https://www.frontiersin.org/journals/molecular-biosciences#editorial-board
https://www.frontiersin.org/journals/molecular-biosciences#editorial-board
https://doi.org/10.3389/fmolb.2019.00139
http://crossmark.crossref.org/dialog/?doi=10.3389/fmolb.2019.00139&domain=pdf&date_stamp=2019-12-13
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles
https://creativecommons.org/licenses/by/4.0/
mailto:edgardo.galan@iimas.unam.mx
mailto:ernesto.perez@iimas.unam.mx
https://doi.org/10.3389/fmolb.2019.00139
https://www.frontiersin.org/articles/10.3389/fmolb.2019.00139/full
http://loop.frontiersin.org/people/798988/overview
http://loop.frontiersin.org/people/681131/overview


Galán-Vásquez and Perez-Rueda Identification of Co-expressed Gene Modules

In this regard, different algorithms have been developed
to reconstruct GCNs; in particular, Weighted Gene Co-
expression Network Analysis (WGCNA) allows the construction
of networks by considering not only the co-expression patterns
between two genes but also the overlapping of neighbor genes
(Zhang and Horvath, 2005). Thus, highly correlated genes are
clustered into large modules based on similarities in their
expression profiles. These modules are often enriched for genes
that share similar biological functions (Mueller et al., 2017; van
Dam et al., 2018). WGCNA also compares different GCNs to
identify conserved modules between species or cell types (Yang
et al., 2014; Bakhtiarizadeh et al., 2018; Hosseinkhan et al.,
2018). GCNs have been used to identify genes with similar
expression patterns in a set of samples, allowing the prediction
of gene functions at the genome level, the functional discovery
of unknown genes and their associations with diseases (Carlson
et al., 2006; Emilsson et al., 2008; Amar et al., 2013).

To date, two highly conserved processes between the
organisms have been identified: metabolism and gene regulation
(McAdams et al., 2004; Peregrín-Alvarez et al., 2009). Both
processes are mediated by specific proteins; on one hand,
for metabolism, enzymes catalyze the transformation of one
compound to another. On the other hand, gene expression at the
transcriptional level is regulated by proteins called transcription
factors (TFs). In recent works, a compendium of TF families for
different organisms has been identified; and other studies have
revealed promiscuity of different enzymes related to metabolism.
Therefore, due to the relevance of these two types of protein-
encoding genes, it is important to evaluate how the gene
expression patterns are distributed in functional modules.

In this study, a gene co-expression network for 17 bacterial
organisms from the COLOMBOS database using WGCNA was
identified. To do this, the genes were clustered into modules with
similar expression patterns. These modules were exhaustively
analyzed considering the repertoire of enzymes and TFs,
suggesting that these proteins are involved in similar functional
processes. Additionally, to determine what functional classes
are overrepresented in the respective modules, an enrichment
analysis was conducted. This study provides insights into
how regulatory proteins and metabolic maps are expressed in
different organisms.

MATERIALS AND METHODS

Datasets
The gene expression dataset was obtained from the COLlections
of Microarrays for Bacterial OrganismS (COLOMBOS) dataset
and included gene expression data for 17 different bacterial
organisms with 31,982 genes and 11,224 contrasts (http://
colombos.net/). In brief, COLOMBOS is a compendium of
data obtained from microarray and RNA-seq experiments
performed under different experimental conditions. These data
are further curated and normalized, considering the following
principles: (1) raw intensities are preferred as data source, (2)
no local background or mismatch probe correction procedures
are performed, (3) quantile normalization for high-density
oligonucleotide experiments are performed, and (4) logratios
are created for single-channel data according to the condition

contrast definitions and combined with the dual channel
measurements (Moretto et al., 2016).

Thus, we analyzed with principal components analysis (PCA)
the microarray compendia of each species to identify outlier
samples, i.e., those samples with a substantial difference in
expression value compared with other samples. In a posterior
step, the dataset results were inspected via the goodSamplesgenes
function of the WGCNA R package to inspect data for missing
value, and for genes with zero variance, the genes and samples
identified as good genes and good samples were conserved
(Largfelder and Holvarth, 2008). Finally, the total number of
genes and samples considered for each organismwere: Ban: 5,027
genes and 53 samples; Bce: 5,200 genes and 159 samples; Bsu:
4,176 genes and 762 samples; Bth: 4,763 genes and 217 samples;
Cac: 3,777 genes and 218 samples; Cje: 1,572 samples and 103
samples; Eco: 4,321 samples, and 2,415 samples; Hpy: 1,600 genes
and 83 samples; Lrh: 2,731 genes and 49 samples; Mtu: 4,068
genes and 709 samples; Pae: 5,564 genes and 375 samples; Stm:
4,466 genes and 74 samples; Sfl: 3,786 genes and 23 samples; Sme:
6,218 genes and 270 samples; Spd: 1,884 genes and 40 samples;
Ttj: 2,173 genes and 303 samples; and Ype: 3,730 genes and 22
samples (Table 1). The gene expression dataset for each organism
is provided as Supplementary S1.

Construction of Co-expression Networks
The gene co-expression networks were constructed with the
WGCNA program, which allow network construction, module
detection, gene selection, calculations of topological properties,
and data simulation, among others (Largfelder and Holvarth,
2008). First, the scale-free topology properties of biological
networks were added by calculating the power (β) using the
pickSoftThereshold function, see Table 1 for the β value per
organism. Then, we constructed an adjacency matrix for each
bacterium, using signed correlation networks, where nodes with
negative correlation are considered unconnected; as well as,
the pairwise biweight midcorrelation coefficients between all
genes. This correlation method was considered because it is
more powerful than the Spearman and Pearson correlation
methods (Song et al., 2012; Bakhtiarizadeh et al., 2018). Then,
the adjacency matrix was transformed into a Topological
Overlap Matrix (TOM), where a higher TOM value allowed
identification of gene modules for each pair of genes with strong
interconnectivity. Therefore, it was used signed correlation
networks, pairwise biweight midcorrelation coefficients and
β value.

Finally, the genes were clustered into modules with
similar expression patterns by using the average linkage
hierarchical clustering algorithm (flashClust function) and
the cutreeDynamic function was used to cut the branches of
the resulting dendrogram that results in the generation of gene
modules. To do this, it was used 1-TOM as a distance matrix with
a minimummodule size equal to 20. Therefore, the modules with
highly correlated eigengenes were merged, based on a minimum
height of 0.25 (mergeCloseModules function). Each module
was identified with a color, where the gray color is reserved for
uncorrelated genes (Horvath, 2011) and discarded; whereas the
rest of modules were renamed with a number (Table S1).
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TABLE 1 | Overview of dataset and co-expression modules in this study.

Organism (KEGG ID) No. of

samples*

No. of modules Avg Size/SD ** No. of ORFs/% of

coverage

No. of TFs in

modules

No. of enzymes

in modules

Power β***

B. anthracis strain Ames

(Ban)

53 6 837.83/849.14 5,508/91.27 (5,027) 333 802 12

B. cereus ATCC 14579

(Bce)

159 26 200/230.77 5,366/97.9 (5,200) 339 811 12

B. subtilis 168 (Bsu) 762 38 109.89/67.52 4,220/98.96 (4,176) 285 759 12

B. thetaiotaomicron

VPI-5482 (Bth)

217 12 396.9/356.56 4,816/98.9 (4,763) 223 660 10

C. acetobutylicum ATCC

824 (Cac)

218 7 539.57/529.80 3,778/99.99 (3,777) 254 611 14

C. jejuni NCTC 11168 (Cje) 103 20 78.6/54.1 1,654/95.0 (1,572) 35 413 10

E. coli K-12 MG1655 (Eco) 2,415 58 74.5/60.49 4,600/93.9 (4,321) 335 892 14

H. pylori 26695 (Hpy) 83 8 200/157.18 1,600/100 (1,600) 19 350 9

L. rhamnosus GG (Lrh) 49 11 248.27/210.82 2,944/92.96 (2,731) 188 507 12

M. tuberculosis H37Rv (Mtu) 709 29 140.27/173.83 4,096/99.3 (4,068) 245 751 10

P. aeruginosa PAO1 (Pae) 375 20 278.2/347.78 5,570/99.9 (5,564) 468 1,002 12

S. enterica LT2 (Stm) 74 20 223.3/251.72 4,548/98.2 (4,466) 328 896 9

S. flexneri 301 (Sfl) 23 5 757.2/505.02 4,313/88.0 (3,786) 271 776 12

S. meliloti 1021 (Sme) 270 15 414.53/649.46 6,218/100 (6,218) 372 797 12

S.pneumoniae D39 (Spd) 40 9 209.33/134.51 1,911/98.59 (1,884) 98 414 8

T. thermophilus HB8 (Ttj) 303 11 197.54/166.66 2,173/100 (2,173) 92 523 12

Y. pestis C092 (Ype) 22 11 339.09/160.73 3,979/94.39 (3,756) 238 739 14

For each species, we show the final number of experiments analyzed after PCA*, the total number of modules identified, the average size of the modules**, the coverage of genes included

in the modules in relation to the total number of ORFs, the total of TFs and enzymes, and the lowest possible power term where topology approximates fits a scale-free network***.

FIGURE 1 | Bacteria co-expression modules. On the x-axis are shown the modules identified with the WGCNA package, identified with a number. The distribution of

modules is represented in decreasing order, where the y-axis represents the number of genes per module. Each module is made up of a set of genes associated with

TFs (orange), metabolic enzymes (blue), and unclassified genes (green).
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FIGURE 2 | Enrichment of TFs and metabolic enzymes. Modules with a –log10 (P-value) >1.5 (corresponding to a P-value <0.05) were selected as enriched and are

indicated by an arrow on the bar. The red bars represent modules enriched with TF families, and the orange bars represent modules enriched with enzymes.

To perform an analysis of hubs on the modules of interest,
these were exported using the exportNetworkToCytoscape
function and we selected the 100 most highly correlated genes
for each module. The hubs were defined as the most highly
connected nodes within the module, so we calculated the degree
of connectivity for each node (K), which is defined as the
number of edges adjacent to each node (Junker and Schreiber,
2008) (Figure S1). A general version of all scripts were included
in Supplementary S2.

Distribution of TFs and Enzymes
For each genome, we associated the Enzyme Commission
number (E.C. number) using the Kyoto Encyclopedia of Genes
and Genomes (KEGG) database (Kanehisa and Goto, 2000).
Then, each enzyme with an E.C. number was associated with

its respective metabolic map. In a similar manner, for TFs we
used the compendium of TFs predicted by Rivera-Gómez et al.
(2017); assigned from the hiddenMarkovmodel (HMM) profiles.
To determine the abundance and distribution of each dataset, an
incidence rate of the genome and a heatmap for each genome
were determined.

Enrichment Analysis
To evaluate the functional association between the modules and
TFs and enzymes, an enrichment analysis using a hypergeometric
test was conducted. The resulting distribution thus describes the
probability of finding x domains associated with a particular
category in a list of interest k, from a set ofN domains containing
m domains that are associated with the same category. We set
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FIGURE 3 | TF families identified as frequent in the enriched modules. Z-score

hierarchical clustering based on Euclidean distance measure and Ward’s

method for linkage analysis. Each row represents the PFAM and each column

represents the most enriched module for that bacterial species.

statistical significance at a P-value of <0.05. All analyses were
performed in Python (https://www.python.org/).

Similarity Analysis
To determine the similarity degree between the different enriched
modules, orthologous proteins between each pair of genomes
were identified. Orthologs were accepted if they had an e-value
<1e-6, sequence identity >30%, and alignment length >60% of
the individual proteins. Then, the Jaccard index was calculated
for each pair of modules, which is defined as the size of the
intersection that represents the orthologs between each pair of
modules of two organisms, divided by the union size of the
sample sets.

Functional Annotation Analysis
To identify the biological process in each module, we used
the Database for Annotation, Visualization and Integrated
Discovery (DAVID; http://david.abcc.ncifcrf.gov/), which is a
gene functional classification system that integrates a set of
functional annotation tools (Huang et al., 2009).

RESULTS AND DISCUSSION

Construction of Gene Co-expression
Networks
In order to determine which genes share similar co-expression
patterns in bacteria, a set of co-expression networks was inferred
for 17 different bacteria with WGCNA R package (Largfelder
and Holvarth, 2008), based on the information deposited in the
COLOMBOS database (Moretto et al., 2016). We considered
signed networks, because this method takes into account the sign
of the underlying correlation coefficient and it has been shown
that these networks can identify modules with more significant
enrichment of functional groups (Medina and Lubovac-Pilav,
2016; Liu et al., 2018). Based on this approach, the reconstructed
co-expression networks had a coverage of around 90% of the
predicted open reading frames (ORFs) for each of the bacteria
analyzed. In addition, modules inferred showing different sizes,
for instance, Escherichia coli (Eco) contains the highest number
ofmodules with 58, while for Shigella flexneri (Sfl) only 5modules
were identified (see Figure 1 and Table S1 and Figure S2).

It has been described that, i.e., more samples usually lead to
more robust and refined results (Horvath, 2011). However, in
the case of the dataset used in our study, the number of samples
did not reflect the number of Gene Expression Omnibus (GEO)
series used for each bacterium, and this would have influenced
the number of modules identified for each organism, as in the
case of Bacillus anthracis strain Ames (Ban), for which the
samples belonged to 4 GEO series, or Helicobacter pylori 26695
(Hpy), for which the samples belonged to 8 GEO series, while
Salmonella enterica LT2 (Stm) samples came from 16 GEO series.

Highly Enriched Modules in TFs and
Metabolism Terms
Two processes highly conserved between all the organisms are
metabolism and gene regulation, which are mediated by enzymes
that catalyze metabolic reactions and by DNA-binding TFs,
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respectively (Browning and Busby, 2004; Peregrín-Alvarez et al.,
2009). In order to identify if metabolism and regulation-related
genes share similar co-expression patterns, their distributions
into the modules were mapped. Therefore, a collection of TFs,
which were identified by homology from a dataset compendium
of TFs previously characterized together with family-specific
HMM profiles, as well as a compendium of metabolic enzymes
of the KEGG repertoire for each one of the 17 bacteria, was used
to integrate the information for the inferred modules.

We found that both enzymes and TFs are distributed in
almost every co-expression module. This finding is consistent
with previous works onmodules of co-expression of E. coli, where
TFs are distributed in all the modules, which allows them to be
regulated (Sastry et al., 2019). However, there are modules that
have a greater proportion of TFs or enzymes, and this leads us to
think that somemodules may be more relevant than others in the
context of gene regulation or metabolism (Figure 1).

To identify relevant modules that consider those regulatory
mechanisms and metabolism, an analysis of enrichment was
carried out by using a hypergeometric test with the set of TFs
and the enzymes associated with metabolism for each of the
modules (Figure 2 and Figure S3). From this analysis, we found
that most bacteria have an average 2 modules enriched with TFs,
with the exception of E. coli K-12 MG1655 (Eco), which has 11
modules enriched, and S. enterica LT2 (Stm), which does not
contain modules enriched with TFs. On the other hand, bacteria
contain an average of 4 modules enriched for metabolic enzymes;
where E. coli is the only species with more modules, with 17. In
contrast, Yersinia pestis (Ype) does not contain modules enriched
with metabolic enzymes.

The most enriched modules with TFs contain on average
27% of the predicted genes with this function. Meanwhile, the
modules enriched with metabolic enzymes contain on average
19% genes predicted to be related to metabolism in each
organism. Specifically, B. anthracis strain Ames (Ban), H. pylori
26695 (Hpy), and S. flexneri 301 (Sfl) contain around 50% of
all predicted TFs. In the same way, Bacteroides thetaiotaomicron
VPI-5482 (Bth), Clostridium acetobutylicum ATCC824 (Cac),
Lactobacillus rhamnosus GG (Lrh), and Sinorhizobium meliloti
(Sme) modules contain around 30% of the genes associated with
metabolic enzymes.

Based on the modules identified, diverse and interesting
findings emerged, such as the fact that there is at least onemodule
with a high percentage of TFs and enzymes, and this led us
to evaluate if the richer modules also have a preference for a
particular TF family or metabolic maps.

TFs and Metabolism Terms More Abundant
The TFs of each of the highest enrichment modules were
classified using the families described in the PFAM database,
and the z-scores of the frequency of the families were
clustered hierarchically based on Euclidean distance measure
and Ward’s method for linkage analysis. We determined that
the families most frequently present in these modules belong
to Response_reg, LysR (HTH_1), Cro-C1 (HTH_3), TetR_N,
and GntR (Figure 3), and these findings are in agreement with

previous results for families more abundant in bacteria (Perez-
Rueda et al., 2018).

In this regard, the Response_reg family is related to the two-
component systems of bacteria, in which a signal is received
from a sensor protein (i.e., the two components). This family
of regulators allows the organism to adapt to a wide range of
environments, stressors, and growth conditions (Skerker et al.,
2005). Another family identified in the modules corresponds
to TetR_N, which was one of the most abundant within our
study; it is involved in regulating antibiotic resistance, catabolic
pathways, biosynthesis of antibiotics, osmotic stress response and
pathogenicity. These regulators typically function as repressors
(Ramos et al., 2005; Cuthbertson and Nodwell, 2013).

Other families of regulators identified as abundant in the
modules were LysR (HTH_1), a family of TFs involved in
the regulation of a wide variety of processes that includes the
regulation of amino acid biosynthesis and catabolism, stress
responses and cell detoxification (Maddocks and Oyston, 2008);
and Cro-C1 (HTH_3), which is part of the binary switch that
regulates lytic/lysogenic growth of phages by differential binding
to the operator sites (Steinmetzer et al., 2002).

In Bacillus subtilis 168 (Bsu) and Campylobacter jejuni NCTC
11168 (Cje), the abundant families are HxlR, which includes
activators involved in the detoxification of formaldehyde, and
MerR_1, which responds to environmental stimuli, such as
heavy metals, oxidative stress or antibiotics and a subgroup of
transcription activators that respond to metal ions (Brown et al.,
2003). Meanwhile, in B. thetaiotaomicron VPI-5482 (Bth) the
most abundant families are HTH_18, which is related to the
arabinose operon regulatory protein AraC (Gallegos et al., 1993),
and Reg_prop, which is part of a hybrid two-component system
and are a key part of this species’ ability to sense and degrade
complex carbohydrates in the gut (Lowe et al., 2012).

In the same context, the metabolic enzymes were classified
according to the KEGG maps, and the z-scores of the frequency
of each metabolic map were clustered, similar to our groupings
for TF families. In general, we identified that the central
metabolism pathways that includes glycolysis/gluconeogenesis,
the citrate cycle (TCA cycle) and pyruvate metabolism are
expressed independently of the experimental conditions
analyzed, similar to the case for nucleotide metabolism. Another
conserved cluster is related to carbohydrate metabolism
and includes amino sugar and nucleotide sugar metabolism,
starch and sucrose metabolism, galactose metabolism, fructose
and mannose metabolism and pentose and glucuronate
interconversions (Figure 4).

In Figure 4, there are well-defined clusters, such as the
one in B. anthracis str. Ames (Ban) that contains maps
belonging to xenobiotic biodegradation and metabolism of
xenobiotics by cytochrome P450 and to drug metabolism by
cytochrome P450, which is mediated by a class II P450 system
in this organism (De Mot and Parre, 2002). In addition,
in Mycobacterium tuberculosis H37Rv (Mtu) we identified
maps related to glycerolipid metabolism, which is used to
generate glycerols from the host’s fatty acids, the vitamin
B6 metabolic pathway, which is essential for survival and
virulence (Dick et al., 2010), and a nitrogen metabolic pathway
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FIGURE 4 | Metabolic maps more frequent in the enriched modules. Z-score hierarchical clustering based on Euclidean distance measure and Ward’s method for

linkage analysis. Each row represents a metabolic map (KEGG), and each column represents the most enriched module, with E.C. numbers for each species.
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that is essential for growth and virulence of this bacterium
(Gouzy et al., 2014).

In summary, we identified diverse families of TFs and
metabolic maps common to all modules in the organisms
analyzed, suggesting that common regulatory processes
governing a large diversity of metabolic genes expressed under
different conditions, and by consequence the global response
could be similar even when the organisms employ a diverse
repertoire of genes, i.e., not homologous genes. This led us to
evaluate the similarity between these modules.

Metabolism and Similar Regulation
To determine the organisms with similar regulation, we
calculated the Jaccard index between each pair of modules
enriched with TFs, using the number of orthologs shared
between each pair of organisms, additionally each module was
analyzed by means of Gene Ontology using DAVID (Huang
et al., 2009). The Jaccard index matrix was used to build a
circos plot (Figure 5A), showing similar modules between S.
flexneri 301 (Sfl), B. anthracis (Ban), and Y. pestis C092 (Ype),
which are characterized as having genes related to biosynthetic
process, regulation of cellular process and regulation of primary
metabolic processes.

The second group contains Pseudomonas aeruginosa PAO1
(Pae),B. thetaiotaomicronVPI-5482 (Bth),M. tuberculosisH37Rv
(Mtu), Thermus thermophilus HB8 (Ttj), C. acetobutylicum
ATCC824 (Cac), E. coli K-12 MG1655 (Eco), which include gene
related to regulation of cellular and metabolic process, single-
organism localization and cellular process and regulation of
metabolic process. Finally, the third group consists of Bacillus
cereus ATCC14579 (Bce), H. pylori 26695 (Hpy), C. jejuni
NCTC 11168 (Cje), B. subtilis 168 (Bsu), L. rhamnosus GG
(Lrh), Streptococcus pneumoniae D39 (Spd), S. meliloti 1021

(Sme), which have gene related to regulation of cellular process,
single-organism metabolic process and nitrogen compound
metabolic process.

On the other hand, in the modules related to metabolism,
we used the Jaccard index between each pair of modules
enrichment with enzymes to identify the similar modules
(Figure 5B). Based on this approach, we identified that
S. meliloti 1021 (Sme) is a module that contains a high
proportion of orthologs with the other modules, where
genes related to cellular metabolic process, primary metabolic
process, nitrogen compound metabolic process and organism
substance metabolic process were identified. This result could
be associated to the prevalence of genetic redundancy in
this bacterium, an in particular to those genes involved in
a variety of metabolic pathways, including central carbon
metabolism, transport, and amino acid biosynthesis (diCenzo
and Finan, 2015); and the number of genes with some
regulatory mechanisms identified in one of the three replicons,
and the function of regulated genes was found to be in
accordance with the overall replicon functional signature: house-
keeping functions for the chromosome, metabolism for the
chromid, and symbiosis for the megaplasmid (Galardini et al.,
2015).

This group include C. jejuni NCTC 11168 (Cje), B.
thetaiotaomicron VPI-5482 (Bth), S. enterica LT2 (Stm), P.
aeruginosa PA01 (Pae), C. acetobutylicum ATCC824 (Cac), H.
pylori 26695 (Hpy), S. flexneri 301 (Sfl), which are characterized
by genes related to cellular metabolic process, single-organism
cellular process, biosynthetic process and organic substance
metabolic process. Finally, this group includes E. coli K-12
MG1655 (Eco), B. anthracis strain Ames (Ban), T. thermophilus
HB8 (Ttj), B. subtilis 168 (Bsu), M. tuberculosis H37Rv (Mtu), B.
cereusATCC 14579 (Bce), L. rhamnosusGG (Lrh), S. pneumoniae

FIGURE 5 | Circos based in Jaccard index. (A) Circos based on TFs; (B) Circos based on metabolic maps.
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D39 (Spd); these species have gene related to catabolic
process, single-organism metabolic process, and establishment
of localization.

In addition, enriched modules were analyzed to determine
those genes with greater connectivity. To this end, we used
the first 100 nodes that most correlate in each module where
the identified genes had the highest connectivity or highest
node degree, which describes the number of interactions or
edges adjacent to the node (Table S2). Many of the most highly
connected nodes are related to nitrogen compound metabolic
process, biosynthetic process, cellular metabolic process, primary

metabolic process, and single-organism metabolic process,
although in some cases the most important hub genes encode
for hypothetical proteins, which would allow future analysis to
determine their functional role.

From this analysis, in the case of the module 2 enriched
with TFs of S. flexneri 301 (Sfl), the most highly connected
genes were SF2819, an activator of the L-fucose operon from the
DeoR family, and SF2545, a polyphosphate kinase [E.C. 2.7.4.1]
involved in the nitrogen compound metabolic process and
biosynthetic process, respectively; in addition, two hypothetical
proteins, SF1784 and SF3500 were also identified as highly

FIGURE 6 | Co-expression network of S. flexneri. The most highly correlated genes were plotted in Cytoscape (Smoot et al., 2010). The size of the modules

corresponds to their degree of connectivity, while the widths of the edges represent the weights of the correlations, gray nodes do not have an assigned function. (A)

TFs; (B) metabolism modules.

FIGURE 7 | Co-expression network of E. coli. The most highly correlated genes were plotted in Cytoscape (Smoot et al., 2010). The sizes of the modules correspond

to their degrees of connectivity, while the widths of the edges represent the weights of the correlations, gray nodes do not have an assigned function. (A) TFs; (B)

metabolism modules.
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connected genes (Figure 6A). In module 4, that was enriched
with enzymes, the genes with the highest connectivity were
SF2911, which encodes a phosphoglycerate kinase [E.C. 2.7.2.3]
involved in nitrogen compound metabolic process; SF0929,
which encodes an aminopeptidase N [E.C. 3.4.11.2] involved
in the Glutathione metabolism; and SF4274, a NAD(P)H
dehydrogenase (quinone) [EC:1.6.5.2] involved in Metabolic
pathways (Figure 6B). This result correlates with the fact that
glutathione and quinone metabolism play a major role in the
defense against redox cycling-derived oxidative stress (Kelly et al.,
2019), reinforcing the notion that common expression patterns
identified in this work correlates with similar protein roles in
the cell.

In the case of module 7 enriched with TFs in E. coli, we
identified the following genes with the highest connectivity:
ydgJ (b1624), a probable D-galactose 1-dehydrogenase, involved
in single-organism metabolic process (Reed et al., 2003); ribC
(b1662) (for riboflavin synthase), which catalyzes the final step
in riboflavin biosynthesis (Eberhardt et al., 1996); ogt (b1335),
which encodes a methyltransferase enzyme for the repair of
alkylated DNA (Taira et al., 2013); and deoR (b0840), which
is involved in the negative expression of genes related to
transport and catabolism of deoxyribonucleoside nucleotides
(Garces et al., 2008). These highly correlated genes are mainly
involved in biosynthetic processes and nitrogen compound
metabolic processes, as shown in Figure 7A. In this regard,
DeoR and regulated genes have been involved in DNA damage
response by drugs, modifying the nucleotide level modulation
(Sangurdekar et al., 2011), suggesting that b1335 and b0840
are functionally closer. Therefore, the other genes identified
in this module could also participate in a similar response,
however further evidence is necessary. On the other hand, in
module 15, which is enriched with enzymes, the genes with
the highest connectivity were sucB (b0727), sucC (b0728), and
sucD (b0729), which are associated with the citrate cycle, an
important aerobic pathway for the final steps of the oxidation of
carbohydrates and fatty acids (Buck et al., 1986); nuoH (b2282),
nuoI (b2281), nuoJ (b2280), and nuoG (b2283), involved in
the oxidative phosphorylation pathway (Bongaerts et al., 1995)
(Figure 7B).

CONCLUSIONS

In this work, we identified and analyzed modules considered
relevant from a metabolic and regulatory point of view
in a set of bacteria, using a weighted gene co-expression
analysis method. Based on this analysis, we identified some
modules enriched with TFs and metabolic enzymes. In the
case of regulation, we identified TFs from the families
Response_reg, TetR_N, LysR, and HTH_3, which are mainly
related to biological processes, such as biosynthetic processes,
cellular metabolic processes, nitrogen compound metabolic
processes and primary metabolic processes. On the other hand,
the modules enriched with enzymes are associated mainly

with primary metabolic, organic substance metabolic, cellular
metabolic and nitrogen compound metabolic processes. Our
approach also identified genes with similar expression patterns
and involved in similar metabolic or regulatory roles, such
as DeoR and Ogt. In summary, this analysis allowed us to
determine that, despite the diversity of experimental information
available for each organism, these mechanisms are similar in
all of the organisms, and this will allow us to address new
experimental results, such as the use of gene expression data in
metagenomic studies.
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