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Serotonin is important in vertebrates for its crucial roles in regulation of various
physiological functions. Investigations on how the biosynthesizing enzymes mediate
serotonin production and conversion during biological processes have been active
in the past decades. However, a clear-cut picture of these enzymes in molecular
evolution is very limited, particularly when the complexity is imaginable in fishes
since teleosts had experienced additional whole genome duplication (WGD) event(s)
than tetrapods. Since serotonin is the main intermediate product during melatonin
biosynthesis from tryptophan, we therefore summarize an overview of recent discoveries
about molecular evolution of the four melatonin biosynthesizing enzymes, especially the
L-aromatic amino acid decarboxylase (AAAD) for serotonin production and aralkylamine
N-acetyltransferase (AANAT) for serotonin conversion in vertebrates. Novel copies of
these genes, possibly due to WGD, were discovered in fishes. Detailed sequence
comparisons revealed various variant sites in these newly identified genes, suggesting
functional changes from the conventional recognition of these enzymes. These interesting
advances will benefit readers to obtain new insights into related genomic differences
between mammals and fishes, with an emphasis on the potential specificity for AANAT
in naturally cave-restricted and deep-sea fishes.

Keywords: serotonin, melatonin, biosynthesizing enzyme, circadian rhythm, molecular evolution, vertebrate

INTRODUCTION

Serotonin (5-hydroxytryptamine, 5-HT) acts as a critical neurotransmitter in the central nervous
system (CNS) and an important hormone in the peripheral tissues (Keszthelyi et al., 2010).
Although it is unable to go through the blood-brain barrier, serotonin contents in the two pools are
different, of which 95% is produced in the peripheral tissues and only 5% in the brain (EI-Merahbi
et al., 2016). Unlike many classical hormones that usually distribute in limited tissues, serotonin
can be widely traced in various anatomical organizations. Interestingly, serotonin is presented not
only in vertebrates, but also in fungi, plants, and invertebrates (Srinivasan et al., 2008; Kang et al,,
2009; Curran, 2012), suggesting an ancient evolutionary origin in the biological world. As one of
crucial monoamines, the brain-derived serotonin involves multiple physiological processes such
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as behavior, learning, appetite, and glucose homeostasis (Marston
et al.,, 2011; Klaus-Peter et al.,, 2012); however, the peripheral
serotonin plays as a hormone to regulate various physiological
functions along with blood circulation (Stunes et al, 2011;
Yasmine et al., 2012).

Serotonin is the main intermediate product during melatonin
biosynthesis from tryptophan (Figure 1A). Tryptophan (Trp) in
cells is firstly hydroxylated by tryptophan hydroxylase (TPH) and
then decarboxylated by L-aromatic amino acid decarboxylase
(AAAD) to produce serotonin (Keszthelyi et al., 2010). However,
synthesis of the periphery- and the brain-derived serotonin
relies on two different TPH enzymes (TPH1 and TPH2,
respectively). Subsequently, serotonin is catalyzed by the major
rate-limiting enzyme aralkylamine N-acetyltranserase (AANAT)
to generate N-acetylerotonin (NAS). Finally, NAS is transformed
to melatonin via acetylserotonin O-methyltranserase (ASMT).

Obviously, serotonin locates in the center of the melatonin
biosynthesis pathway. Therefore, understanding of related
enzymes for melatonin synthesis is important for improving the
recognition of serotonin functions. As we know, melatonin is
mainly produced and secreted in the vertebrate pineal organs at
night. This rhythmic pattern leads to a corresponding rhythmic
melatonin levels in blood and cerebrospinal fluid during day
and night. However, organization of the circadian system in
relation to melatonin secretion is different between mammals
and fishes (Figures 1B,C). In mammals, a primary linear route
starts at reception of environmental photic signals in eyes
(retinae), which are transmitted to the suprachiasmatic nuclei
(SCN) of the hypothalamus via a retino-hypothalalamic tract
(RHT). Since then, a multisynaptic pathway, comprised of
SCN, preganglionic neurons of the sympathetic nervous system,
superior cervical ganglion (SCG) and pineal organ (Figure 1B), is
interconnected (Simonneaux and Ribelayga, 2003). This system is
more complicated in fishes (Figure 1C), since their pineal organs
are also photoreceptive (Falcon et al., 2007).

The nocturnal increase of melatonin at night mostly depends
on the activity of AANAT by the synthesis pathway of
serotonin— ANNAT— melatonin (Ganguly et al, 2005).
Changes of AANAT activity are usually strongly controlled
by cyclic AMP (cAMP)-dependent binding to dimeric 14-3-3
proteins. During nighttime, two sites (T31 and S205) occurring
phosphorylation (to be pAANAT) prompt the binding between
14-3-3 proteins and pAANAT (Figure 1A). This action can
protect the AANAT against proteasomal proteolysis and lead
to a continuous accumulation of AANAT for 5-HT conversion
and melatonin synthesis (Gastel et al, 1998; Obsil et al,
2001). Meanwhile, the binding to 14-3-3s also elevates the
affinity of AANAT by ~10-fold for arylalkylamine substrates,
such as serotonin and tryptamine (Ganguly et al., 2001). At
daytime, decrease of cCAMP levels results in dephosphorylation
of pAANAT, and thereby the binding between 14-3-3s and
PAANAT is broken out. This action prevents from protection
of AANAT. Thus, the proteasomal proteolysis of AANAT at
daytime stops the production of melatonin (Ganguly et al., 2001,
2005). This circle of phosphorylation and dephosphorylation
of AANAT mainly contributes to the variation of melatonin
production in a circadian rhythm.

In the past decades, various studies associated with serotonin
and melatonin have been developed rapidly. Multifunction of
serotonin as well as melatonin in various vertebrate lineages is
hence clearer and clearer. However, species diversity is far more
complex than what we expected. Certain species owing a special
habitat, such as deep-sea or caved environment (dim or without
lights) may lose most of their rhythmicity. They are thereby
good models for examination of the relationships between
molecular mechanisms and melatonin secretion, especially for
understanding of serotonin synthesis related enzymes. It was
reported that teleosts had experienced one more whole genome
duplication (WGD; i.e., teleost-specific genome duplication,
TSGD) at about 320 million years ago (Mya; Taylor et al., 2003;
Jaillon et al.,, 2004) in comparison to tetrapods, adding much
complexity to the serotonin/melatonin biosynthesizing enzymes.
Here, we provide an overview to summarize recent discoveries
about molecular evolution of the four biosynthesizing enzyme
genes (especially the aaad for serotonin production and aanat
for serotonin conversion) in vertebrates, with a focus on genomic
differences between mammals and fishes.

SEROTONIN-RELATED GENES WITHIN
THE MELATONIN BIOSYNTHESIS
PATHWAY

Tryptophan Hydroxylase (TPH)

TPH is the initial enzyme for melatonin biosynthesis
(Figure 1A), transforming Trp into 5-hydroxytryptophan
(5-HTP). It belongs to the superfamily of aromatic amino acid
hydroxylase (McKinney et al., 2001). For over one decade,
researchers had initially thought TPH to be with only one
member before the study of Walther et al. (2003), in which the
tph gene (now called tphI) was knocked out in mice. Surprisingly,
the tphi-deficient mice lacked serotonin in the pineal gland and
certain peripheral tissues (Walther et al., 2003). In addition, the
serotonin content was observed to be slightly reduced in the
brainstem of the tphl-deficient mice in comparison to the wild
type, suggesting existence of another tph member that plays a
compensatory role to thpl. Subsequently, these scientists verified
a novel gene member of the TPH family and named it as tph2;
the classical tph gene was since then renamed as tphl (Mockus
and Vrana, 1998).

It has been demonstrated that tphl is mainly distributed in
the pineal gland and peripheral gut, spleen, and thymus; tph2
is predominantly expressed in the CNS, such as the brainstem
(Cornide-Petronio et al., 2013). There are two independent
serotonin systems in vertebrates that are regulated by the
two different TPH enzymes with distinct functions as follows:
tphl usually plays important roles in peripheral effects such
as hemostasis, immune, melatonin synthesis, migraine, and
vasoconstriction; tph2 is often involved in effects of the CNS,
such as aggression, anxiety, depression, epilepsy, food intake,
and sleep. Fish is the most diverse vertebrate taxa; serotonergic
neurons can be identified based on corresponding 5-HT levels,
and thereby fph can be used as a specific marker for 5-HT
generation (Xu et al., 2019).
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FIGURE 1 | Involvement of serotonin/melatonin in the synchronization between environmental photoperiods and vertebrate circadian rhythms. The classical pathway
of melatonin biosynthesis in vertebrates is summarized in (A). Meanwhile, melatonin presents a feedback to the SCN, pituitary (pars tuberalis; B) and other brain areas
for physiologic adjustments. However, this system is more complex in fishes (C) since their pineal organs are also photoreceptive. Find the detailed abbreviations of
enzymes and molecules in corresponding texts.
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More tph copies (tphla, tphlb, and tph2) have been discovered
in teleost species such as zebrafish, sticklebacks, and medaka
(Bellipanni et al., 2002; Lillesaar, 2011). In our recent genomic
investigation (Xu et al., 2019), we found that tetrapods and non-
teleosts had two tph isotypes (tphl and tph2); however, in the
teleost lineages, tphl was further diverged into tphla and tphlb.
Based on a detailed phylogenetic analysis (Figure 2), we propose
that the TSGD events may have contributed to the division of
three tph isotypes (tphla, tphlb, and tph2). In addition, the tph
copy numbers between diploid and tetraploid fish species are not
always corresponding to a 1:2 (see more details in Xu et al., 2019);
therefore, we infer that WGD and gene loss may have generated
variations in tph gene copy numbers.

Certain important sites in representative TPH proteins were
examined for structural comparisons, and we determined that
the differences of vertebrate TPHs mainly located at the NH,-
terminal (Xu et al., 2019). Predicted 3D structures between TPH1
and TPH2 revealed obvious variations in structural elements
(a-helix or B-sheets) and loops.

Interestingly, here we also performed an in-depth
investigation on tph isotypes in a cavefish Mexican tetra
(Astyanax mexicanus), and found missing of tph1b in its genome.
Although the loss of tphlb gene needs further validation, our
preliminary data provide novel insights into tph evolution
in vertebrates.

L-Aromatic Amino Acid Decarboxylase
(AAAD)

AAAD is for the second reaction, decarboxylating from 5-HTP
to 5-HT, in melatonin synthesis (Figure 1A). It can also convert
L-Dopa to dopamine (thereby named as DOPA decarboxylase,
DDC). Due to its vital responsibility to synthesize these
neurotransmitters, AAAD has been considered as an important
decarboxylizing enzyme (Swoboda et al., 2003). Patients
with AAAD deficiency presented compromised development,
especially in motion activities (Hwu et al., 2012).

Moreover, AAAD is reported to be involved in many
neurological diseases, such as Parkinson’s disease and depression.
When patients are treated with L-DOPA or 5-HTP, AAAD
has become the critical rate-limiting protein in the synthetic
pathways for both 5-HT and dopamine (Hwu et al., 2012). Studies
on how AAAD participates in Parkinson’s disease have been very
active in mammals (Boomsma et al., 1989; Brun et al., 2010;
Hwu et al., 2012). Related reports suggest that, via controlling
the availability of 5-HT, AAAD may regulate melatonin synthesis
(Adamska et al., 2016).

Recently, one of our genomic investigations indicated that
tetrapods and diploid bony fishes had one aaad gene and a new
aaad-like gene, which formed a novel AAAD family (Li et al.,
2018). These novel aaad-like genes display high similarities to the
aaad genes, while variations are also presented in the sequence
alignments, especially the critical sites 298 and 302 (based on the
human template of 3RBF; Giardina et al., 2011) were embedded
in a heptapeotide region that may be acting as a cofactor binding
site (Ichinose et al., 1989). The two sites may shift the protein
structure, since one participates in the formation of a-helix and

the another for p-strand. Hence, these newly identified aaad-
like genes may play different functions due to their structural
variations from the aaad genes.

Unlike only one copy in diploid fishes, there are two
copies of aaad gene possibly due to additional WGD in
tetraploid teleosts. Interestingly, some animals with residency in
darkness such as platypus (Ornithorhynchus anatinus), Mexican
tetra (Astyanax mexicanus), and a Sinocyclocheilus cavefish
(S. anshuiensis; Yang et al., 2016) display longer evolutionary
branches in the phylogenetic topology (Figure 3) than other
species. This reflects a fast evolution of the aaad genes in
those species, suggesting a functional variation possibly due to
the dark environments. In addition, we identified premature
stop in the encoding region of aaad gene in the cave-
restricted Mexican tetra (Figure4), implying a possibility of
weakening or disappearing rhythms in cavefishes (Yang et al.,
2016).

Aralkylamine N-Acetyltransferase (AANAT)
AANAT is the main rate-limiting enzyme for melatonin
biosynthesis, converting 5-HT to NAS. The vertebrate-type
AANAT evolved from a more primitive non-vertebrate-
type (Falcon et al, 2014), which is widely known from
organisms evolutionarily more ancient than Agnathans including
amphioxus (Pavlicek et al, 2010). During the early evolution
in vertebrates, aanat gene was duplicated and one of the
paralogs apparently diverged to become the vertebrate-type
AANAT. However, the non-vertebrate-type was lost from
almost all vertebrate lineages, although the two forms coexist
in certain chondrichthyes such as in the elephant shark
Callorhinchus milii (Falcon et al., 2014). Before the divergence
of Gnathostomes, duplication of the vertebrate-type AANAT
happened, while only one copy was kept in tetrapods. However,
in teleosts, the two copies (called aanatl and aanat2) were
retained; subsequently, aanatl was reproduced once more to
be divided into aanatla and aanatlb (Li et al., 2016). During
teleost evolution, these gene duplications and selective loss
of certain isotype(s) potentially regulate 5-HT conversion and
melatonin production.

AANAT1 is reported to be more specifically distributed in
the retina and brain, while AANAT2 is mainly expressed in
the pineal gland (Falcon et al, 2010). In our previous report
(Li et al., 2016), we identified two important residues (130 and
153) are obviously differentiated between AANAT1 (F, V) and
AANAT?2 (C, L). According to the template of ICJW (Hickman
et al., 1999), we propose that the two sites may be involved
in formation of a a-helix and a B-sheet, respectively. These
structural differences also point to potentially different roles
between AANAT1 and AANAT?2.

In some vertebrates, low AANAT levels can also be measurable
in other areas, such as gastrointestinal tract and skin (Coon
and Klein, 2006; Velarde et al., 2010a). The diversity of aanat
genes in fishes (aanatla, aanatlb, and aanat2) is usually
generated by WGD and gene loss (Li et al, 2016). During
evolution in diverse environmental conditions, aanatl and
aanat2 were differentially expressed in various organs and played
differential roles. Mainly due to the circadian rhythmic activity
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FIGURE 2 | A Phylogenetic tree and genome synteny of tph1 genes in vertebrates (adapted from Xu et al., 2019). The phylogenetic tree (Left) was constructed from
105 TPH1 protein sequences, with corresponding synteny data (Right) for validation.
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FIGURE 4 | Premature stop in the aaad encoding region of Mexican tetra (A. mexicanus). 5-HT and melatonin synthesis may be blocked in this cavefish.
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of AANAT, blood levels of melatonin increase at night and
decrease during daytime. Our recent investigation (Li et al.,
2016) indicates that bony fishes possess various isoforms of
aanat genes, whereas other vertebrates have only a single form
of AANAT. Two rounds of WGD in fishes are responsible
for the classification of three isotypes of aanat (aanatla,
aanatlb, and aanat2); however, gene loss somehow resulted in
absence of certain isotypes in certain special fishes, such as
amphibious mudskippers. We have predicted loss of aanatla in
a more terrestrial mudskipper (Periophthalmus magnuspinnatus,
PM), which was regarded to participate in terrestrial vision
changes (You et al,, 2014).

Recently, a draft genome of Pseudoliparis swirei, a deep-
sea snailfish (Mariana hadal snailfish, MHS) with a routine
residence below 6,000 m, was published (Wang et al, 2019).
Meanwhile, the genome of its closed relative Tanaka’s snailfish
(Liparis tanakae, TS) from shallow sea was also available in
the same report. Here, we performed a detailed comparison
of aanat2 gene structures between the MHS and the TS, and
observe a frameshift insertion (C) in the MHS (Figure 5A)
while its relative Tanaka’s snailfish is normal (Figure5B).
Interestingly, the one-base insertion may lead to inactivity of
AANAT?2 in the MHS, hence consequent low levels of blood
melatonin in the MHS are predictable. These are possibly related
to the deep-sea darkness adaption, which is similar to our
previously reported cave-restricted Sinocyclocheilus anshuiensis
(Yang et al., 2016).

N-Acetylserotonin Methyltransferase

(ASMT)

ASMT, previously named as hydroxyindole-O-methyltransferase
(HIOMT), is the ultimate enzyme for melatonin biosynthesis
(Figure 1A). It is assumed to be responsible for seasonal
variations in the melatonin secretion and vertebrate
reproduction. It belongs to the methyltransferase superfamily
with a wide identification in animals and plants.

In rice, there exist three isotypes of asmt (asmtl, asmt2,
and asmt3); all of them could encode active ASMT, and
overexpression of them could generate overproduction of
melatonin (Kang et al., 2011; Park et al., 2013a,b). In mammals,
the asmt gene is usually located on the X chromosome
(Rodriguez et al, 1994; Wang et al., 2013). Resulting from
alternative splicing of exons 6 and 7, human asmt possibly
possesses three isotypes, of which one isoform catalyzes the
traditional transference of a methyl group to produce melatonin;
however, other two isoforms lost this enzyme activity (Botros
et al,, 2013). In fish genomes, in contrast to tetrapods, two asmt
genes have been identified, possibly due to the putative TWGD
event (Velarde et al., 2010a).

It was reported that the ASMT enzymes mainly exist in the
retinae and pineal gland of European sea bass (Botros et al., 2013).
ASMT?2 was detected in several peripheral tissues, including liver
and gut in teleosts (Paulin et al., 2015). The similar existence of
melatonin synthesis in gut and liver of goldfish was demonstrated
previously (Velarde et al., 2010a). Recent studies also suggested
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FIGURE 5 | A detailed comparison of aanat2 encoding regions between Mariana hadal sailfish (MHS; resident below 6,000 m) and its close relatives Tanaka’s snailfish
(TS; collected from shallow sea). (A) A frameshift insertion is identified in the MHS by genomic sequence alignment, using zebrafish aanat2 as the query. (B) With the
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high expression of gut ASMT in zebrafish and rainbow trout  negative correlation with cultivated water temperature (Sanjita
(Oncorhynchus mykiss) (Khan et al.,, 2016; Munoz-Pérez et al.,  Devi et al., 2016). Moreover, the involvement of brain melatonin
2016). Findings on a tropical carp (Catla catla) recently indicated  in modulation of seasonal reproductive parameters through the
that abundant asmt mRNAs were detectable in the gut, and the  putative hypothalamo-pituitary-gonadal (HPG) axis has been
transcription levels of asmt in the brain displayed a significant  suggested by high expression levels of ASMT in the brain during
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FIGURE 6 | Alignment of ASMT protein sequences of zebrafish (modified from Zhang et al., 2017). (A) ASMTL is encoded by a fusion gene of maf (multicopy
associated filamentation) and asmt. (B) The C-terminal of ASMTL is highly similar to ASMT1 and ASMT2.
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the preparatory phase (Velarde et al., 2009, 2010b; Mukherjee and
Maitra, 2015).

However, a previous paper (Ried et al, 1998) reported
acetylserotonin methytransferase-like (asmtl) genes in mammals,
which is novel with an interesting homology to the putative
asmt genes. In fact, human asmtl is a fusion gene of maf
and asmt (similar to the zebrafish in Figure 6A). Through a
comprehensive genomic investigation (Zhang et al., 2017), we
also identified existence of ASMT1, ASMT2, and ASMTL in fishes
(Figure 6B) and identified some variants in their alignments
between ASMT1 and ASMT2. Two of the variants (E61 and
Q243) were reported with reduced ASMT activity (Botros
et al., 2013), thereby a functional divergence between ASMT1
and ASMT2 can be predicted. In addition, teleost-ASMTL is
consistent with mammal-ASMTL (Figure 6A), formed by gene
fusion (maf and asmt) and duplication events. In addition,
our transcriptome data revealed that asmtl was preferentially
transcribed in fish retinae and pineal gland, while asmt2 and
asmtl were mainly expressed in the fish peripheral tissues such
as liver, gut, skin, and gonad (Zhang et al., 2017). These results
imply that the functional roles of these ASMTs are different.

CONCLUSIONS

Although the serotonin/melatonin biosynthesizing enzymes
are shared by vertebrates, there are a lot of molecular
differences between teleosts and tetrapods. More isotypes of
enzymes in fishes are possibly related to the teleost-specific
genome duplication event(s) and gene loss. Functional roles
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