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Small non-coding RNAs (sRNAs) are critical post-transcriptional regulators of gene
expression. Distinct RNA-binding proteins (RBPs) influence the processing, stability and
activity of bacterial small RNAs. The vast majority of bacterial sRNAs interact with
mRNA targets, affecting mRNA stability and/or its translation rate. The assistance of
RNA-binding proteins facilitates and brings accuracy to sRNA-mRNA basepairing and
the RNA chaperones Hfq and ProQ are now recognized as the most prominent RNA
matchmakers in bacteria. These RBPs exhibit distinct high affinity RNA-binding surfaces,
promoting RNA strand interaction between a trans-encoding sRNA and its mRNA
target. Nevertheless, some organisms lack ProQ and/or Hfq homologs, suggesting the
existence of other RBPs involved in sRNA function. Along this line of thought, the global
regulator CsrA was recently shown to facilitate the access of an sRNA to its target
mRNA and may represent an additional factor involved in sRNA function. Ribonucleases
(RNases) can be considered a class of RNA-binding proteins with nucleolytic activity that
are responsible for RNA maturation and/or degradation. Presently RNase E, RNase III,
and PNPase appear to be the main players not only in sRNA turnover but also in sRNA
processing. Here we review the current knowledge on the most important bacterial
RNA-binding proteins affecting sRNA activity and sRNA-mediated networks.
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INTRODUCTION

The majority of small non-coding RNAs (sRNAs) interact with a complementary mRNA through
an antisense mechanism, leading to the formation of a duplex sRNA-mRNA region. Consequently,
expression from the target mRNA is affected and frequently repressed (Storz et al., 2011).
sRNA-mediated networks are cost efficient and often more rapid in the reprogramming of gene
expression than pathways that rely exclusively on regulatory proteins (Shimoni et al., 2007).
However, the interaction between sRNAs and RNA-binding proteins (RBPs) is often critical for
the regulatory activity of sRNAs. RNA-binding proteins are a diverse class of proteins ubiquitously
found in all living organisms and that control all steps of the life of an RNA (Smirnov et al.,
2017a). The capacity of these proteins to recognize and bind RNA molecules arises from the
presence of well-defined RNA-binding domains, such as the canonical S1 domain, cold shock

Frontiers in Molecular Biosciences | www.frontiersin.org 1 May 2020 | Volume 7 | Article 78

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org/journals/molecular-biosciences#editorial-board
https://www.frontiersin.org/journals/molecular-biosciences#editorial-board
https://doi.org/10.3389/fmolb.2020.00078
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fmolb.2020.00078
http://crossmark.crossref.org/dialog/?doi=10.3389/fmolb.2020.00078&domain=pdf&date_stamp=2020-05-13
https://www.frontiersin.org/articles/10.3389/fmolb.2020.00078/full
http://loop.frontiersin.org/people/892350/overview
http://loop.frontiersin.org/people/892323/overview
http://loop.frontiersin.org/people/432952/overview
http://loop.frontiersin.org/people/891954/overview
http://loop.frontiersin.org/people/44887/overview
http://loop.frontiersin.org/people/841759/overview
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org/
https://www.frontiersin.org/journals/molecular-biosciences#articles


fmolb-07-00078 May 11, 2020 Time: 22:22 # 2

Quendera et al. Major sRNA-Binding Proteins in Bacteria

domain (CSD), K homology (KH) domain, amongst others
(Holmqvist and Vogel, 2018). Additional regions may also
contribute to RNA-protein interactions, like the disordered
regions that confer flexibility to proteins. The overall fold
of the protein and the recognition of different RNA-binding
motifs determines the interaction with RNA in a sequence-
and/or structure-specific dependent manner. RBPs and sRNAs
networks have been extensively studied in Eukarya and Bacteria,
with a current lack of information about this regulation in
Archaea (Gelsinger and DiRuggiero, 2018). Though many RBPs
can be found in bacteria only few have been shown to
associate with sRNAs. However, these participate in a variety
of reactions that affect the catalytic and molecular recognition
properties of sRNAs.

RNA chaperones constitute a specific group of RBPs that
transiently bind and induce structural changes in RNA substrates
by melting RNA secondary structures (Woodson et al., 2018).
Such structural rearrangements influence not only the stability
of sRNA and mRNA molecules but also facilitate the basepairing
of sRNAs and mRNAs. Moreover, RNA chaperones that bind
simultaneously the sRNA and the target mRNA, bring them
closely together in a complex, promoting the annealing and
formation of stable RNA-RNA interactions. Though sRNA-
mRNA basepairing can occur in the absence of RNA chaperones,
their presence greatly accelerates this process (Rajkowitsch
and Schroeder, 2007; Panja et al., 2013). Three major RNA
chaperones that assist sRNA function in bacteria are currently
known: the Sm family member Hfq (Santiago-Frangos and
Woodson, 2018), the FinO family member ProQ (Smirnov
et al., 2016) and the prototype of its family CsrA (Müller
et al., 2019). Despite being widespread, these RBPs are not
evenly present in bacteria and the interactome studies of
these RNA chaperones indicate they preferably bind different
sRNAs (Figure 1), suggesting more specialized roles for each
of them (Holmqvist et al., 2016, 2018; Smirnov et al., 2016;
Melamed et al., 2019).

Ribonucleases (RNases) are another group of specific RBPs
that interact with sRNAs. These enzymes are responsible for the
catalytic cleavage of all classes of RNA (Arraiano et al., 2010).
The stability of sRNAs results from the interplay between RNA
chaperones and RNases with the sRNAs, as RNA chaperones may
protect or expose the sRNAs to the nucleolytic action of RNases
(Holmqvist and Vogel, 2018). The main RNases implicated in
sRNA turnover are the endonucleases RNase E and RNase III
and the exonuclease PNPase (Saramago et al., 2014). In this
mini review, we summarize the current information on the
major RNA chaperones and RNases governing the activity of
bacterial sRNAs.

RNA CHAPERONES

Hfq
Hfq is widely recognized as a global regulator and key element
of sRNA-based networks. Hundreds of sRNA molecules have
been reported in Escherichia coli, and ∼30% rely on Hfq
to carry on their functions (Vogel and Luisi, 2011). Hfq is

particularly important for the action of trans-encoded sRNAs
(which are expressed from a different genomic region than their
mRNA targets), stabilizing the imperfect basepairing between
sRNA/mRNA pairs. At least in Gram-negative bacteria, Hfq
primary role is to promote the annealing of sRNA-mRNA
duplexes, acting as a molecular “matchmaker,” but its role in
Gram-positive bacteria is more controversial (Woodson et al.,
2018; Dos Santos et al., 2019). Interestingly, Hfq can bind other
substrates including rRNA (Andrade et al., 2018), tRNA (Lee
and Feig, 2008), and even DNA molecules (Cech et al., 2016).
The wide substrate selection of Hfq suggests additional functions
for this protein in the cell, such as its involvement in ribosome
biogenesis and translation fidelity (Andrade et al., 2018), and
DNA compaction (Jiang et al., 2015; Malabirade et al., 2017).
Hfq is also involved in many protein-protein interactions (Caillet
et al., 2019), namely with proteins involved in RNA degradation,
such as RNase E (Morita et al., 2005), PNPase (Mohanty et al.,
2004), and Poly(A) Polymerase (Le Derout et al., 2003). These
Hfq-based complexes hint a close relationship between Hfq and
the RNA degradation machinery.

Interactome studies identified thousands of Hfq-bound RNA
pairs, dominated by mRNA-sRNA pairs exhibiting sequence
complementarity (Holmqvist et al., 2016; Melamed et al., 2016;
Mihailovic et al., 2018). Hfq binds single-stranded RNA showing
a preference for (ARN)n motifs frequently found on mRNA
(Link et al., 2009) and short poly(U) tails present at the 3′-
end of sRNAs (Sauer and Weichenrieder, 2011; Sauer et al.,
2012). Hfq binds transiently to sRNA and mRNA, dissociating
from the RNA duplex soon after basepairing occurs (Fender
et al., 2010; Hwang et al., 2011). This widely conserved protein
is composed by two N-terminal structural motifs (Sm1 and
Sm2) and a variable intrinsically disordered C-terminal tail.
The Hfq Sm motifs are characteristic of the Sm/Lsm family of
RNA-binding proteins (Møller et al., 2002). Members of this
family typically adopt a multimer ring-like architecture, with
Hfq assembling into an homohexamer. Multiple RNA-binding
surfaces are consequently present in the Hfq ring: the proximal
face, the distal face, the lateral rim and the C-terminal tail. The
RNA is wrapped around the ring, causing reshaping of the RNA’s
secondary structure and/or bringing two different strands of RNA
into close proximity (Woodson et al., 2018).

sRNAs have been classified in two major classes according to
their dependence on Hfq contact surfaces. The vast majority of
bacterial sRNAs belong to class I. Hfq contacts these transcripts
through binding of its proximal face to the unstructured U-rich
stretches present at the 3′-end of sRNAs. On the other hand,
the distal face of the Hfq ring preferentially interacts with ARN
motifs in mRNAs. The basic patched rim surface may then
interact with UA-rich sites present in both RNAs, coordinating
the successful annealing between the sRNA-mRNA pair (Panja
et al., 2013; Zhang et al., 2013; Schu et al., 2015). As an example,
the iron-responsive class I sRNA RyhB relies on Hfq for successful
interaction with its targets (Massé et al., 2003). The less abundant
class II sRNAs bind Hfq more tightly, as the interaction is
done via the proximal and distal faces of the ring (Panja et al.,
2013). Class II sRNAs also use Hfq as a hub for promoting
duplex formation to their target mRNAs. This is the case for
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FIGURE 1 | Major RNA chaperones in bacteria. (A) RNA chaperone distribution among representative bacteria. The Escherichia coli RNA chaperones Hfq, ProQ,
and CsrA sequences were used as reference for comparison with other species using the co-occurrence analysis of the STRING database (Szklarczyk et al., 2017).
Representative organisms were selected to illustrate the multiple combinations of RNA chaperones expression among bacteria. Close/open circles indicate
presence/absence, respectively. (B) Venn diagram showing the intersection of sRNA substrates for each one of the RNA chaperones (Hfq, ProQ, and CsrA) in
Salmonella enterica. Information retrieved from CLIP-seq datasets from Holmqvist et al. (2016, 2018).

the MgrR sRNA regulation of the eptB and ygdQ transcripts
(Kwiatkowska et al., 2018). In both sRNA classes, the C-terminal
acidic region of Hfq is suggested to help displace unmatched
sRNA-mRNA by transiently competing with the core binding
surfaces (Woodson et al., 2018). This competition not only allows
for a rapid cycling through the pool of cellular RNAs, but also
seems to drive substrate RNA specificity in different bacteria
(Santiago-Frangos et al., 2017, 2019).

Hfq remodels RNA conformation by disrupting secondary
structures, without the need to hydrolyze ATP. This intrinsic
RNA chaperone capability is important to unfold structured
RNAs, exposing unpaired RNA stretches for basepairing between
complementary strands. One of the best characterized Hfq-
dependent sRNAs is MicA, which was found to target the
ompA mRNA (Udekwu et al., 2005). The RNA chaperone
activity of Hfq is also important for remodeling MicA structural
elements, altering its stability and binding specificities. Hfq
binding rearranges MicA fold to allow exposure of the ompA-
binding site for pairing that leads to translation repression
(Andrade et al., 2013; Henderson et al., 2013). Interestingly, target
downregulation may require both Hfq and sRNA independently
of an sRNA/Hfq complex formation. The two-step regulation of
the dgcM mRNA was firstly shown to require Hfq to unfold a 5′-
end secondary structure that otherwise occludes the binding sites
for the OmrA and OmrB sRNAs. Successful binding of OmrA/B
to the early coding sequence of dgcM results in translation
inhibition of the target mRNA (Hoekzema et al., 2019).

ProQ
ProQ is a recently identified RNA chaperone of the FinO family
of RNA-binding proteins commonly found in Proteobacteria
(Olejniczak and Storz, 2017). Most of the work on ProQ
RNA substrates came from studies performed in E. coli,
Salmonella enterica, and Legionella pneumophila, which
identified a hundred mRNA transcripts and more than fifty

sRNAs as ProQ ligands (Attaiech et al., 2016; Smirnov et al.,
2016; Holmqvist et al., 2018; Westermann et al., 2019). ProQ
is a monomeric protein with 25 kDa, composed of a α-helical
N-terminal domain similar to the RNA-binding domain FinO
and a β-sheet C-terminal region partially resembling the
eukaryotic Tudor domain. Both regions are connected by a
highly flexible and extended linker that is thought to allow the
binding and protection of a class of sRNAs that form extended
duplexes (Attaiech et al., 2017; Gonzalez et al., 2017; Olejniczak
and Storz, 2017). Although both domains contribute to the
pairing of complementary RNA molecules, the C-terminal is
critical for the RNA strand exchange activity (Chaulk et al., 2011).
Unlike Hfq, ProQ binding to RNA is sequence-independent
but shows structure preference. ProQ binds double-stranded
RNA and prefers highly structured RNAs (Smirnov et al.,
2017b; Melamed et al., 2019). The FinO-like domain of ProQ is
responsible for this substrate preference (Holmqvist et al., 2018).

Most sRNAs that bind ProQ have unknown functions so
far. In contrast to Hfq, the majority of known ProQ-associated
sRNAs act in cis promoting extensive perfect basepairing with
the target mRNA encoded on the opposite strand (Smirnov
et al., 2017b). However, ProQ was also found to regulate trans-
acting sRNAs, assisting the imperfect basepairing with their target
mRNAs. Two well characterized examples in Salmonella are
known: the RaiZ sRNA-hupA mRNA and STnc540 sRNA-mgtB
mRNA (Smirnov et al., 2017b; Westermann et al., 2019). ProQ
binds RaiZ through its 3′-terminal stem-loops and promotes
interaction of a linear region of this sRNA with the hupA mRNA.
This three-partner ProQ/RaiZ/hupA mRNA complex results in
impairment of hupA mRNA translation by preventing loading
of the 30S ribosome subunit (Smirnov et al., 2017b). STnc540
sRNA also represses the expression of its target mRNA in a ProQ-
dependent manner (Westermann et al., 2019). In both examples,
ProQ is absolutely required for stability of the sRNAs, affecting
their abundance.
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Recent work in E. coli explores the RNA-RNA interactomes of
Hfq and ProQ chaperones using RIL-seq (Melamed et al., 2019).
Even though the interactome of ProQ was smaller than the one of
Hfq, about a third of the RNA-RNA interactions were common
between the two RNA chaperones, with examples like RybB and
MalM sRNAs. This suggests complementary or competitive roles
for these RBPs. An additional example is found in Salmonella,
in the regulation mediated by the SraL sRNA. This sRNA binds
to the 5′-UTR of the rho mRNA, an interaction that can be
mediated by ProQ and/or Hfq (Silva et al., 2019). However, the
RNAs bound by ProQ generally differ from those bound by Hfq.
RIL-seq data revealed that while Hfq-bound RNAs were enriched
in both sRNAs and mRNAs, ProQ-bound RNAs were mainly
enriched for coding sequences (Melamed et al., 2019). This
suggests that the RNA-RNA matchmaking activity of ProQ may
not be generalized, unlike observed with Hfq that is primarily
involved in sRNA-mediated regulation of mRNA translation.
Additional roles for ProQ may include RNA protection from
RNase attack or a participation in RNA modification.

CsrA
The CsrA protein was first discovered in E. coli and its function
attributed to carbon storage and glycogen production, acting
as a translational repressor of the glgC mRNA (Romeo et al.,
1993; Romeo and Babitzke, 2018). In Pseudomonas aeruginosa
the homolog protein is termed RsmA (for regulator of secondary
metabolism) with paralogs (RsmF/N, RsmE, and RsmI) found in
different Pseudomonas species (Reimmann et al., 2005; Marden
et al., 2013; Morris et al., 2013). Members of the CsrA/RsmA
family are conserved among Gammaproteobacteria and have
been described as global bacterial regulators (Vakulskas et al.,
2015). Here we will focus on the information available on the
enterobacterial CsrA.

The E. coli CsrA is a ∼7 kDa RNA-binding protein and
consists of a homodimer, each subunit with five β-strands,
one α-helix and an unstructured C-terminal (Gutiérrez et al.,
2005; Duss et al., 2014a). The recognition motif is the AUGGA
sequence typically localized in the loop of a stem-loop, as
determined by SELEX and confirmed through CLIP-seq (Dubey
et al., 2005; Duss et al., 2014a; Holmqvist et al., 2016). The most
well characterized activity of CsrA is the binding of mRNA,
resulting in repression or activation of translation. Typically,
CsrA binding occurs in the RBS sequence or overlaps with the
initiation codon, leading to a direct inhibition of translation.
CsrA can also regulate transcript stability, either by promoting
or blocking the access of the mRNA to ribonucleases (Dubey
et al., 2005; Schubert et al., 2007; Yakhnin et al., 2013). CsrA
also protects sRNAs from RNase E-mediated degradation, as
it was shown for the small RNAs CsrB and CsrC (Weilbacher
et al., 2003; Vakulskas et al., 2016). Interestingly, CsrA activity
on target mRNAs is mostly regulated by the action of the CsrB
and CsrC sRNAs (RsmY and RsmZ in Pseudomonads). These
highly structured sRNAs are composed of repetitive sequence
elements of the recognition motif GGA (22 per molecule in CsrB
and 13 in CsrC) with high affinity for the CsrA binding site
(Liu et al., 1997; Weilbacher et al., 2003; Duss et al., 2014b).
Consequently, CsrB and CsrC act as “sponges” that sequester

CsrA protein and prevent its activity (Romeo et al., 2013). The
sRNA McaS is also able to modulate CsrA activity though it
contains only two recognition sites (Jørgensen et al., 2013).
Transcriptomic studies performed in E. coli showed that CsrA
affects the abundance of 11 sRNAs, including CsrB and CsrC.
Additionally, CLIP-seq analysis followed by in vitro studies
confirmed CsrA binds other sRNAs with high affinity (Potts
et al., 2017). In particular, the interaction of CsrA with the
sRNAs GadY, Spot 42, and GcvB was shown to significantly
overlap with known basepairing regions for these sRNA–
mRNA pairs, suggesting that CsrA binding inhibits formation of
these RNA duplexes.

CsrA was recently described to act as an RNA chaperone that
indirectly promotes the basepairing between the trans-acting SR1
sRNA and its primary target the ahrC mRNA, which encodes
the transcription activator of the arginine catabolic operons in
Bacillus subtilis (Müller et al., 2019). In vitro binding studies
demonstrated that CsrA binds these RNAs with high affinity,
in the nanomolar range, even in the presence of an mRNA
competitor. Further mutational analysis of the SR1 sRNA and
the ahrC mRNA confirmed binding of CsrA to both transcripts.
CsrA facilitates the binding of the SR1 sRNA downstream the
start codon of the ahrC mRNA and induces conformational
changes in the RBS preventing its translation (Müller et al., 2019).
Importantly, Hfq was not found to catalyze this interaction and
ProQ is not expressed in B. subtilis. Interestingly, this suggests
that CsrA may act as an alternative RNA chaperone to Hfq and
ProQ in assisting sRNA-mRNA basepairing.

RNA- and DNA-Binding Multifunctional
Proteins as RNA Chaperones
While Hfq, ProQ, and CsrA may be considered the major RNA
chaperones interacting with sRNAs, additional RBPs are known
to assist RNA folding and bind sRNAs. Two of such examples
include the cold shock proteins (CSPs) and the StpA protein.
CSPs are a group of small proteins that display the RNA-
binding cold shock domain (CSD) (Phadtare and Severinov,
2010) and can passively remodel RNA structures (Woodson et al.,
2018). The major cold shock protein of E. coli is CspA that
binds RNA with low sequence specificity and in a cooperative
fashion (Jiang et al., 1997). CspA activity results in the melting
of RNA secondary structures, which favors the unfolded state
of transcripts enabling their translation (Rennella et al., 2017).
In Staphylococcus aureus, a RIP-chip assay identified the RNA
targets of CspA, which included several sRNAs (Caballero et al.,
2018). Accordingly, it is likely that CspA assists sRNA-mediated
regulation. Though not all members of the CSP family are
induced by cold, they may be relevant for adaptation to other
stresses (Yamanaka et al., 1998). For example, CspC and CspE
stimulate translation of rpoS (encoding the stress sigma factor S)
possibly by altering the secondary structure of the rpoS mRNA
in E. coli (Phadtare and Inouye, 2001; Phadtare et al., 2006) and
affect virulence in Salmonella (Michaux et al., 2017). E. coli StpA
is another example of an RNA chaperone that remodels RNA
structures without hydrolyzing ATP. StpA has RNA annealing
and RNA strand displacement activities (Zhang et al., 1995,
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1996). It binds weakly to RNA with preference for unstructured
molecules, promoting RNA conformational changes by loosening
RNA secondary structures (Mayer et al., 2007). Importantly, the
RNA chaperone StpA was found to interact with the small RNA
MicF. StpA regulates the stability of MicF sRNA and accelerates
its base pairing with the target ompF mRNA, acting as a major
regulator of the OmpF porin expression (Deighan et al., 2000).

RNASES

RNase E
Homologs of E. coli RNase E have been identified in the
majority of Proteobacteria classes (Aït-Bara and Carpousis,
2015). This endoribonuclease is composed by a conserved
N-terminal catalytic region with an embedded RNA-binding S1
domain, and the unstructured C-terminal non-catalytic region
(Bandyra and Luisi, 2018). RNase E cleaves single-stranded
RNA, preferably enriched in A/U nucleotides with a stem-loop
upstream (Del Campo et al., 2015). Although it prefers substrates
with 5′-end monophosphorylated, in vivo it is also functional in
a 5′-monophosphate-independent pathway (Clarke et al., 2014).
Upon Hfq dissociation from the sRNA-mRNA pairs, RNase E
can reach and cleave the target mRNA in a linear stretch at the
3′-end of the duplex region (Waters et al., 2017). The sRNAs
RyhB and GcvB are typical examples in which sRNA pairing with
the coding region promotes mRNA decay via the recruitment of
RNase E (Massé et al., 2003; Morita et al., 2005; Lalaouna et al.,
2019). Often the base paired sRNA is also degraded with the
mRNA. McaS sRNA bound to Hfq interacts with both RNase E
and its substrate csgD mRNA, leading to the cleavage of both
RNAs (Andreassen et al., 2018). RNase E is also critical for the

processing of sRNAs from the 3′ UTR of mRNAs, including the
release of the CpxQ sRNA from the 3′-end of the cpxP mRNA
(Chao and Vogel, 2016) and the processing of the precursor RNA
to originate the functional ArcZ (Chao et al., 2017). A paralog
named RNase G that contains only the catalytic domain of RNase
E is also present in E. coli and other bacteria (Aït-Bara and
Carpousis, 2015). Although this non-essential enzyme shares
common activities with RNase E, including rRNA processing
and mRNA turnover, no role has been ascribed for RNase
G in sRNA processing (Mackie, 2013). Interestingly, RNase E
activity on sRNAs can be modulated by other RNA-binding
proteins. This is the case of RapZ, an RBP that functions as
an adaptor protein in E. coli. RapZ binds to the central stem
loop of the sRNA GlmZ and RNase E is then recruited for the
processing of this sRNA (Göpel et al., 2013), which regulates the
glmS mRNA encoding the glucosamine-6-phosphate (GlcN6P)
synthase. RapZ was recently found to be the receptor for GlcN6P
(Khan et al., 2020).

RNase III
RNase III is a widely distributed endoribonuclease involved in
the processing of double-stranded RNAs (dsRNAs). E. coli RNase
III acts as a 52 kDa homodimer, with the catalytic N-terminal
domain connected by a short linker to the C-terminal dsRNA-
binding domain (Li and Nicholson, 1996). RNase III can cleave
the duplex RNA formed between complementary regions of
sRNA and its target mRNA (Lybecker et al., 2014; Altuvia et al.,
2018). The target-coupled pathway for RNase III degradation
mediated via sRNAs is commonly observed in bacteria. In
Salmonella, RNase III is responsible for the degradation of the
dsRNA formed between MicA and its target ompA mRNA upon
basepairing (Viegas et al., 2011). In B. subtilis, the 3′-end of the

FIGURE 2 | RNA chaperone and RNase activities on sRNAs. Simplified scheme that illustrates the effect of these RNA-binding proteins in different aspects of the
sRNA lifetime, namely on the folding of sRNA secondary structures, promotion of sRNA/mRNA basepairing and control of sRNA stability.
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antitoxin RatA sRNA forms a large duplex with the txpA mRNA
that is cleaved by RNase III and prevents the translation of TxpA
toxin (Durand et al., 2012). In Streptococcus pyogenes, the type II
CRISPR-Cas system depends on the maturation of CRISPR RNA
by RNase III (Deltcheva et al., 2011).

PNPase
Polynucleotide phosphorylase (PNPase) is a highly conserved 3′–
5′ exoribonuclease that processively degrades RNA (Saramago
et al., 2014; Dos Santos et al., 2018). PNPase adopts a
homotrimeric organization with a ring-like structure, each
monomer having a molecular weight of 78 kDa and holding
two RNA-binding domains, KH and S1, on the C-terminal (Shi
et al., 2008). In E. coli, PNPase is the main enzyme involved in
the degradation of sRNAs that are not bound to Hfq, as shown
for the regulation of different Hfq-dependent sRNAs, such as
MicA, GlmY, RyhB, and SgrS levels (Andrade et al., 2012, 2013).
This effect is growth-phase regulated and agrees with previous
work in which PNPase was found to degrade sRNAs in the
absence of their primary target mRNAs (Andrade and Arraiano,
2008). Additionally, PNPase has an unexpected role in Listeria
monocytogenes, being responsible for the correct processing of an
orphan CRISPR RNA (Sesto et al., 2014).

Although to a lesser extent, additional RNases are involved
in the regulation of sRNAs. The degradative enzymes YbeY and
RNase R are illustrative examples. YbeY is a highly conserved
endoribonuclease commonly associated with rRNA processing
(Davies et al., 2010). However, YbeY was shown to bind sRNAs
and regulate the levels of sRNAs and mRNAs (Pandey et al.,
2011). In Sinorhizobium meliloti it was shown that YbeY could
cleave sRNA-mRNA pairs (Saramago et al., 2017). Inactivation
of YbeY in E. coli cells exposed to hydroxyurea resulted in
the upregulation of many sRNAs involved in the adaptation to
oxidative stress (Pandey et al., 2014). Additionally, Vibrio cholerae
YbeY was found to regulate the abundance of the sRNAs Qrr1-4
(Vercruysse et al., 2014), which are involved in quorum-sensing
and virulence (Tu and Bassler, 2007). RNase R is a unique
3′–5′ exoribonuclease able to degrade highly structured RNAs
(Dos Santos et al., 2018). There are few described examples of
RNase R involved in the regulation of sRNAs. During cold shock
in E. coli, RNase R is required for the correct processing of
the sRNA SsrA/tmRNA (transfer-messenger RNA), involved in
protein quality control and ribosome recycling (Cairrão et al.,
2003). RNase R was also described to control sRNA stability of
the sRNA SR4 and its target bsrG mRNA that together constitute a

temperature-dependent type I toxin/antitoxin system in Bacillus
subtilis (Jahn et al., 2012).

CONCLUSION

RNA chaperones can modify sRNA structure, facilitate the
basepairing of sRNAs to their target mRNAs and together
with RNases control sRNA stability (Figure 2). However, some
RNA chaperones seem to be specific of some species and the
activities performed by these regulators may be compensated
by other still unidentified RNA-binding proteins. Several RBPs
with unorthodox RNA-binding domains have been identified in
humans, expanding the number of proteins that can associate
with RNA (Castello et al., 2016). Therefore, it is also possible
that additional and probably unconventional RBPs interacting
with sRNA are going to be discovered in bacteria. The RNA
chaperone ProQ offers us a good example of this potential. A new
RNA-seq methodology associated to sample fractionation (Grad-
seq) contributed to the identification of ProQ as a novel RBP
interacting with sRNAs (Smirnov et al., 2016). Application of this
and similar methods may contribute to expand the number of
sRNA-protein partners and helps to shed light on the many still
unknown functions and physiological roles of sRNAs.
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