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Epithelial-mesenchymal transition (EMT) is well established as playing a crucial role in
cancer progression and being a potential therapeutic target. To elucidate the gene
regulation that drives the decision making of EMT, many previous studies have been
conducted to model EMT gene regulatory circuits (GRCs) using interactions from the
literature. While this approach can depict the generic regulatory interactions, it falls short
of capturing context-specific features. Here, we explore the effectiveness of a combined
bioinformatics and mathematical modeling approach to construct context-specific EMT
GRCs directly from transcriptomics data. Using time-series single cell RNA-sequencing
data from four different cancer cell lines treated with three EMT-inducing signals, we
identify context-specific activity dynamics of common EMT transcription factors. In
particular, we observe distinct paths during the forward and backward transitions, as is
evident from the dynamics of major regulators such as NF-KB (e.g., NFKB2 and RELB)
and AP-1 (e.g., FOSL1 and JUNB). For each experimental condition, we systematically
sample a large set of network models and identify the optimal GRC capturing context-
specific EMT states using a mathematical modeling method named Random Circuit
Perturbation (RACIPE). The results demonstrate that the approach can build high quality
GRCs in certain cases, but not others and, meanwhile, elucidate the role of common
bioinformatics parameters and properties of network structures in determining the
quality of GRCs. We expect the integration of top-down bioinformatics and bottom-
up systems biology modeling to be a powerful and generally applicable approach to
elucidate gene regulatory mechanisms of cellular state transitions.

Keywords: phenotypic plasticity, epithelial-mesenchymal transition, cancer, network modeling, single-cell
RNA-seq

INTRODUCTION

Epithelial-mesenchymal transition (EMT) has been implicated in a number of biological
phenomena including embryonic development, wound healing, and cancer metastasis (Thiery
et al., 2009). During EMT, epithelial cells detach from their environment and gain more migratory
and apoptosis-resistant qualities (Nieto et al., 2016) to become mesenchymal cells (Nistico
et al., 2012). Recent studies have identified new hybrid EMT cellular states (Bartoschek et al.,
2018; Dong et al., 2018) with the expression of both epithelial (E) and mesenchymal (M) genes.
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The hybrid states in cancer have been associated with collective
cell migration and aggressiveness of cancer (Jolly, 2015).

From extensive experimental (Ding et al., 2013; Bartoschek
et al., 2018; Dong et al., 2018) and computational (Steinway
et al., 2014; Burger et al., 2017; Jia et al., 2019) studies, it is
now understood that the decision making of an EMT is usually
driven by a gene regulatory circuit (GRC) consisting of master
regulators, including transcription factors (TFs), such as ZEB,
SNAIL, TWIST, and GRHL2, and microRNAs, such as miR200
and miR34. Remarkably, the core GRCs explain the existence of
hybrid EMT cellular states (Lu et al., 2013). Although a generic
gene regulatory network is expected for the same process in
different contexts, the specific gene regulatory interactions that
occur in an EMT could vary for different cell types, signaling
states, and disease states (Cook and Vanderhyden, 2019). Indeed,
an EMT can be induced by activating either one of the common
signaling pathways, including TGFβ, EGF, TNF, Wnt, Notch, and
Hedgehog signaling (Gonzalez and Medici, 2014; Steinway et al.,
2014; Basu et al., 2018; Font-Clos et al., 2018). EMT has also been
widely studied and observed in various types of cancer (Chung
et al., 2016; Bartoschek et al., 2018; Brabletz et al., 2018), with
different genetically modified mouse models (Zheng et al., 2015;
Kersten et al., 2017; Chen et al., 2018) and a broad spectrum
of cancer cell lines (Steinway et al., 2014; Chung et al., 2016;
Bartoschek et al., 2018; Brabletz et al., 2018). Yet, little efforts
have been made to identify the common and context-specific
regulators and regulatory interactions during EMT and how
these regulatory relationships contribute to the diversity of EMT.
This investigation will help to further understand the regulatory
mechanisms of EMT, elucidate the composition and stability
of the various EMT states, and facilitate the discovery of new
therapeutic drugs in different contexts.

Recent single-cell RNA sequencing (scRNA-seq) technology
has enabled measurement of genome-wide gene expression at
the single cell level. It is particularly relevant to this study, as
single-cell data can not only reveal heterogeneity within cell
populations but, when combined with time-series analysis, can
provide a comprehensive view of the dynamics of EMT. For
example, single-cell sequencing has been used to understand
the intratumoral variation in cell localization and function,
potentially unveiling biomarkers or drug targets (Patel et al.,
2014; Bartoschek et al., 2018). A 2018 study observed a hybrid
EMT state occurring during mouse organogenesis, identifying
tissue type-specific regulatory elements in EMT such as Prrx1
and Lef1 (Dong et al., 2018). Another recent investigation found
both broadly conserved regulatory elements of EMT and highly
variable transcriptomic features using scRNA-seq on a melanoma
dataset (Wouters et al., 2019).

A recently published dataset from Cook and Vanderhyden
(2019) includes time-series scRNA-seq data from four different
cancer cell lines (A549, DU145, MCF7, and OVCA420)
undergoing EMT induced by one of three distinct signals
(TGFB1, TNF, and EGF) for 7 days and subsequent MET
induced by removing the corresponding signal. In this study, the
different cell lines demonstrated distinct phenotypic trajectories
with different TFs implicated in the process. The presence of
context-dependent variations of the EMT trajectories confirms

that the mechanism of EMT is not invariant with respect to
the stimuli which induce it. The time-series data permits a
thorough investigation of the path of cellular state transitions
and GRCs driving the decision making of EMT in multiple
experimental conditions.

Here, we will adopt a combined bioinformatics and systems-
biology modeling approach to construct context-specific core
GRCs using the above-mentioned time-series scRNA-seq data
from multiple cell lines and signaling treatment conditions
(Figure 1). Many previous computational studies have been
conducted to build EMT GRCs from literature support (Steinway
et al., 2014; Hong et al., 2015; Burger et al., 2017; Huang
et al., 2017; Bocci et al., 2018; Kohar and Lu, 2018; Ramirez
et al., 2019). However, this approach is not optimized for the
goal of this project, as there might not be sufficient literature
data for a specific experimental condition. To address this
issue, we systematically constructed a large number of networks
for each experimental condition by starting from a collection
of common TFs and integrating context-specific regulatory
links derived from the gene expression data and cis-regulatory
motif analysis. Using a wide range of network construction
parameters, we evaluated the performance of each network
in comparison to experimental data and generated GRCs that
are highly representative of specific experimental conditions.
To achieve this, a mathematical modeling method named
Random Circuit Perturbation (RACIPE) (Huang et al., 2017;
Kohar and Lu, 2018) was applied on each network model to
simulate the gene expression profiles and quantitatively compare
with experimentally observed gene expression profiles. RACIPE
is a parameter agnostic ordinary differential equation-based
method to simulate gene regulatory networks. RACIPE takes a
network topology specifying the regulator, target, and interaction
type (excitatory/inhibitory) as the input and generates a large
ensemble of models, where kinetic parameters of the models
are randomized within a range of possible values. By simulating
each of these models, RACIPE generates stable steady-state gene
expression profiles from which we identify the generic features
of a network and predict possible phenotypic states (see section
“Materials and Methods”). From this approach, we aim to identify
key regulators of EMT across all conditions as well as specific
actors in each cancer type.

RESULTS

Characterizing the Heterogeneity of
Transcription Factor Dynamics
In this study, we focused on building GRCs using the single
cell RNA sequencing (scRNA-seq) data collected from Cook and
Vanderhyden (2019) for four cancer cell lines (A549, DU145,
MCF7, and OVCA420) treated with EGF, TGFB1, and TNF. The
data were collected at eight timepoints at 0 day, 8 h, 1 day, 3 days,
and 7 days of exposure to the treatment and 8 h, 1 day, and 3 days
post-signal termination at 7 days.

To evaluate the differences in the initial EMT and the
backward transition occurring after the signals were removed,
we separated each condition into two datasets, where the first
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FIGURE 1 | Overall strategy for analyzing scRNA-seq data and constructing context-specific gene regulatory circuits (GRCs). (A) Gene expression heatmap with
cells in columns and gene expression levels in rows, clustered hierarchically to group cells. (B) Using gene expression data and SCENIC, gene regulatory module
(regulon) activity for each cell could be inferred and is shown in a similar heatmap. (C) The time dynamics of selected regulons were then compared across datasets
to identify divergent regulatory trajectories. (D) After the role of each regulon across datasets was characterized, numerous context-specific circuit topologies were
generated (nodes represent genes, blue and red arrows represent excitatory and inhibitory regulation, respectively) using different statistical cutoffs for network
modeling. (E) Finally, dynamics simulations were performed on each circuit to identify the optimal circuit that captures the terminal cellular states from the
experimental datasets. Using simulations, one can also predict the paths of cellular state transitions upon either signal induction or removal. Density maps show PCA
on simulation results with marginal histograms.

dataset contains timepoints 0, 8 h, 1 day, 3 days, and 7 days during
the signal induction, and the second dataset contains timepoints
7 days during the signal induction and 8 h, 1 day, and 3 days
after the signal removal. The day 7 data were used twice here to
recapitulate the dynamics in both directions. Thus, there are a
collection of 24 experimental datasets in total (three treatments,
four cell lines, and two directions). For each dataset, we applied
SCENIC (Aibar et al., 2017) to infer the regulons or enriched
transcription factors (TFs) and their corresponding TF activity
for every cell. Differential analysis was then applied using Seurat
(Butler et al., 2018; Stuart et al., 2019) to the activity profiles
for cells at different time points. To capture the changes over
time, we performed comprehensive differential activity analysis
(see section “Materials and Methods”) for the forward and
backward directions to obtain a list of highly variable regulons
for each of the 12 conditions. Interestingly, the response to signal
induction and retrieval was quite heterogeneous and only 20–
30% of the differentially active TFs in the forward direction were
differentially active in the backward direction as well.

Moreover, canonical EMT marker genes like SNAIL, SLUG,
ZEB, and TWIST were not consistently identified as regulons
in the experimental data. This finding agrees with Cook and
Vanderhyden’s (2019) analysis of the datasets and suggests
that complete EMT may not be taking place in the data, but
with the initial response to the inductive signal leading toward
partial EMT states.

EMT Across Signaling Conditions Is
Similar Within Cell Lines
With the eventual goal of building context-specific GRCs, we first
investigated which type of context was more relevant between
the cell lines and the treatments. Our expectation was that

the same cell line triggered by different signals may exhibit a
varying response in relation to signal strength, but the nature
of the transition will remain consistent across the signaling
conditions. Extensive evidence exists to suggest that the three
signal molecules examined in the dataset, i.e., TGFB1, EGF, and
TNF, act on many of the same targets in EMT, most notably NF-
κB, which comprises NFKB1 and RELB genes (Pires et al., 2017),
and the AP-1 complex, which comprises FOS and JUN genes (Sun
and Carpenter, 1998; Chen and Davis, 2003; Wu and Zhou, 2010;
Romagnoli et al., 2012; Freudlsperger et al., 2013; Vervoort et al.,
2018) (Figure 2A). On the other hand, the same signal applied
to different cell lines may elicit different effects because of the
unique genetic profile and mutations present in each cell line.

The overlap of differentially active TFs (DATFs) across the 12
conditions was then plotted (Figure 2B). Though a large number
of DATFs are unique to each condition, more DATFs were shared
across treatments of a single cell line than across cell lines for
the same signal, supporting our initial hypothesis that different
cell lines will have more context-specific regulatory activity than
different signal treatments. In the original study, the authors also
reported larger overlap among the highly variable genes for cell
lines compared to signaling (Cook and Vanderhyden, 2019).

Further, we identified 28 common DATFs (Supplementary
Figure S4), which frequently occur in differential analysis across
timepoints (see section “Materials and Methods”). Among the
most frequently identified DATFs are AP-1 genes, such as
JUN and FOSL1, and NFκB genes, such as NFKB2 and RELB,
consistent with the literature analysis mentioned above. Next,
we annotated the TFs as E (i.e., an epithelial gene) or M (i.e.,
a mesenchymal gene) depending on whether the expression
levels trended upward or downward over the course of the
experiment. TFs whose activity increased and subsequently
decreased during the transition were denoted intermediate (I)

Frontiers in Molecular Biosciences | www.frontiersin.org 3 April 2020 | Volume 7 | Article 54

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org/
https://www.frontiersin.org/journals/molecular-biosciences#articles


fmolb-07-00054 April 21, 2020 Time: 14:30 # 4

Ramirez et al. Constructing Context-Specific GRCs Using scRNA-Seq

FIGURE 2 | The three signal pathways have convergent gene targets. (A) Simplified models of signal transduction pathways for EGF, TGFB1, and TNF based on
published results in the literature. (B) Upset plot showing overlap of differentially activated regulons across cell lines and signal treatments.

and those whose activity decreased and then increased were
denoted I2 (Figures 3A,B). Across the different experimental
datasets, the roles of these TFs in EMT was observed changing
depending on the context (Supplementary Figure S1 for the
activity time dynamics of every TF). Some TFs showed signal-
specific activity profiles, such as NFKB2, which frequently served
as an I gene in TNF-treated cases and an M gene in most
other cases (Figure 4A). Others, such as SPDEF, showed cell
line-dependent behaviors (Figure 4B). SPDEF only acted as a
consistent M gene in OVCA420 and DU145, showing more
E-like activity profiles in A549 and MCF7. Other genes from
the overlapping TFs were more consistent across all contexts
(Figure 4C); KLF6 behaved as an M gene in nearly all cases.
These universally consistent genes were also generally among
the well-documented EMT-related TFs, such as JUN and MYC
(Supplementary Table S1).

Exploring Intermediate EMT States and
Transition Paths
To break down the chronological progression of EMT and the
backward transition, the activity of AP-1 and NF-KB across the
different timepoints were examined (Figure 5 for FOSL1 and

JUNB vs. RELB and NFKB2, Supplementary Figure S2 for RELB
vs. FOSL1, and Supplementary Figure S3 for RELB vs. JUNB).
In multiple experimental conditions, cells exhibited an increase
in activity of one signaling component before the next. During
the backward transition, the order of the changes in activity is
usually not consistent with the order for the forward transition,
suggesting that EMT is not reversible and instead must transit
through multiple distinct intermediate states depending on the
direction of transition (Figure 5). The exact trajectory of the
transition also varied with respect to both signaling treatment
and cell line, confirming that context-specific features of EMT are
present for both variables.

Constructing Context-Specific GRCs
Next, we constructed context-specific GRCs using a combined
bioinformatics and mathematical modeling protocol. Each
context-specific gene network was built based on the following
rules (see section “Materials and Methods” for details). First, we
started with the 28 common TFs that we previously identified
from comparisons across time points and identified neighboring
nodes of these TFs using SCENIC regulons, i.e., genes directly
upstream or downstream of the TFs. Regulatory interactions
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FIGURE 3 | Gene expression time dynamics of common TFs for forward and backward transitions. (A) Table of the most common 28 TFs with state classifications
sorted by cell line. While many genes play similar roles across all datasets, some, such as SPDEF and IRF3, show cell-line dependent behaviors. (B) 28 most
common TFs with state classifications sorted by signal. As in (A), some genes such as STAT1 and NFKB appear to play different roles in EMT according to the
inducing signal.

between these nodes were scored based on mutual information
(MI) of TF activities, and the sign (i.e., activation or inhibition)
was determined based on the sign of the TF activity Spearman’s
correlations. Second, the networks for the forward and backward
transitions were combined to form a unified network. Third,
any TF which has only outgoing links was removed. This step
was performed only once, and TFs that had only outgoing links
afterward were kept in the model.

We generated a series of gene networks for each condition
by varying the cutoff values of MI. From our initial exploration,
we found that activating links were favored in the network
construction, probably because of the nature of scRNA-seq data
(Sanchez-Taltavull et al., 2019). To select different numbers of
activating and inhibitory links, we varied the MI cutoffs for
positive and negative interactions. These thresholds facilitated
the construction of diverse networks having different number of
TFs, interactions, ratio of positive and negative interactions, etc.
We did an initial screening to ensure that a network contains
at least 5 E or M TFs for that specific condition. However, we
still investigate networks even when only positive or negative
interactions are present.

The generated networks were simulated using the parameter-
agnostic random circuit perturbation (RACIPE) approach. We
evaluated the quality of gene networks by comparing the
simulated and experimental gene expression data (see section
“Materials and Methods”). From this extensive analysis, we
identified representative GRCs containing both E and M TFs

for each condition and yielding high accuracies (Figure 6A,
network topology files are listed in Supplementary Material).
These networks illustrate the heterogeneity in responses for
different cell lines and treatments. Simulating the large number
of networks provides unique insights into network structure
and resultant dynamics (Figure 6B). We found that typically
moderately sized networks have better accuracy compared to
large or small networks. This is reflected in the accuracy plots
for various number of nodes (Figure 6B1) or interactions in
the network (Figure 6B3). Expectedly, accuracy increases if the
fraction of nodes that can be assigned as E or M increases
(Figure 6B2), as such networks capture a larger proportion of
differentially active regulons. Similarly, very low or high mutual
information cutoffs for inhibitory or excitatory interactions yield
lower accuracies as the network becomes sparsely connected or
very dense in such cases (Figures 6B4,B5). We observed that the
accuracies are also context-specific, as shown in Figure 6B6 and
the performance for individual dataset shown in Supplementary
Figure S5. More information on each network is given in
Supplementary Table S3.

Taking the GRC from the OVCA420 TGFB1 condition
[identified as having the highest EMT score by Cook and
Vanderhyden (2019)] as an example (Figure 7B), we directly
compared the simulation results from RACIPE with the
experimental data (Figure 7A). We observed that the simulations
not only capture the two major E and M states, but the simulated
expression profiles are also very similar to the activities of the
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FIGURE 4 | Regulon activity profiles over time. (A) TF activity profile for NFKB2 over time in all cell lines treated with TNF. NFKB2 generally has similar gene activity
dynamics across all cell lines treated with TNF. During signal induction, NFKB2 activity initially goes up and goes down at later time points; during signal removal, it
gradually decreases. (B) TF activity profile for SPDEF over time in all cell lines treated with TGFB1. TGFB1 dynamics differ widely across cell lines; it acts like an M
gene in DU145 and OVCA420, acts as an E gene in MCF7, and shows generally low activity in A549. (C) TF activity profile for KLF6 over time in all cell lines treated
with TGFB1 or TNF. Across both cell lines and signal treatments, KLF6 activity follows a similar pattern throughout the transition: activity largely increases during the
forward transition and decreases after signal removal.

TFs in the datasets for the forward and backward transitions
(Figure 7A). We projected the experimental activities on the first
two principal components of the simulated data and observed
that the projected values identify the transition of cells from E
to M upon signal induction and M to E during signal removal
(Figure 7C). The average and standard deviation of the cells at
each time point are shown in bottom panels highlighting the

distinct trajectories during the forward and reverse transitions.
Further, we observed that cells could not undergo a complete
backward transition upon signaling removal.

To test whether we can identify similar features in our
simulations, we used the E state models and applied a signal
(i.e., TGFB1) to JUN and RELB and observed how the gene
expressions change over time (Figure 7E). We observed the E
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FIGURE 5 | Signal chronology across experimental conditions. Combined average TF activity of FOSL1 and JUNB vs. RELB and NFKB2 for each timepoint across
each cell line and signal treatment. TF activity from 7 days onward (data from the backward direction) is scaled on a linear model to match the 7 days distributions for
the forward direction. Some aspects of the EMT-MET trajectory are similar across cell lines, such as in A549, DU145, and MCF7 treated with TNF, which all follow a
generally counterclockwise movement. On the other hand, the transition path is also in large part determined by cell line for all signaling conditions, such as in
OVCA420, where the trajectory is generally clockwise for all inducing signals.

models gradually shift toward M over time, while some models
undergo a complete transition to the M state. The number of
models that transit to the M state depends on the strength of
the signal and noise in the simulations. The strength of the signal
induction and noise were selected so that the E-state models have
significantly more transitions to the M state with both signal
activation and noise than those for the cases with only signal
activation or noise (Supplementary Figure S7). We also observe
that signal removal doesn’t result in MET in all the models that
underwent EMT. When we inhibited the models by reducing the
production rates of JUN and RELB below their original values,
a larger fraction of models was able to transit back to the E
state. The mean and standard deviation of the models at different
times follow patterns quite similar to experimental activities
and capture the distinct forward and backward trajectories. We
found similar results when the statistics were performed to
the subset of models that transit from the E state to the M
state (Supplementary Figure S8). We also observed that the
transition occurred at different time scales in both experiments
and simulations where the cells (models) moved faster in the

forward direction and slower in backward direction. The average
expression of each TF at multiple time points in OVCA420
TGFB1 signal induction and removal in experiments and in
simulations during signal induction, removal, and inhibition
is shown in Supplementary Figure S6. Overall, these results
highlight that our simulations are able to capture many aspects
of experimental data.

A Common Gene Regulatory Circuit
Driving a Multi-Step EMT
Although the canonical master regulators of EMT such as
SNAIL and ZEB were not prevalent in the differential activity
analysis, there is evidence suggesting that they are downstream
targets of the signaling pathways triggered in the experiment
(Supplementary Table S2) (Chen and Davis, 2003; Li et al.,
2010; Wu and Zhou, 2010; Romagnoli et al., 2012). Using
information from the literature and TFs identified in the
experimental data, we constructed a core GRC to model the
generic effect of the signals on driving EMT (Figure 8A).
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FIGURE 6 | Constructing context-specific gene regulatory networks. (A) Representative networks yielding high accuracy scores for various conditions. Activating
interactions denoted as blue arrows and inhibitory interactions as red round-tipped arrows. (B) Accuracy dependence on various network properties for all
conditions. (B1–B3) Points showing accuracy (measured as fraction of models that can be classified as E or M) of models for various (B1) number of TFs in the
network, (B2) fraction of TFs assigned as E or M using experimental data, (B3) number of interactions in the network. (B4–B6) Box plots showing accuracy of
networks for various (B4) mutual information cutoffs for inhibitory interactions, (B5) mutual information cutoffs for excitatory interactions, (B6) different experimental
conditions.
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FIGURE 7 | Comparison of network simulations on 2000 RACIPE models with experimental observations for OVCA420 treated with TGFB1 signaling.
(A) Hierarchical clustering of simulated and experimental activities. (B) The network topology, in which TGFB1 signaling is applied to JUN and RELB.
(C) Experimental activities (top) and their mean and standard deviation (bottom) during signal induction (left) and removal (right) projected on first two principal
components of the simulated data. (D) Mean and standard deviation of the simulated profiles of the E-state models during signal induction (top), removal (middle),
and inhibition (bottom) at multiple time points projected on the first two principal components as in (C). (E) Simulated profiles of the E-state models during signal
removal and induction at multiple time points projected on the first two principal components as in (C).

Using RACIPE, we performed network simulations and identified
three distinct states. One state corresponds to E cells with
high expression of CDH1 and low signal strength; as the
signal strength increases, models are likely to enter one of
the other states: an intermediate state where signal strength is

high and NF-KB and AP-1 are expressed, but ZEB remains
low, and finally a full M state with high expression of M
marker genes (Figure 8B). The states in this network support
the hypothesis that the EMT undergone in this experiment
may not be complete and may only demonstrate an initial
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FIGURE 8 | Core network simulations with 2000 RACIPE models. (A) Core EMT network derived from published experimental results. Activating interactions
denoted as blue arrows and inhibitory interactions as red round-tipped arrows. (B) Heatmap of core network simulation results with ward.D2 hierarchical clustering
of models and genes (number of clusters k = 3). (C) PCA of core network simulation results color coded by cluster.

signaling response. On a PCA plot, the intermediate state occurs
between the two extreme phenotypes in one corner of the plot
(Figure 8C). It is possible that other intermediate states exist
when cells undergo a different type or direction of EMT, and
these context-specific states are simply not captured by the
common core circuit.

DISCUSSION

In this study, we analyzed a recent collection of time-series single
cell RNA sequencing (scRNA-seq) data sets for four different
cancer cell lines and three types of treatments targeting different
signaling pathways to model context-specific GRCs driving EMT.
We developed a combined bioinformatics and mathematical
modeling approach and explored its effectiveness in constructing
GRCs that capture the essential temporal dynamics derived
from the scRNA-seq data. We used bioinformatics analysis to
construct networks of differentially active transcription factors
using the transcription factor activities obtained through co-
expression and cis-regulatory motif analysis and used the ODE-
based mathematical modeling method RACIPE to simulate the
gene expression of a large number of constructed networks. The
consistency of experimental activities and simulated expressions
of the transcription factors was used to evaluate the networks

and identify optimal networks. Our study sheds light on
the regulatory mechanisms of EMT that are common and
context-specific and how the identified transcriptional regulators
contribute to driving or reversing EMT.

In particular, we explored the options to construct GRCs
directly from cis-regulatory motif analysis using gene expression
data and subsequent in silico validation by comparing circuit
simulations with experimental data. From our analysis, we found
it is still challenging to build high-quality circuit models directly
from bioinformatics tools, consistent with a recent benchmark
test (Pratapa et al., 2020). Most existing bioinformatics methods
rely on statistical tests to refine network topologies by removing
spurious interactions. Instead of using simple statistic-based
filtering, we applied RACIPE to evaluate whether the constructed
GRCs can capture the gene expression states from the data.
Using RACIPE, we found a gene network typically cannot
recapitulate experimentally observed cellular states when the
network is either too small or too large. The optimal GRCs were
mostly derived from gene networks of medium size. In addition,
higher accuracy was usually found in GRCs constructed using
different cutoff values for excitatory and inhibitory interactions,
likely because SCENIC produced an unbalanced amount of
interactions by type. We expect that an iterative procedure
between network building and modeling can further improve the
quality of GRC modeling.
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Both the bioinformatic analysis on the data sets from
multiple conditions and the literature analysis indicate that
the TGFB1, EGR, and TNF signaling pathways all converge
to two transcription factor (TF) complexes AP-1 and NFκB.
The activation of these two complexes induces a cellular
state transition to an intermediate EMT state, an event
presumably occurring prior to the induction of typical EMT
master regulators, such as SNAIL, TWIST, and ZEB. Our
findings are consistent with the picture of multi-step state
transitions during EMT (Zhang and Weinberg, 2018). One
way to further test the model is to inhibit AP-1 and NFκB
and evaluate how the perturbation affects EMT and MET.
Moreover, from both of our bioinformatics and mathematical
modeling analyses, we found that the trajectories of the forward
and backward transitions do not overlap but go along two
different paths, a typical hysteresis phenomenon of a non-
linear dynamical system (Kramer and Fussenegger, 2005). The
distinct paths of EMT and MET can be clearly illustrated by
the temporal activity dynamics of AP-1 and NFκB. Such an
irreversible behavior has been also observed in lung cancer in a
recent study (Karacosta et al., 2019). Also, from mathematical
modeling, we found that, after the initial signaling induction
to achieve the forward transition, signaling removal does not
fully reverse the process, but signaling inhibition can. The
incomplete reverse process is also evident from the single cell
data for most conditions in this study. Further characterizing
the transitional paths will expand our knowledge on driving
or reversing EMT.

Further, we found the performance of network modeling is
context dependent. For instance, accuracies for some conditions
like OVCA420 TNF were quite low. This can happen if the
identified common TFs are not differentially activated, resulting
in low number of E and M TFs. Cook and Vanderhyden
(2019) indeed discussed that the A549 TGFB1 and OVCA420
TNF conditions had low EMT scores. Another limitation
of the current approach is that it relies on SCENIC for
identifying regulons and thus utilizes regulatory interactions
identified by only gene co-expression and cis-regulatory motif
enrichment analysis. One way to improve the analysis is to
incorporate regulatory interactions from the literature. The
specific datasets analyzed here contain heterogeneous clusters,
where cells from different time points do not fall into distinct
clusters (Supplementary Figure S9), but are rather on a
continuum; this can also limit the robustness of the analysis.
Another potential caveat of the current approach is that
transcriptomics data can only capture transcriptional regulations
but fall short to discover new pathways of signaling induction
and metabolic pathways. A potential solution is to integrate
multi-omics data (Hawe et al., 2019) to improve network
construction and modeling.

MATERIALS AND METHODS

Single Cell RNA-Seq Data Processing
Processed single cell RNA seq data were downloaded from
the download link provided by Cook and Vanderhyden (2019)

Normalized log counts were used in pySCENIC v0.9.19 to
calculate the activities of transcription factors. We used 7-species
hg19 mc9nr cisTargetDBs for the enrichment analysis. The
activities obtained from SCENIC analysis were used as counts in
Seurat v3.1.1 for downstream analysis. The differential activity
analysis was conducted using Seurat. We used default settings
except for the log fold change criteria which we reduced to
zero, as the activity fold change is quite low. To capture the
changes over time, we performed seven comparisons for each
of the twelve conditions – four for the forward group (1) 0 vs.
8 h; (2) 0 vs. 1 day; (3) 0 vs. 3 days; (4) 0 vs. 7 days; and
three for the backward group (5) 7 days vs. 8 h; (6) 7 days vs.
1 day; (7) 7 days vs. 3 days. From this comprehensive differential
analysis for 84 comparisons, we selected top hundred DATFs
(sorted based on adjusted p-values) for the forward and backward
directions to obtain a list of highly variable TFs for each of
the twelve conditions. Further, we identified 28 DATFs, each
of which occurs in at least 24 of the 84 pairwise comparisons
(Supplementary Figure S5). The TFs were annotated as E (i.e.,
an epithelial gene) depending on whether the log fold change in
the 0 day vs. 7 days (7 days vs. 3 d_rm) comparison is negative
(positive) with an adjusted p-value of 0.05. Similarly, TFs with
log fold change positive (negative) in the 0 day vs. 7 days (7 days
vs. 3 d_rm) comparison are annotated as M (i.e., a mesenchymal
gene). Scaled activity values from Seurat were used for network
analysis. We scaled the backward activities whenever the forward
and backward activities were needed on the same scale (for
example, in gene activity plots in Figures 4, 7). As the 7 days
cells were included in both forward and backward datasets, these
were used to fit a linear model which was then used to scale the
activities of cells from the other days where the signal is removed.

Network Construction
All the nearest neighboring TFs of the common DATFs were
identified using the SCENIC regulons. Thus, for a TF (annotated
as TF1), if either the forward or backward regulon for the
TF includes another TF (annotated as TF2), then TF2 was
identified as a target of TF1. Spearman’s correlation between the
activities of the TFs in a specific dataset was used for assigning
an interaction as excitatory or inhibitory. Mutual information
between the DATF activities was calculated with infotheo R
package using “mm” correction (Meyer, 2014). The interactions
in the network were filtered based on MI cut offs and any
interaction with opposite sign in the forward and backward
direction was removed from the network. Based on the maximum
and minimum values of MI, we varied the positive MI cutoffs
from 0.05 to 1 and the negative MI cutoffs from 0.05 to 0.5
incrementing by 0.05 at each step. If a TF in a network had only
outgoing interactions with no incoming interactions, then the
TF was removed from the network. This pruning was done only
once – if removing a TF this way makes another TF with only
outgoing interactions, then this new signaling TF is not removed.

Network Simulation
The network construction step generated a large number of
networks with different number of nodes and interactions
for each condition. The resulting networks, which specify the
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interactions in the form of regulator, target, and interaction
type, were simulated using the default settings in sRACIPEv1.3.1
(Huang et al., 2017; Kohar and Lu, 2018). Specifically, 2000
models with randomized kinetic parameters were generated
for each network. The model kinetic parameters include two
parameters for each gene – maximum production rate (1–100)
and degradation rate (0.1–1) and three parameters for each
interaction – Hill coefficient of co-operativity (1–6), fold change
(1–100), and threshold. The numbers in brackets indicate the
range from which the corresponding parameter was selected.
The range for threshold for interactions was dynamically selected
based on network topology to roughly satisfy the half functional
rule (Huang et al., 2017). The initial condition for each gene
in a model was selected from a log distribution over the
minimum and maximum possible expression value for that
gene in the model with given kinetic parameters. For more
details, please refer to Huang et al. (2017). The ODEs with
these kinetic parameters and initial conditions were solved using
the fourth order Runge–Kutta method and the model state was
recorded after 50 time units. These simulated gene expressions
for all the models were log transformed and standardized for
further analysis.

Network Evaluation
Gene networks were evaluated by comparing the simulated and
experimental TF activity data. For each experimental condition,
the activities at 0 and 7 days during signal induction and 3 days
after signal removal were used to classify the network TFs
as either E or M TFs. For the forward transition, a TF was
defined as an M TF if the gene has differential activity (adjusted
p-value < 0.05) with a positive log fold change when comparing
the data from 0 and 7 days, and as an E TF if the log fold
change is negative. Similarly, for the backward transition, a TF
was defined as an M TF if the gene has differential activity with
a negative log fold change when comparing the data from 7
and 3 days after signal removal, and as an E TF if the log fold
change is positive. The EMT states were not assigned to TFs if
there is a conflict between E and M assignment for the forward
and backward transitions. Using these E and M classification,
we defined two digitized gene expression vectors as references to
represent the E and M states. Here, in the E reference state, E
TFs have high expressions (denoted as 1) and M TFs have low
expressions (denoted as 0), vice versa. These E and M reference
states were used to identify whether the 2000 simulated profiles
using RACIPE can generate models in the E and M states. The
simulated profiles were binarized with the binarize R package
and kMeans method with two clusters (Mundus et al., 2019).
The fraction of models having expression profiles close to the
E and M state were calculated to evaluate how accurately the
constructed network can capture the EMT states. The similarity
between the binarized expression profiles and the digitized E and
M expression vectors was measured by calculating the hamming
distance between the common TFs. The hamming distance cutoff
for matching of simulated and experimental data is selected based
on number of common TFs such that the probability of a match
by random chance stays below 0.05.

To model the signal induction in simulations, we selected
all of the E models obtained in the previous simulations and
increased the production rates of JUN and RELB in the OVCA420
TGFB1 network. The productions rates of both were multiplied
by 10,000 and the network was simulated keeping the other
parameters same (Figures 7D,E). Steady state solutions obtained
from previous simulations were used as the initial conditions.
The trajectories were sampled at multiple time points to capture
the dynamics. To account for intrinsic and extrinsic noise
and facilitate the transition between the states we also added
some noise (0.05) during the simulations. Then, the production
rates were reverted back to their original values to reflect the
removal of signals. In another set of simulations, using the
steady state solutions of the signal induction models as the initial
condition, the production rates of RELB and JUN were decreased
(multiplied by 0.0001) below their original values to allow all the
E state models to transit back (Figures 7D,E).

DATA AVAILABILITY STATEMENT

All sequencing data used in this study was generated by Cook
and Vanderhyden (2019) and is available at https://drive.google.
com/drive/folders/1lZ38Uj2ZjmFus7XbHGTATh8f9MqXLAf_.
The python and R scripts used to perform the analyses here
are available at https://lusystemsbio.github.io/EMT-Cancer-
scRnaSeq/EMT-Cancer-scRnaSeq.html.

AUTHOR CONTRIBUTIONS

ML conceived the scope and design of the study. DR and VK
conducted experimental data analysis and figure generation. VK
generated network models and performed simulations. DR, VK,
and ML contributed to drafting and revising the manuscript.

FUNDING

This study was supported by a startup fund from The Jackson
Laboratory, by the National Cancer Institute of the National
Institutes of Health under Award Number P30CA034196, and by
the National Institute of General Medical Sciences of the National
Institutes of Health under Award Number R35GM128717. DR
was also partially supported by a Summer Student Fellowship
at the Jackson Laboratory and by the National Cancer
Institute of the National Institutes of Health under Award
Number R25CA174584.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fmolb.2020.
00054/full#supplementary-material

Frontiers in Molecular Biosciences | www.frontiersin.org 12 April 2020 | Volume 7 | Article 54

https://drive.google.com/drive/folders/1lZ38Uj2ZjmFus7XbHGTATh8f9MqXLAf_
https://drive.google.com/drive/folders/1lZ38Uj2ZjmFus7XbHGTATh8f9MqXLAf_
https://lusystemsbio.github.io/EMT-Cancer-scRnaSeq/EMT-Cancer-scRnaSeq.html
https://lusystemsbio.github.io/EMT-Cancer-scRnaSeq/EMT-Cancer-scRnaSeq.html
https://www.frontiersin.org/articles/10.3389/fmolb.2020.00054/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fmolb.2020.00054/full#supplementary-material
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org/
https://www.frontiersin.org/journals/molecular-biosciences#articles


fmolb-07-00054 April 21, 2020 Time: 14:30 # 13

Ramirez et al. Constructing Context-Specific GRCs Using scRNA-Seq

REFERENCES
Aibar, S., González-Blas, C. B., Moerman, T., Huynh-Thu, V. A., Imrichova,

H., Hulselmans, G., et al. (2017). SCENIC: single-cell regulatory network
inference and clustering. Nat. Methods 14, 1083–1086. doi: 10.1038/nmeth.
4463

Bartoschek, M., Oskolkov, N., Bocci, M., Lövrot, J., Larsson, C., Sommarin, M.,
et al. (2018). Spatially and functionally distinct subclasses of breast cancer-
associated fibroblasts revealed by single cell RNA sequencing. Nat. Commun.
9:5150.

Basu, S., Cheriyamundath, S., and Ben-Ze’ev, A. (2018). Cell–cell adhesion: linking
Wnt/β-catenin signaling with partial EMT and stemness traits in tumorigenesis.
F1000Res 7:1488. doi: 10.12688/f1000research.15782.1

Bocci, F., Jolly, M. K., George, J. T., Levine, H., and Onuchic, J. N. (2018).
A mechanism-based computational model to capture the interconnections
among epithelial-mesenchymal transition, cancer stem cells and Notch-Jagged
signaling. Oncotarget 9, 29906–29920.

Brabletz, T., Kalluri, R., Nieto, M. A., and Weinberg, R. A. (2018). EMT in cancer.
Nat. Rev. Cancer 18, 128–134.

Burger, G. A., Danen, E. H. J., and Beltman, J. B. (2017). Deciphering epithelial–
mesenchymal transition regulatory networks in cancer through computational
approaches. Front. Oncol. 7:162. doi: 10.3389/fonc.2017.00162

Butler, A., Hoffman, P., Smibert, P., Papalexi, E., and Satija, R. (2018). Integrating
single-cell transcriptomic data across different conditions, technologies, and
species. Nat. Biotechnol. 36, 411–420. doi: 10.1038/nbt.4096

Chen, D., and Davis, J. S. (2003). Epidermal growth factor induces c-fos and c-jun
mRNA via Raf-1/MEK1/ERK-dependent and -independent pathways in bovine
luteal cells. Mol. Cel. Endocrinol. 200, 141–154. doi: 10.1016/s0303-7207(02)
00379-9

Chen, Y., LeBleu, V. S., Carstens, J. L., Sugimoto, H., Zheng, X., Malasi, S., et al.
(2018). Dual reporter genetic mouse models of pancreatic cancer identify an
epithelial-to-mesenchymal transition-independent metastasis program. EMBO
Mol. Med. 10:e9085.

Chung, V. Y., Tan, T. Z., Tan, M., Wong, M. K., Kuay, K. T., Yang, Z., et al.
(2016). GRHL2-miR-200-ZEB1 maintains the epithelial status of ovarian cancer
through transcriptional regulation and histone modification. Sci. Rep. 6:19943.

Cook, D. P., and Vanderhyden, B. C. (2019). Comparing transcriptional dynamics
of the epithelial-mesenchymal transition. Cancer Biol. biorxiv [Preprint]. doi:
10.1101/732412

Ding, S., Zhang, W., Xu, Z., Xing, C., Xie, H., Guo, H., et al. (2013). Induction
of an EMT-like transformation and MET in vitro. J. Transl. Med. 11:164. doi:
10.1186/1479-5876-11-164

Dong, J., Hu, Y., Fan, X., Wu, X., Mao, Y., Hu, B., et al. (2018). Single-cell RNA-seq
analysis unveils a prevalent epithelial/mesenchymal hybrid state during mouse
organogenesis. Genome Biol. 19:31

Font-Clos, F., Zapperi, S., and La Porta, C. A. M. (2018). Topography of epithelial–
mesenchymal plasticity. Proc,. Natl. Acad. Sci. U.S.A. 115, 5902–5907. doi: 10.
1073/pnas.1722609115

Freudlsperger, C., Bian, Y., Contag Wise, S., Burnett, J., Coupar, J., Yang, X., et al.
(2013). TGF-β and NF-κB signal pathway cross-talk is mediated through TAK1
and SMAD7 in a subset of head and neck cancers. Oncogene 32, 1549–1559.
doi: 10.1038/onc.2012.171

Gonzalez, D. M., and Medici, D. (2014). Signaling mechanisms of the epithelial-
mesenchymal transition. Sci. Signal. 7:re8. doi: 10.1126/scisignal.005189

Hawe, J. S., Theis, F. J., and Heinig, M. (2019). Inferring interaction networks from
multi-omics data. Front. Genet. 10:535. doi: 10.3389/fgene.2019.00535

Hong, T., Watanabe, K., Ta, C. H., Villarreal-Ponce, A., Nie, Q., and Dai, X.
(2015). An Ovol2-Zeb1 mutual inhibitory circuit governs bidirectional and
multi-step transition between epithelial and mesenchymal states. PLoS Comput.
Biol. 11:e1004569. doi: 10.1371/journal.pcbi.1004569

Huang, B., Lu, M., Jia, D., Ben-Jacob, E., Levine, H., and Onuchic, J. N.
(2017). Interrogating the topological robustness of gene regulatory circuits
by randomization. PLoS Comput. Biol. 13:e1005456. doi: 10.1371/journal.pcbi.
1005456

Jia, D., Li, X., Bocci, F., Tripathi, S., Deng, Y., Jolly, M. K., et al. (2019). Quantifying
cancer epithelial-mesenchymal plasticity and its association with stemness and
immune response. JCM 8:725. doi: 10.3390/jcm8050725

Jolly, M. K. (2015). Implications of the hybrid epithelial/mesenchymal
phenotype in metastasis. Front. Oncol. 5:155. doi: 10.3389/fonc.2015.
00155

Karacosta, L. G., Anchang, B., Ignatiadis, N., Kimmey, S. C., Benson, J. A., Shrager,
J. B., et al. (2019). Mapping lung cancer epithelial-mesenchymal transition states
and trajectories with single-cell resolution. Nat. Commun. 10:5587.

Kersten, K., Visser, K. E., Miltenburg, M. H., and Jonkers, J. (2017). Genetically
engineered mouse models in oncology research and cancer medicine. EMBO
Mol. Med. 9, 137–153. doi: 10.15252/emmm.201606857

Kohar, V., and Lu, M. (2018). Role of noise and parametric variation in the
dynamics of gene regulatory circuits. Syst. Biol. Appl. 4:40.

Kramer, B. P., and Fussenegger, M. (2005). Hysteresis in a synthetic mammalian
gene network. Proc. Natl. Acad. Sci. U.S.A. 102, 9517–9522. doi: 10.1073/pnas.
0500345102

Li, Y., Liu, Y., Xu, Y., Voorhees, J. J., and Fisher, G. J. (2010). UV irradiation induces
Snail expression by AP-1 dependent mechanism in human skin keratinocytes.
J. Dermatol. Sci. 60, 105–113. doi: 10.1016/j.jdermsci.2010.08.003

Lu, M., Jolly, M. K., Levine, H., Onuchic, J. N., and Ben-Jacob, E.
(2013). MicroRNA-based regulation of epithelial-hybrid-mesenchymal
fate determination. Proc. Natl. Acad. Sci. U.S.A. 110, 18144–18149.
doi: 10.1073/pnas.1318192110

Meyer, P. E. (2014). infotheo: Information-Theoretic Measures.
Mundus, S., Müssel, C., Schmid, F., Lausser, L., Blätte, T. J., Hopfensitz, M., et al.

(2019). Binarize: Binarization of One-Dimensional Data. R package version 1.3.
Available online at: https://CRAN.R-project.org/package=Binarize

Nieto, M. A., Huang, R. Y.-J., Jackson, R. A., and Thiery, J. P. (2016). EMT: 2016.
Cell 166, 21–45.

Nistico, P., Bissell, M. J., and Radisky, D. C. (2012). Epithelial-mesenchymal
transition: general principles and pathological relevance with special emphasis
on the role of matrix metalloproteinases. Cold Spring Harbor Perspect. Biol.
4:a011908. doi: 10.1101/cshperspect.a011908

Patel, A. P., Tirosh, I., Trombetta, J. J., Shalek, A. K., Gillespie, S. M., Wakimoto,
H., et al. (2014). Single-cell RNA-seq highlights intratumoral heterogeneity
in primary glioblastoma. Science 344, 1396–1401. doi: 10.1126/science.12
54257

Pires, B. R. B., Mencalha, A. L., Ferreira, G. M., de Souza, W. F., Morgado-Díaz,
J. A., Maia, A. M., et al. (2017). NF-kappaB is involved in the regulation of EMT
genes in breast cancer cells. PLoS One 12:e0169622. doi: 10.1371/journal.pone.
0169622

Pratapa, A., Jalihal, A. P., Law, J. N., Bharadwaj, A., and Murali, T. M. (2020).
Benchmarking algorithms for gene regulatory network inference from single-
cell transcriptomic data. Nat. Methods. 17, 147–154. doi: 10.1038/s41592-019-
0690-6

Ramirez, D., Kohar, V., Katebi, A., and Lu, M. (2019). Modeling a gene regulatory
network of EMT hybrid states for mouse embryonic skin cells. bioRxiv
[Preprint]. doi: 10.1101/799908.

Romagnoli, M., Belguise, K., Yu, Z., Wang, X., Landesman-Bollag, E., Seldin,
D. C., et al. (2012). Epithelial-to-mesenchymal transition induced by TGF-
β1 Is mediated by blimp-1–dependent repression of BMP-5. Cancer Res. 72,
6268–6278. doi: 10.1158/0008-5472.can-12-2270

Sanchez-Taltavull, D., Perkins, T. J., Dommann, N., Melin, N., Keogh, A.,
Candinas, D., et al. (2019). Bayesian Correlation is a robust similarity measure
for single cell RNA-seq data. Bioinformatics 2:lqaa002.

Steinway, S. N., Zanudo, J. G. T., Ding, W., Rountree, C. B., Feith, D. J., Loughran,
T. P., et al. (2014). Network modeling of TGF signaling in hepatocellular
carcinoma epithelial-to-mesenchymal transition reveals joint sonic hedgehog
and wnt pathway activation. Cancer Res. 74, 5963–5977. doi: 10.1158/0008-
5472.can-14-0225

Stuart, T., Butler, A., Hoffman, P., Hafemeister, C., Papalexi, E., Mauck, W. M.,
et al. (2019). Comprehensive integration of single-cell data. Cell 177, 1888.e21–
1902.e21.

Sun, L., and Carpenter, G. (1998). Epidermal growth factor activation of NF-κB is
mediated through IκBα degradation and intracellular free calcium. Oncogene
16, 2095–2102. doi: 10.1038/sj.onc.1201731

Thiery, J. P., Acloque, H., Huang, R. Y. J., and Nieto, M. A. (2009). Epithelial-
mesenchymal transitions in development and disease. Cell 139, 871–890. doi:
10.1016/j.cell.2009.11.007

Frontiers in Molecular Biosciences | www.frontiersin.org 13 April 2020 | Volume 7 | Article 54

https://doi.org/10.1038/nmeth.4463
https://doi.org/10.1038/nmeth.4463
https://doi.org/10.12688/f1000research.15782.1
https://doi.org/10.3389/fonc.2017.00162
https://doi.org/10.1038/nbt.4096
https://doi.org/10.1016/s0303-7207(02)00379-9
https://doi.org/10.1016/s0303-7207(02)00379-9
https://doi.org/10.1101/732412
https://doi.org/10.1101/732412
https://doi.org/10.1186/1479-5876-11-164
https://doi.org/10.1186/1479-5876-11-164
https://doi.org/10.1073/pnas.1722609115
https://doi.org/10.1073/pnas.1722609115
https://doi.org/10.1038/onc.2012.171
https://doi.org/10.1126/scisignal.2005189
https://doi.org/10.3389/fgene.2019.00535
https://doi.org/10.1371/journal.pcbi.1004569
https://doi.org/10.1371/journal.pcbi.1005456
https://doi.org/10.1371/journal.pcbi.1005456
https://doi.org/10.3390/jcm8050725
https://doi.org/10.3389/fonc.2015.00155
https://doi.org/10.3389/fonc.2015.00155
https://doi.org/10.15252/emmm.201606857
https://doi.org/10.1073/pnas.0500345102
https://doi.org/10.1073/pnas.0500345102
https://doi.org/10.1016/j.jdermsci.2010.08.003
https://doi.org/10.1073/pnas.1318192110
https://CRAN.R-project.org/package=Binarize
https://doi.org/10.1101/cshperspect.a011908
https://doi.org/10.1126/science.1254257
https://doi.org/10.1126/science.1254257
https://doi.org/10.1371/journal.pone.0169622
https://doi.org/10.1371/journal.pone.0169622
https://doi.org/10.1038/s41592-019-0690-6
https://doi.org/10.1038/s41592-019-0690-6
https://doi.org/10.1101/799908.
https://doi.org/10.1158/0008-5472.can-12-2270
https://doi.org/10.1158/0008-5472.can-14-0225
https://doi.org/10.1158/0008-5472.can-14-0225
https://doi.org/10.1038/sj.onc.1201731
https://doi.org/10.1016/j.cell.2009.11.007
https://doi.org/10.1016/j.cell.2009.11.007
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org/
https://www.frontiersin.org/journals/molecular-biosciences#articles


fmolb-07-00054 April 21, 2020 Time: 14:30 # 14

Ramirez et al. Constructing Context-Specific GRCs Using scRNA-Seq

Vervoort, S. J., Lourenço, A. R., Tufegdzic Vidakovic, A., Mocholi, E.,
Sandoval, J. L., Rueda, O. M., et al. (2018). SOX4 can redirect TGF-β-
mediated SMAD3-transcriptional output in a context-dependent manner to
promote tumorigenesis. Nucleic Acids Res. 46, 9578–9590. doi: 10.1093/nar/
gky755

Wouters, J., Kalender-Atak, Z., Minnoye, L., Spanier, K. I., De
Waegeneer, M., González-Blas, C. B., et al. (2019). Single-cell gene
regulatory network analysis reveals new melanoma cell states and
transition trajectories during phenotype switching. Genomics. bioRxiv
[Preprint].

Wu, Y., and Zhou, B. P. (2010). TNF-α/NF-κB/Snail pathway in cancer cell
migration and invasion. Br. J. Cancer 102, 639–644. doi: 10.1038/sj.bjc.6605530

Zhang, Y., and Weinberg, R. A. (2018). Epithelial-to-mesenchymal transition in
cancer: complexity and opportunities. Front. Med. 12, 361–373. doi: 10.1007/
s11684-018-0656-6

Zheng, X., Carstens, J. L., Kim, J., Scheible, M., Kaye, J., Sugimoto, H., et al.
(2015). Epithelial-to-mesenchymal transition is dispensable for metastasis but
induces chemoresistance in pancreatic cancer. Nature 527, 525–530. doi: 10.
1038/nature16064

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2020 Ramirez, Kohar and Lu. This is an open-access article distributed
under the terms of the Creative Commons Attribution License (CC BY). The use,
distribution or reproduction in other forums is permitted, provided the original
author(s) and the copyright owner(s) are credited and that the original publication
in this journal is cited, in accordance with accepted academic practice. No use,
distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Molecular Biosciences | www.frontiersin.org 14 April 2020 | Volume 7 | Article 54

https://doi.org/10.1093/nar/gky755
https://doi.org/10.1093/nar/gky755
https://doi.org/10.1038/sj.bjc.6605530
https://doi.org/10.1007/s11684-018-0656-6
https://doi.org/10.1007/s11684-018-0656-6
https://doi.org/10.1038/nature16064
https://doi.org/10.1038/nature16064
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org/
https://www.frontiersin.org/journals/molecular-biosciences#articles

	Toward Modeling Context-Specific EMT Regulatory Networks Using Temporal Single Cell RNA-Seq Data
	Introduction
	Results
	Characterizing the Heterogeneity of Transcription Factor Dynamics
	EMT Across Signaling Conditions Is Similar Within Cell Lines
	Exploring Intermediate EMT States and Transition Paths
	Constructing Context-Specific GRCs
	A Common Gene Regulatory Circuit Driving a Multi-Step EMT

	Discussion
	Materials and Methods
	Single Cell RNA-Seq Data Processing
	Network Construction
	Network Simulation
	Network Evaluation

	Data Availability Statement
	Author Contributions
	Funding
	Supplementary Material
	References


