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Endogenously-arising DNA double-strand breaks (DSBs) rarely harbor canonical

5′-phosphate, 3′-hydroxyl moieties at the ends, which are, regardless of the pathway

used, ultimately required for their repair. Cells are therefore endowed with a wide variety

of enzymes that can deal with these chemical and structural variations and guarantee the

formation of ligatable termini. An important distinction is whether the ends are directly

“unblocked” by specific enzymatic activities without affecting the integrity of the DNA

molecule and its sequence, or whether they are “processed” by unspecific nucleases

that remove nucleotides from the termini. DNA end structure and configuration, therefore,

shape the repair process, its requirements, and, importantly, its final outcome. Thus, the

molecular mechanisms that coordinate and integrate the cellular response to blocked

DSBs, although still largely unexplored, can be particularly relevant for maintaining

genome integrity and avoiding malignant transformation and cancer.

Keywords: DNA double strand break (DSB), Non-homologous DNA end joining, ATM, DNA-PK catalytic subunit,

genome instability

Double-strand breaks (DSBs) are themost devastating lesion that DNAmolecule can suffer. Indeed,
they can cause dangerous chromosomal rearrangements or even cell death if they are not properly
repaired. In general terms, there are two conceptually different pathways to repair DSBs that can be
divided into those that use homologous sequences—either a sister chromatid or another sequence
elsewhere in the genome—as a template in the repair (homologous recombination, HR), and those
that directly rejoin the ends, without any template requirement (Lieber, 2008; San Filippo et al.,
2008; Pannunzio et al., 2018), regardless of whether using minimal (non-homologous end-joining,
NHEJ) or more extensive (microhomology-mediated end-joining, MMEJ) microhomologies to
stabilize the junctions. Despite the general intrinsic diploidy of somatic mammalian cells, HR rarely
uses the homologous chromosome as a template for DSB repair (Johnson, 2000). Consequently,
HR is mostly restricted to late S/G2 phase, when a sister chromatid is available, whereas NHEJ
can operate in any phase of the cell cycle. Besides this global distinction, there are additional
peculiarities of DSB repair mechanisms based on the specific nature of each DNA lesion, specifically
when it comes to the chemical configuration of the broken DNA ends. In this regard, since the HR
will use the information of an intact template for repair (San Filippo et al., 2008), the ends of the
break, both 5’ and 3′, can be extensively degraded without compromising an efficient reconstitution
of the initially lost DNA sequences. In contrast, the chemical modifications of DSB ends, and how
these are solved, are pivotal in the NHEJ process and final repair outcome. It is therefore of great
interest to understand how DSBs harboring complex DNA ends are repaired in the G1 phase of the
cell cycle, during which HR is strongly limited.

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org/journals/molecular-biosciences#editorial-board
https://www.frontiersin.org/journals/molecular-biosciences#editorial-board
https://www.frontiersin.org/journals/molecular-biosciences#editorial-board
https://www.frontiersin.org/journals/molecular-biosciences#editorial-board
https://doi.org/10.3389/fmolb.2019.00153
http://crossmark.crossref.org/dialog/?doi=10.3389/fmolb.2019.00153&domain=pdf&date_stamp=2020-01-10
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles
https://creativecommons.org/licenses/by/4.0/
mailto:fcortes@cnio.es 
https://doi.org/10.3389/fmolb.2019.00153
https://www.frontiersin.org/articles/10.3389/fmolb.2019.00153/full
http://loop.frontiersin.org/people/847543/overview
http://loop.frontiersin.org/people/825383/overview
http://loop.frontiersin.org/people/844587/overview


Serrano-Benítez et al. DNA-End Structure and DSB Repair

THE NHEJ PROCESS

The starting point of the NHEJ process takes place with the
recognition and binding of double stranded DNA ends by
the KU70/80 heterodimer, which occurs in an extraordinarily
efficient manner due to its abundance and its strong avidity for
this type of DNA substrate. DNA-bound KU heterodimer, in
turn, recruits DNA-PKcs to form the DNA-PK holoenzyme, so
that the two DNA-PKcs molecules bound to opposing sides of
the DSB can interact one each other, contributing to synapsis of
broken DNA ends (Meek et al., 2008; Neal and Meek, 2011). The
DNA-PK complex is the main regulator of the NHEJ process,
coordinating the recruitment of downstream NHEJ accessory
factors, such as X-ray cross complementing group 4 (XRCC4),
XRCC4-like factor/Cernunnos (XLF), or Paralog of XRCC4 and
XLF (PAXX), and DNA ligase IV (LIG4), which contribute to
the proper pairing of DSB ends and perform the final ligation
of the break (Kakarougkas and Jeggo, 2014; Ochi et al., 2015;
Conlin et al., 2017). In vertebrates, NHEJ further evolved an end
processing capacity that allows for the repair of complex ends
(e.g., hairpins), and which is also, in part, regulated by DNA-PK,
as will be discussed below.

RELEVANCE OF END STRUCTURE AND
CONFIGURATION DURING NHEJ

It can be claimed that the only essential step of NHEJ
process is the ligation of one of the DNA strands of the DSB
(Waters et al., 2014). During this process, LIG4 activity requires
compatible ends harboring canonical 5′-phosphate and 3′-
hydroxyl termini. However, DSBs often have complex ends with
chemical modifications or structures that do not allow straight-
forward joining of the termini, so they can be considered as
blocked ends (Figure 1). These chemical variations can be sensed
by LIG4 through the disruption of its catalytic cycle (Reid et al.,
2017). Therefore, when DSBs harbor non-canonical chemical
structures at the ends, they must be restored to conventional
5′-phosphate and 3′-hydroxyl termini so that DNA ligation can
take place. There are two conceptually different ways by which
these non-canonical DNA ends can be converted into ligatable
substrates (Figure 1). On the one hand, cells have a variety of
enzymes to directly restore the canonical chemical structure.
Given that this event does not involve any sequencemodification,
it can be simply considered as an “unblocking” process. On the
other hand, under certain circumstances, such as the presence
of complex lesions, unblocking activities may be compromised
or overwhelmed, resulting in DSBs that require additional
“end processing” by the action of nucleases that cleave DNA
sequence from the ends to remove the chemical modifications
(Figure 1). Regarding unblocking, there is a large number of
factors with different enzymatic activities that are available
for this process during NHEJ (Figure 2), such as tyrosyl-DNA
phosphodiesterases 1 and 2 (TDP1 and TDP2, respectively),
polynucleotide kinase (PNKP), Aprataxin, and even KU. This,
in turn, reflects the wide variety of damaged termini that
can arise, as each of these factors removes specific chemical

modifications at DNA ends (Povirk, 2012; Andres et al., 2015).
These unblocking activities are essential in NHEJ, since they
are responsible for facilitating accurate religation of the breaks,
as opposed to the processing of DNA ends that may involve
nucleotide loss or gain and, therefore, sequence modification.
Interestingly, ionizing radiation, which is a common and well-
established source of DSBs, mostly induces blocked termini with
heterogeneous end structures. Damage occurs either directly,
by high-energy particle collision with DNA, or indirectly, when
these particles split water molecules leading to dangerous free
radicals; in both cases this mainly results in breakage of the
sugar backbone, and therefore needs to be processed, necessarily
leading to loss of one nucleotide from the termini (Reisz et al.,
2014).

Another aspect to highlight in NHEJ is the possible
incompatibility among DSBs to be repaired due to the absence
of sequence complementarity of DNA ends. This situation may
occur when DSB ends have small protuberances, either with
5′ or 3′ polarity. The short stretches of single stranded DNA
of these overhangs may be compatible (either fully or partially
complementary sequences) or not. It has been shown that LIG4
can ligate across short gaps or rejoin several incompatible DNA
end configurations that do not share even 1-bp of terminal
microhomology (Gu et al., 2007). For this scenarios, NHEJ also
takes advantage of several processing enzymes that can modify
DNA ends until they become ligatable substrates (Strande et al.,
2012). In this way, single-stranded DNA overhangs (as also may
happen with blunt ends) can be trimmed by nucleases such as
ARTEMIS giving rise to small gaps than can be efficiently filled-in
by specialized X family DNA polymerases (see below) (Mahajan
et al., 2002; Lee J. W. et al., 2004; Ma et al., 2004; McElhinny et al.,
2005; Capp et al., 2007; Lieber, 2010). It is worth noting that non-
complementary DNA ends are indeed the most likely result of
end processing at initially chemically modified structures.

NHEJ: AN ITERATIVE VS A HIERARCHICAL
PROCESS

Although NHEJ is generally considered a single DNA repair
pathway, a wide variety of factors are needed and different sub-
routes can be distinguished depending on the different DSB end
configurations (Pannunzio et al., 2018). In addition, there is
still important debate about how these NHEJ accessory factors
actually operate, and, in this sense, two apparently antagonistic
positions can now be distinguished. On the one hand, some
authors propose that NHEJ factors operate in an iterative way
without an established order (Gu and Lieber, 2008; Lieber, 2008;
Gu et al., 2010). This model highlights the flexibility of the NHEJ
process and explains the diversity of repair products generated
from the same type of DSB. The iterative nature of this process
implies that multiple NHEJ components can act on the same
DSB during multiple consecutive rounds of processing and that
the involvement of factors is not mutually exclusive to the usage
of other ones, all of them remaining active as long as the DSB
continues unrepaired. On the other hand, other authors propose
that there is a hierarchy in NHEJ, by which cells give precedence
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FIGURE 1 | Unblocking and processing of DSBs. Unblocking pathways directly convert ends into 5′-phospahte and 3′-hydroxyl but the nucleotide sequence remains

intact, promoting error-free repair (left). Processing can also facilitate blocked DSBs repair removing aberrant structures from DNA ends by nucleotide trimming

(right). This pathway can lead to error-prone repair when non-templated repair pathways such as NHEJ or MMEJ are used. 5′ blocks are depicted but similar

situations could be generated on 3′ ends.

FIGURE 2 | Structure of DNA ends and unblocking enzymes. DSB termini can be blocked by numerous chemical structures in vivo. Several unblocking enzymes are

present in mammalian cells and efficiently convert these structures to clean 5′-phosphate and 3′-hydroxyl DSB termini (left). These clean DSBs can be in theory,

directly repaired with the only enzymatic activity of a ligase (right).

to resolution paths with the fewest number of enzymatic steps.
This way, direct ligation is favored over more complex pathways
that include end-processing and/or DNA synthesis (Waters et al.,
2014). Consistent with this, LIG4 is themost flexible ligase known
so far (Ma et al., 2004; Gu et al., 2007), and the differences in
how their catalytic domains interact with different end structures
trigger dramatic changes in the dynamics of the entire NHEJ
complex, determining the steps taken to complete repair and the

factors required (Conlin et al., 2017). A hierarchical order in the
action of NHEJ components is also supported by the formation
of a synapsis with two different stages (Graham et al., 2016). First,
DNA ends are tethered sufficiently far apart, and are then closely
aligned by DNA-PK, XLF, and the LIG4-XRCC4 complex. It has
been suggested that this structural conversion can be coordinated
with end-processing by changes in the phosphorylation profile
of DNA-PKcs (Graham et al., 2016), which would provide a
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mechanism for the regulation of end processing and ligation.
Although both models could seem contradictory, they may not
be mutually exclusive. While, NHEJ could behave as an iterative
process in which various components can be loaded and act in
various combinations without an established order, providing
flexibility and efficiency to the repair process, the decision of
how complex ends are repaired should not be stochastically
determined, as specific unblocking activities must be preferred
over end-processing in order to avoid sequence modification.

NUCLEASES IN NHEJ

As mentioned above, under certain circumstances, DSBs require
end processing by the action of nucleases. Usually, these
nucleases remove chemical modifications and blockages or
cleave mismatched ends by trimming 5′ or 3′ termini through
exo- and/or endonucleolytic processing to expose short regions
of microhomology between strands and promote end joining
(Pannunzio et al., 2018). ARTEMIS is the major nuclease
implicated in end-processing during NHEJ (Ma et al., 2002;
Goodarzi et al., 2006; Yannone et al., 2008). Its main role
takes place during V(D)J recombination, where it is responsible
for the opening of DNA hairpins formed at coding joints, an
endonucleolytic activity that is promoted by phosphorylation in
the ABCDE cluster of DNA-PKcs. However, it has been also
shown to haveDNA-PKcs-independent 5′ exonuclease activity on
ssDNA (Pawelczak and Turchi, 2010; Li et al., 2014). Beyond its
role in V(D)J recombination, ARTEMIS contribution in NHEJ
is still under study, and recent analysis demonstrated that the
ARTEMIS-DNA-PKcs complex also promotes the ligation of
incompatible overhangs in vitro (Chang et al., 2016; Pannunzio
et al., 2018). Besides its versatility to act at many different types of
DNA ends, there is a common feature in all ARTEMIS substrates:
a ss-dsDNA boundary, which is present in a wide variety of
different DNA end configurations (Chang et al., 2015; Chang
and Lieber, 2016). Interestingly, a novel 3′ endonuclease activity
of ARTEMIS has been recently described, that is promoted
by XRCC4-LIG4 complex and also independent of DNA-PKcs
(Gerodimos et al., 2017). The stimulation of this activity could
be as a result of a conformational change due to the interaction
with LIG4 (Pannunzio et al., 2018).

Another factor involved in the repair of complex ends
requiring end processing is the MRE11 protein from the MRN
complex (consisting of MRE11, RAD50, and NBS1). The MRN
complex acts as a sensor of DSBs and promotes repair by NHEJ
or HR. Specifically, MRE11 exhibits 3′-5′exonuclease and single-
stranded and DNA hairpin endonuclease activities (Paull and
Gellert, 1998; Trujillo et al., 2003; Lisby et al., 2004; Stracker and
Petrini, 2011; Williams et al., 2011). Endonucleolytic cleavage
may be of particular importance for DNA ends covalently-
bound to Spo11 (Neale et al., 2005), terminated by hairpins
(Lobachev et al., 2002) or generated by TOP1 and 2 poisons
(Hartsuiker et al., 2009; Quennet et al., 2011; Hoa et al., 2016).
Furthermore, recent in vitro studies described that NBS1 is
essential to promote MRE11 nuclease activities on DNA ends
containing protein adducts, while it inhibits MRE11 3′ to 5′

exonuclease degradation of clean ends (Deshpande et al., 2016).
Additionally, the function of the MRN complex during resection
is stimulated by the phosphorylated form of CTIP (Anand
et al., 2016). Remarkably, the nuclease activity of CTIP has been
reported to be specifically required for processing complex DSBs,
such as those harboring topoisomerase adducts or generated by
irradiation. This suggests that the endonuclease activity of CTIP
is only necessary for the removal of DNA adducts and not for
the resection of unmodified DNA breaks (Makharashvili et al.,
2014). This differentiates catalytic and non-catalytic functions
of CTIP during end resection, which requirement would be
end-structure dependent.

POLYMERASES IN NHEJ

As mentioned above, as a consequence of the processing of
complex DSBs, the participation of other accessory factors such
as DNA polymerases of the PolX family is often required. These
polymerases are especially suited for filling in the small gaps that
are generated when two ssDNA protruding ends with the same
polarity and have either none or partial complementarity. The
action of the different PolX polymerases during NHEJ seems
to be determined by a gradient of template strand dependence
after DSB ends are synapsed, with Polλ being completely
template-dependent, Polµ having some template requirements
and Terminal Deoxynucleotidyl Transferase (TdT) being fully
template-independent (McElhinny et al., 2005). Therefore, when
3′-protruding ends at DSBs do not have any complementarity
with each other, Polµ and TdT polymerases can add nucleotides
for generating de novo terminal microhomology at DNA ends
(Gu et al., 2007; Davis et al., 2008; Chang et al., 2016).
PolX polymerases are recruited to DSBs through the specific
interaction between their BRCT domains with NHEJ core factors
(Mueller et al., 2008; Boubakour-Azzouz et al., 2012; Malu et al.,
2012; Craxton et al., 2018). These interactions favor DSB repair
efficiency (Tseng and Tomkinson, 2002; Craxton et al., 2018),
and can be facilitated to some extent by DNA-PKcs-mediated
phosphorylation (Sastre-Moreno et al., 2017). In fact, systematic
analyses to determine how overhang sequence affects the activity
of NHEJ polymerases has shown some DNA synthesis patterns
that may be coordinated with ligation complex capabilities
(Craxton et al., 2018).

END-PROTECTING FACTORS

In addition to all these unblocking and processing factors, other
accessory NHEJ components are required to inhibit or restrict
degradation of DSB ends, and therefore avoid excessive DNA
sequence loss. In this regard, modifications at the chromatin
flanking the DSB, such as histone H2AX phosphorylation
(Helmink et al., 2011), and the subsequent recruitment of
downstream factors of the DNA damage response (DDR), such as
MDC1, 53BP1, and BRCA1 (Bekker-Jensen and Mailand, 2010)
represent crucial events for the choice of proper repair pathways,
regulating to which extent DSB ends are processed. Accordingly,
H2AX deficient mice show an increase in genome instability and,
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in the absence of P53, are prone to tumor development (Celeste
et al., 2002, 2003; Bassing et al., 2003). Moreover, in ARTEMIS
deficient cells, H2AX was reported to limit the processing of
DNA ends by CTIP endonuclease upon induction of blocked
DSBs during V(D)J recombination, this function of H2AX being
mediated by MDC1 (Helmink et al., 2011). In the same way,
53BP1 has been also shown to regulate end-processing during
V(D)J and CSR recombination (Difilippantonio et al., 2008;
Bothmer et al., 2010) and to inhibit CTIP-dependent resection
in BRCA1 deficient cells at post-replicative stages of cell cycle,
suggesting that H2AX phosphorylation may restrict resection by
the recruitment of 53BP1 (Bunting et al., 2010). The protective
role of DNA ends by 53BP1 requires the participation of some
downstream factors, such as PTIP (Kurimasa et al., 2015) and
RIF1 (Kienker, 2000; Lee K. J. et al., 2004; Douglas et al., 2005),
and maybe other factors yet to be discovered. In this regard,
the recently discovered ssDNA-binding complex shieldin has
been proposed to act as ultimate effector of the 53BP-RIF1
pathway for end protection (Chan et al., 2002; Ding et al.,
2003; Meek et al., 2007). Of note, ARTEMIS was previously
identified as a PTIP-binding protein, and, strikingly, as one of
main downstream effectors of 53BP1-PTIP pathway (Wang et al.,
2014). This suggests that 53BP1 could be promoting limited end-
trimming and the repair of DSBs through NHEJ, and therefore
directly competing with the HR repair pathway that would entail
long resection.

DNA-PKcs, A MASTER REGULATOR OF
ACCESS TO DSB ENDS

Despite not being conserved in lower eukaryotes, the activity of
this phosphatidylinosytol 3-kinase-related kinase (PI3KK) is a
clear requisite for its functioning during NHEJ in mammalian
cells (Kienker, 2000; Kurimasa et al., 2015). Although there is
a long list of DNA-PKcs substrates, mutational analysis (Lee K.
J. et al., 2004; Douglas et al., 2005; Goodarzi et al., 2006; Meek
et al., 2008) concludes that DNA-PKcs itself is the only NHEJ
factor that has been shown to be a functionally relevant target
of its own kinase activity (Chan et al., 2002; Ding et al., 2003;
Soubeyrand et al., 2003; Cui et al., 2005; Douglas et al., 2007;
Meek et al., 2007, 2008). The most well-accepted consequence
of such DNA-PKcs autophosphorylation is its inactivation and
dissociation from DNA ends, allowing subsequent joining by
LIG4 (Chan and Lees-Miller, 1996; Douglas et al., 2001). Despite
the fact that DNA end binding by DNA-PKcs is indifferent to
distinct DNA end structures, some studies indicate that cisplatin-
DNA adducts near the ends reduce kinase activation, suggesting
that free termini could be involved in the activation of DNA-PKcs
(Turchi, 2000; Pawelczak et al., 2005). It has been suggested that
kinase activation occurs in trans, linking autophosphorylation
of DNA-PKcs to synapsis. Although this point is still a matter
of debate, this may provide an important mechanism by which
DNA-PKcs protects DNA-ends to maintain genomic integrity.
However, extensive studies have shown that in response to DSBs,
DNA-PKcs autophosphorylation can occur in different residues,
with each event having specific functional consequences (Meek

et al., 2008; Davis et al., 2014). In human DNA-PKcs, amino acid
clusters known as ABCDE, flanking Thr2609 residue, and PQR,
around the Ser2056 residue, are the two major phosphorylation
sites (Ding et al., 2003; Block et al., 2004; Reddy et al., 2004;
Cui et al., 2005; Meek et al., 2007). Although both clusters can
be autophosphorylated by DNA-PKcs itself, the ABCDE cluster
can be also phosphorylated by ATM or ATR under different
cellular stresses (Chen et al., 2007; Meek et al., 2008; Davis et al.,
2010). Site-directed mutagenesis analyses and characterization
of animal models of DNA-PKcs deficiency (Blunt et al., 1996;
Araki et al., 1997; Taccioli et al., 1998; Beamish et al., 2000;
Zhang et al., 2011; Danska et al., 2015; Jiang et al., 2015)
have revealed that the specific defect resulting from blocking
either ABCDE or PQR phosphorylation is DNA end processing
deregulation. Both clusters show antagonistic functions, and
whereas phosphorylation in the ABCDE cluster promotes DNA
end processing, phosphorylation of sites within the PQR cluster
inhibits DNA end resection. Specifically, the ABCDE cluster is
reported to promote end processing by regulating the access
of ARTEMIS to the ends (Ma et al., 2002; Cui et al., 2005;
Goodarzi et al., 2006; Yannone et al., 2008). On the other hand,
end-ligation requires a strict DNA-PKcs autophosphorylation,
possibly in the PQR cluster, which is promoted by ligatable ends
and synapsis. This way, possible unsuccessful ligation attempts
are avoided. Thus, DNA-PKcs can be considered a molecular
shift that coordinates end processing and ligation through its
phosphorylation tomaximize the efficiency of theNHEJ pathway.

ATM, A KEY FACTOR TO ORCHESTRATE
END PROCESSING

Ataxia Telangiectasia Mutated (ATM) kinase is another member
of the PI3KK family, recognized by its function as an apical
activator of the DDR in response to DSBs (McKinnon,
2004). Interestingly, the structure of ends is a crucial factor
which determines the requirement of ATM for the repair
of a DSB (Álvarez-Quilón et al., 2014). Specifically, ATM
exclusively facilitates the repair of irreversibly blocked TOP2-
mediated DSBs, arising by etoposide treatment in TDP2-
deficient background (Álvarez-Quilón et al., 2014). Consistent
with this, ATM-mediated repair promotes cell survival and the
maintenance of genome integrity, avoiding micronuclei and
chromosomal aberration formation after the induction of DSBs
harboring termini that require end processing (Álvarez-Quilón
et al., 2014). Although the underlying molecular mechanisms
by which ATM deals with blocked DNA ends are still unclear,
two complementary explanations have been proposed (Álvarez-
Quilón et al., 2014). On the one hand, ATM can promote
limited resection to eliminate the complex structures at DSB
ends through the action of nucleases. In this regard, ATM
phosphorylates ARTEMIS and DNA-PKcs at the ABCDE cluster
(see above) (Chen et al., 2007; Meek et al., 2008; Davis et al.,
2010). In addition, a functional interplay between ATM and
the MRN complex has been widely reported. Indeed, the three
components of the complex are all phosphorylated by ATM,
which has been proposed as a modulator of its processing activity

Frontiers in Molecular Biosciences | www.frontiersin.org 5 January 2020 | Volume 6 | Article 153

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


Serrano-Benítez et al. DNA-End Structure and DSB Repair

(Kijas et al., 2015). Then, the MRN complex interacts with CtIP,
which is also positively regulated by ATM to promote end-
resection (You and Bailis, 2010; Wang et al., 2013). Finally, ATM
regulates other nucleases that could be involved in resolving
incompatible ends. This includes APLF (Aprataxin and PNKP-
like factor) (Macrae et al., 2008; Fenton et al., 2013); DNA
replication helicase/nuclease 2 (DNA2) (Paudyal et al., 2017) or
EXO1 (Bolderson et al., 2010; Tomimatsu et al., 2017). On the
other hand, ATM could restrict excessive nucleolytic degradation
of DNA ends (Rahal et al., 2008). This can actually operate
by a direct inhibitory action on aforementioned nucleases such
as MRE11 (Rahal et al., 2010) or EXO1 (Bolderson et al.,
2010), and/or by promoting modifications at the chromatin
flanking the DSB and the recruitment of protecting factors.
In this regard, the protective function of H2AX depends on
its phosphorylation at Ser139 to form γ-H2AX in chromatin
flankingDNADSBs (Helmink et al., 2011), which is preferentially
carried out by ATM (Takahashi et al., 2010). The γ-H2AX
downstream factor MDC1 is also phosphorylated by ATM,
promoting its oligomerization and spreading on chromatin
(Maréchal and Zou, 2013). In addition, ATM phosphorylates
53BP1 (Anderson et al., 2002; Jowsey et al., 2007) and these
phosphorylations are required for 53BP1 interaction with PTIP
(Munoz et al., 2007) and RIF1 (Chapman et al., 2013). Finally,
in addition to these dual end processing/-protective roles, ATM
could operate at a later stage in the repair process. For example,
after ionizing radiation-induced DSBs, ATM phosphorylates
Polλ, which would promote conformational changes in Polλ

that facilitate its interaction with NHEJ core factors at
DSBs and, hence, stimulates gap-filling DNA synthesis during
NHEJ (Sastre-Moreno et al., 2017).

The structure and conformation of DNA ends are therefore
determinant to the repair process and outcome, especially
in situations in which end-joining mechanisms are prevalent.
Although many of the enzymatic activities required have been
identified and characterized in detail, the mechanisms by which
cells regulate and integrate these activities to keep sequence
variation under control are still poorly understood. In this sense,
it is tempting to think on blocked DSBs and a deregulated
cellular response to these lesions as important threats to genome
integrity, and, potentially, drivers of malignant transformation
and cancer.
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