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During the process of metastasis, cancer cells dissociate from primary tumors, migrate
to distal sites, and finally colonize, eventually leading to the formation of metastatic
tumors. These cancer cells, defined circulating tumor cells (CTCs) spreading through
the blood stream, may develop metastatic lesions or remain dormant. Some emerging
clinical evidence supports that some tumor cells may possess metastatic properties
already in the earlier stages of tumorigenesis. Because the initiation and progression
of vertical growth in human melanoma is fundamental to the notion of tumor virulence
and progression, we decided to immune-magnetic collect and molecularly characterize
circulating melanoma cells (CMCs) from melanoma patients AJCC staged = pT1b
(i.e., transition from radial to vertical phase). CMCs are phenotypically and molecularly
heterogeneous, thus we performed a “home-made Liquid-Biopsy,” by targeting the
melanoma-associated-antigen, MCAM/MUC18/CD146, and/or the melanoma-initiating
marker, ABCB5. We assessed a biomarker qualitative expression panel, contemplating
the angiogenic-potential, melanoma-initiating and melanoma-differentiation drivers, cell-
cell adhesion molecules, matrix-metallo-proteinases, which was performed on three
enriched subpopulations from a total of 61 blood-samples from 21 melanoma patients.
At first, a significant differential expression of the specific transcripts was documented
between and within the CMC fractions enriched with MCAM-, ABCB5-, and both
MCAM/ABCB5-coated beads, when analyzing two distinct groups: early AJCC- (stage
I–II) and advanced- staged patients (stage II–IV). Moreover, in the early-AJCC staged-
group, we could distinguish “endothelial,” CD45−MCAM+ enriched-, “stem” S-CMCs,
CD45−ABCB5+ enriched- and a third hybrid bi-phenotypic CD45−MCAM+/ABCB5+

enriched-fractions, due to three distinct gene-expression profiles. In particular, the
endothelial-CMCs were characterized by positive expression of genes involved in
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migration and invasion, whilst the stem CMC-fraction only expressed stem and
differentiation markers. The third subpopulation isolated based on concurrent MCAM
and ABCB5 protein expression showed an invasive phenotype. All three distinct CMCs
sub-populations, exhibited a primitive, “stem-mesenchymal” profile suggesting a highly
aggressive and metastasizing phenotype. This study confirms the phenotypic and
molecular heterogeneity observed in melanoma and highlights those putative genes
involved in early melanoma spreading and disease progression.

Keywords: liquid biopsy, circulating melanoma cells, MCAM/MUC18/CD146, ABCB5, gene-expression panel,
melanoma disease progression

INTRODUCTION

At present, we still know little about tumor progression once
metastasis is initiated. Therefore, more should be learned about
metastasis initiation at cellular and molecular level, as this could
provide predictions on timing and targets of antimetastatic
therapies (Coghlin and Murray, 2010). Metastasis is traditionally
considered a relatively late process in tumor progression as this
process is often diagnosed in primary tumors at a later stage
(Luzzi et al., 1998; Páez et al., 2012). During the metastasis
process, cancer cells dissociate from primary tumors, migrate to
distal sites, and finally colonize, and eventually form metastatic
tumors. These cancer cells—known as circulating tumor cells
(CTCs)—spread through the blood stream and may develop
metastatic lesions or remain dormant (Paterlini-Brechot and
Benali, 2007; Sosa et al., 2014). The concept of dormancy
corresponds to the existence of an early or late pause (lag time)
period in progression; that is, it may occur at an early as well as
at a late stage of tumor development and relapse, either locally
or at distant sites (Haass et al., 2005; Mocellin et al., 2006).
Functionally, when dormant, disseminated tumor cells persist
particularly in a stable, non-dividing state of quiescence rather
than in a balanced proliferation (Haass et al., 2005; Mocellin et al.,
2006). Even small cancers (<5 mm in diameter) may potentially
lead to multiple metastases 5–10 years before they are detected.
The early-disseminated cells might not turn into overt metastases
but remain quiescent for a long time (Friberg and Nyström, 2015;
Hanahan and Weinberg, 2011; Rocken, 2010).

It is generally thought that metastasis-initiating cells originate
from a subpopulation present in progressed, invasive tumors
(Györgyi and Ferenc, 2017); however, there is emerging
clinical evidence supporting that some tumor cells may possess
metastatic properties in the earlier stages of tumorigenesis
(Husemann et al., 2008). The recent application of genomic
approaches in determining molecular signatures also suggests
that metastasis capacity may be acquired at the initial
stages of tumor development (Bernards and Weinberg, 2002).
Disseminated cancer cells detected in patients before the
manifestation of breast-cancer metastasis contain fewer genetic
abnormalities than primary tumors or than tumors of patients
with metastases (Klein et al., 1999; Schmidt-Kittler et al., 2003;
Schardt et al., 2005). These findings, and others documented in
pancreatic cancer (Rhim et al., 2012) and melanoma (Eyles et al.,
2010) models, indicate that dissemination might occur during the

early stages of tumor evolution (Schardt et al., 2005; Husemann
et al., 2008; Sänger et al., 2011; Harper et al., 2018). However, the
mechanisms that might allow early-disseminated cancer cells to
complete all steps of metastasis are unknown.

Liquid biopsy is renowned as a non-invasive test to detect
CTCs or the products of tumors, including proteins, cell-free
DNA, and exosomes, and is an interesting tool to facilitate cancer
research and patient monitoring. Circulating tumor cells, with
respect to other materials, have some advantages in clinical
applications; they can be identified morphologically, and their
genetic and molecular characterization can be performed by
analyzing both specific selected DNA mutations and potential
tumor biomarkers (Pantel and Alix-Panabières, 2013, 2016).
In particular, CTC biological signatures, such as epithelial-to-
mesenchymal transition (EMT) or cancer stemness, may also
be analyzed. EMT, which is indispensable for tumor metastasis,
is a multistep process involving many molecular and cellular
changes, including the downregulation of epithelial proteins
and the upregulation of mesenchymal proteins, endowing the
cells with increased motility and invasiveness (Kalluri and
Weinberg, 2009; Thiery et al., 2009). Recent studies have
revealed that the EMT phenotype in CTCs may facilitate tumor
metastasis. Characterizing the epithelial versus mesenchymal
phenotypes of CTCs may be useful to identify the most
aggressive CTC subpopulations and establish an appropriate
therapy (Zehentner et al., 2006; Lembessis et al., 2007; Tsouma
et al., 2008; Theodoropoulos et al., 2010; Yu et al., 2013; Okabe
et al., 2014; Satelli et al., 2015; Zhao et al., 2019). Because
of the aggressiveness and mortality of metastatic melanoma
cancer, it has become increasingly urgent to define novel
diagnostic melanoma biomarkers that can be useful to predict
an increased risk of metastasis at an early stage. To date,
the lactic dehydrogenase enzyme is the only peripheral blood
biomarker incorporated in the American Joint Committee on
Cancer (AJCC) classification (Gershenwald and Scolyer, 2018),
considering that elevated serum lactate dehydrogenase levels are
associated with an unfavorable translation prognosis.

In malignant melanoma (MM), CTCs are detectable in the
peripheral blood soon after the surgical resection of the primary
tumor regardless of the thickness, or even in late stages or in
clinically disease-free patients (Rose et al., 1986; Tsukamoto et al.,
1992; Gaugler et al., 1994; Ghossein and Rosai, 1996; Mellado
et al., 1999; Palmieri et al., 1999; Keilholz et al., 2004). Measuring
circulating melanoma cells (CMCs) before they become clinically

Frontiers in Molecular Biosciences | www.frontiersin.org 2 May 2020 | Volume 7 | Article 92

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org/
https://www.frontiersin.org/journals/molecular-biosciences#articles


fmolb-07-00092 May 27, 2020 Time: 19:59 # 3

Rapanotti et al. Stem-Mesenchymal Molecular Signature in CMCs

detectable represents a potentially powerful method to monitor
patients with malignancies that have a minimal morbidity.
For melanoma, two studies showed that the number of “2
CMCs per 7.5 mL of blood” is prognostic and associated
with shorter survival (Rao et al., 2011; Klinac et al., 2014).
In carcinomas, immunomagnetic enrichment is conventionally
performed targeting the epithelial cells with surface markers such
as EpCAM and cytokeratin antigens as “positive” selection. The
Food and Drug Administration has approved the CellSearch R©

Circulating Tumor platform for the collection and isolation of
CTCs of these carcinomas. At present, only EpCAM (Janssen
Diagnostic, LLC Raritan, NJ, United States) has been recognized.
As already reported, CMCs lack a ubiquitous marker because
they do not express the classic epithelial cell surface marker
EpCAM due to the origin of the melanocytes from the neural
crest. Nevertheless, a variety of markers associated with some
melanoma-specific cell-surface epitopes have been proposed,
such as MCAM/MUC18/CD146 and MSCP/NG2 (melanoma-
associated chondroitin sulfate), together with stem cell markers,
such as ABCB5 (ATP-binging cassette subfamily member B) and
CD271 (Boiko et al., 2010; Khoja et al., 2013; Luo et al., 2014).

The cell–cell adhesion molecule MCAM/MUC18/CD146,
expressed up to 80% in MM, is a key oncogene driving
melanoma progression and metastasis (Ishikawa et al., 2014a,b).
We previously documented that MCAM/MUC18/CD146
expression predicts clinical relapse, whereas absence or persistent
loss is linked to stable disease or disease-free status, revealing its
possible role as “molecular warning of progression” (Rapanotti
et al., 2009, 2013, 2014, 2017; De Luca et al., 2017). Recently,
two MCAM/MUC18/CD146 isoforms have been described, a
long and a short variant due to alternative splicing: the short
isoform is widely expressed by the endothelium, whereas the
long isoform is expressed by melanoma cells. In addition to the
membrane-anchored MCAM/MUC18/CD146, a soluble form—
sCD146/MCAM/MUC18—generated by metalloproteases
proteolytic cleavage is mainly involved in tumor angiogenesis.
Expressing MCAM/MUC18/CD146-positive tumors secrete
soluble CD146 that, in turn, are responsible for their growth and
vascularization (Alais et al., 2001; Stalin et al., 2013, 2017).

Another functional driver of melanoma aggressiveness
features through a common molecular role in tumor growth,
maintenance, and drug resistance is exerted by the cell
membrane-associated transporter ABCB5 (ATP-binding cassette
sub-family B member 5, also known as P-glycoprotein) (Frank
et al., 2005; Schatton et al., 2008). Human tumorigenic melanoma
reveals that few melanoma cells express ABCB5. These cells
tend to display a primitive molecular profile and correlate with
clinical melanoma progression as determined by high-density
tissue microarrays that allow one to screen many melanomas
representing progressive evolution from radial [radial growth
phase (RGP)] to growth phase [vertical growth phase (VGP)]
(Klein et al., 2007) and metastatic disease. Thus, this plasma
membrane-spanning protein that behaves as “stem cell” marker
of a slow-cycling population of malignant cell subpopulations
with “clinical virulence resides” as a consequence of unlimited
self-renewal, resulting in inexorable tumor progression and
metastasis (Boiko et al., 2010; Laga et al., 2010; Civenni et al.,

2011; Kupas et al., 2011; Linley et al., 2012; Tang et al., 2012),
could represent a melanoma biomarker of early metastatic stage.

All these findings strongly support us to improve CMC
detection in order to investigate MCAM/MUC18/CD146
and ABCB5 as enrichment markers in early and widespread
metastasis. Because the initiation and progression of vertical
growth in human melanoma are fundamental for the notion
of tumor virulence and progression, we decided to collect and
analyze CMCs from melanoma patients AJCC stage > pT1b
(i.e., transition from radial to vertical phase), improving
highly aggressive cell recovery of three subpopulations
based on MCAM/MUC18/CD146, ABCB5, or biphenotypic
MCAM/MUC18/CD146-ABCB5 expressions.

Consequently, we assessed a selected biomarker qualitative
expression panel, contemplating the angiogenic potential,
melanoma-initiating and melanoma-differentiation drivers,
cell–cell adhesion molecules, and matrix metalloproteinases
performed on MCAM and ABCB5 enriched CMCs, aimed at
identifying those putative genes involved in early melanoma
spreading and disease progression.

Overall, positive cells for MCAM, ABCB5, and both
MCAM/ABCB5 could represent three different CMC
subpopulations “endothelial,” “stem” phenotypes, or “hybrid
stem–endothelial” phenotypes, respectively, which could display
distinct gene expressions and exhibit distinct roles in early local
invasion and metastases.

METHODS

Patients and Healthy Donors
Patients’ demographic and clinical characteristics are shown
in Table 1. A cohort of 22 melanoma patients entered
prospectively this study. Information and consent forms,
previously approved by the ethical local institutional review
board (code: prot.0013157/2015), were provided at diagnosis,
together with the permission to collect blood samples for
research purposes. Patients were considered eligible if they
had a histological and immunohistochemical (S-100, HMB-
45, and MART-1) confirmed diagnosis of MM and if staged
AJCC ≥ pT1b (Gershenwald and Scolyer, 2018). They were
staged as follows: five patients (23.8%) in AJCC stage IB, three
patients (14.3%) in AJCC stage II, five patients (23.8%) in AJCC
stage III, and eight AJCC stage IV (38.0%). We stratified the
21 melanoma patients into two disease categories: early-AJCC-
staged treatment-naive patients and clinically evident advanced-
stage patients. The former included IB–II AJCC stages (8/21); the
latter, III–IV AJCC stages (including three patients who showed
cutaneous in transit metastasis without nearby lymph nodes
involvement) (13/21). All patients were cured at the Dermatology
Department of the University of Rome “Tor Vergata” (Italy).
Twenty healthy donors from our Transfusion Center were
included in the study as negative control population.

Cell Lines
The selected gene-expression panel, with the exception of
melanoma tissue stem and differentiation markers TyrOH,
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MelanA/MART1, and ABCB5, was previously tested and
validated on 14 primary tumor cell lines including LnCap,
DU145 (prostate cancer); MB 231, MCF7 (breast cancer); C33A,
HeLa (cervix cancer); Mel 10, Mel 14, FO 1, Colo 38 (MM);
SH-Sy5 (neuroblastoma); U87 (glioma); U266, Arp 1 (multiple
myeloma), as partially reported in Table 2 (Rapanotti et al.,
2018). The melanoma tissue stem and differentiation markers
TyrOH, MelanA/MART1 were tested on Mel 10, Mel 14, FO 1,
Colo 38 (MM), as previously reported (Rapanotti et al., 2009,
2014). The fibroblast cell line EDS and the endothelial cell
line HUVEC were included as positive and negative controls.
Cell lines were grown in RPMI-1640 (GIBCO-BRL, Waltham,
Massachusetts, MA, United States) supplemented with 10% fetal
bovine serum (GIBCO-BRL) and antibiotics, in a humidified
atmosphere with 5% CO2 at 37◦C temperature. Cells were
detached by trypsinization, then centrifuged, washed twice with
phosphate-buffered saline, and stored at−70◦C, until use.

CMC Enrichment
Circulating melanoma cell enrichment was conducted on
21 melanoma patients. Fifteen milliliters of blood was
collected 1 week after sentinel lymphadenectomy for the
eight patients AJCC “early-staged” and at first clinical evidence
of progression disease for the 13 patients AJCC “advanced-
staged,” considered in both cases as baseline-blood-drawn.
A home-made immunomagnetical fluorescein isothiocyanate
(FITC)–conjugated anti-CD146, anti-ABCB5, and anti-
CD146/antiCDABC5 antibodies selection preceded by CD45
immunodepletion allowed us to enrich three subpopulations
based on expression of “endothelial” E-CMCs (CD45−MCAM+),

TABLE 1 | Patients’ (pts) demographic and clinical characteristics.

Sex N◦ %

Female 10 /

Male 11 /

Age (years) 44 (mean) 24–84 (range)

Primary tumor site N◦ %

Head and neck 1 4.80

Trunk 11 52.4

Extremity 5 23.8

Unknown 4 19.0

AJCC* stage N◦ %

>IB 5 23.8

II: IIA (2); IIB (1) 3 14.4

III: IIIA (2); IIB (2) IIIC (1) 5 23.8

IV 8 38.0

Time from diagnosis (Years)

AJCC Early Stage I–II 0 /

AJCC Advanced Stage III**–IV 0–12 /

Clinically disease free 12

Clinically evident disease 10

*The AJCC (American Joint of Cancer Committee) staging was evaluated at the
time of the blood draw after diagnosis of primary melanomas or diagnosis of first
distant metastases in case of occult melanomas. **Three out of five pts showed
cutaneous in transit metastasis without nearby lymph nodes involvement (N1c)
(Gershenwald and Scolyer, 2018).

“stem” S-CMCs (CD45−ABCB5+), and “hybrid stem-
endothelial” E/S-CMCs (CD45−MCAM+/ABCB5+) markers.
Before performing CD45 depletion, platelets and erythrocytes
were removed by using density gradient (HetaSep/STEMCELL
Technologies, Vancouver, Canada); enriched leukocytes were
then conjugated with whole blood, with several stoichiometric
and volume adjustments. The CD45 depletion was performed
using the Blood CD45 Depletion Cocktail containing monoclonal
CD45 antibody and magnetic nanoparticles (EasySep Magnetic
Nanoparticles; STEMCELL Technologies) achieved using
manufactory procedure. After CD45 depletion, each cell
suspension was split in three separate vials and then underwent
three CMC enrichments, using manual immune-magnetic beads
FITC-conjugated to mouse anti-human MCAM/CD146 (BD
PharmingenTM, clone P1H12, Franklin Lakes, New Jersey, NJ,
United States), to rabbit anti-human ABCB5 (BiorbytTM, clone
RB16781, Cambridge, United Kingdom), and contemporary
to anti-human MCAM/CD146–anti-human ABCB5 (BD
PharmingenTM/BiorbytTM) monoclonal antibodies. A total of
63 enriched samples were recovered. The enrichment protocol
was designed in-house. The stoichiometry and experimental
conditions for antibody-cell conjugation were established
after having carried out serial dilutions of the melanoma
cell lines into blood drawn sample from 1,000 to 1 cell/mL
considering the expected rarity of CMCs in the blood stream
(1–3 CMC/∼5 billion blood cells). We point out that for efficient
antibody coupling, at least 10 mg of antibody was used per
milligram of immune-magnetic beads. Patients were defined
as CMCs-positive when MCAM+ or ABCB5+ but CD45−
nucleated cells were detected. We included blood samples from
20 healthy donors from our Transfusion Center as negative
control population.

Selection of Reference Gene Panel
We performed a qualitative test, that is, OneStep reverse
transcriptase–polymerase chain reaction (RT-PCR) or RT-nested
PCR in order to have a robust reference gene panel suitable
for gene expression analysis of enriched CMC subpopulations.
The candidate reference genes were selected from articles
available in the PubMed databases and known to be strongly
associated with angiogenic potential, melanoma-initiating
and melanoma-differentiation, cell–cell adhesion molecules
pathways, and matrix metalloproteinase extravasation: all
processes are major key players in the regulation of EMT,
early melanoma spreading, and disease progression. The 13
selected genes were as follows: vascular endothelial growth
factor (VEGF); basic fibroblast growth factors (bFGF); vascular
endothelial cadherin (VE-Cadh CDH5); endothelial antigen
MCAM/MUC18/CD146 isoforms long, short, and 5-portion;
epithelial cadherin (E-Cadh CDH1); neuronal cadherin (N-
Cadh CDH2); matrix metalloproteinases (MMP-2, MMP-9);
tyrosinase (TyrOH); and melanoma antigen recognized
by T cells MelanA/MART1 and ABCB5 (Lehmann et al.,
1987; Ray and Stetler-Stevenson, 1994; Curry et al., 1996;
Xie et al., 1997; Schittek et al., 1999; Silye et al., 1998;
Carmeliet and Jain, 2000; Hazan et al., 2004; Frank et al.,
2005; Melnikova and Bar-Eli, 2006).
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TABLE 2 | Analysis of expression of angiogenic factors, pro-angiogenic factors, cell-cell adhesion molecules, and Matrix-Metallo Proteinases in cell lines.

Cell line Cell origin VEGF Ang2 MCAM/MUC-18 bFGF VE-CADH E-Cadh N-Cadh MMP-2 MMP-9

EDS Fibroblast culture NEG NEG NEG NEG NEG POS NEG NEG NEG

HUVEC Endothelial culture POS POS POS POS POS POS NEG POS POS

Mel 10 Melanoma POS POS POS POS POS POS POS POS POS

Mel 14 Melanoma POS POS POS POS POS POS POS POS POS

FO 1 Melanoma POS POS POS POS POS POS POS POS POS

Colo 38 Melanoma POS POS POS POS POS POS POS POS POS

SH-Sy5y Neuroblastoma POS NEG POS POS POS NEG POS POS POS

LnCap Prostate cancer POS NEG NEG NEG POS POS NEG POS POS

DU 145 Prostate cancer POS POS POS POS POS NEG NEG POS POS

U 87 Glioma POS POS POS POS POS POS POS POS POS

MB 231 Breast cancer POS POS NEG POS POS POS NEG POS POS

MCF-7 Breast Cancer POS POS NEG NEG POS POS NEG POS POS

C33A Cervix Cancer POS POS NEG POS POS POS NEG POS POS

HeLa Cervix Cancer POS POS POS POS NEG POS NEG POS POS

U 266 Multiple myeloma POS NEG NEG POS POS NEG POS POS POS

Arp 1 Multiple myeloma POS NEG POS POS POS NEG POS POS POS

RNA Isolation and RT-PCR Methods
Total RNA was isolated from primary tumor cell lines and
CMC subpopulations, using a home-made protocol based
on Chomczynski and Sacchi (1987) protocol modified
for poorly cellular samples. RNA integrity was measured
for RNAs extracted from the 63 enriched melanoma
patients subpopulations, the 16 cell lines, and the 20
healthy donors using the NanoDrop 2000 (ThermoFisher,
Waltham, Massachusetts, United States) according to the
manufacturer‘s instructions. RNA integrity was also checked
electrophoretically.

Total RNA (Applied BioSystems, Roche Molecular Systems,
Inc., Branchburh, NJ, United States) was used in all RT-PCR
experiments, as indicated in the manufacturer’s instructions.
First-strand cDNA was generated with 2.5 mM oligo d(T)16,
5 mM MgCl2, 1 mM dNTPs, 1 unit of RNase inhibitor (Applied
BioSystems), and 1-h incubation at 42◦C. Two microliter aliquots
of cDNA were used for single-step sensitive RT-PCR for all genes,
with the exception of MCAM/MUC18/CD146, ABCB5, TyrOH,
and MelanA/MART1 where nested PCR was also performed.
A hot start Taq polymerase was used for amplification using
the housekeeping gene β2-microglobulin as control. Cell line
total RNAs have always been included as positive or negative
controls in all performed experiments. Primer sequences and
PCR conditions are reported in detail in the Supplementary
Material. The resulting nested products (25 µL) were analyzed on
a 1.8% agarose gel. All PCR experiments were always performed
in triplicate. Contamination was evaluated by including no
template control in all experiments.

Statistical Analysis
For statistical evaluations, because of the small sample size,
we stratified the 21 melanoma samples into two disease
categories: early and advanced stages. The former includes
IB–II AJCC stages (8/21); the latter, III–IV AJCC stages
(13/21). Univariate analysis of relationship among correlations

between biomarkers in subpopulations was performed
using Spearman rank correlation test. SPSS 20.0 software
program (SPSS Inc., Chicago, IL, United States) was used for
statistical analysis.

RESULTS

Expression of Melanoma-Initiating and
Melanoma-Differentiation Drivers,
Proangiogenic, Markers Cell–Cell
Adhesion Factors, and Matrix
Metalloproteinases in Cell Lines
In our previous studies, M14 melanoma cells were serially diluted
to mimic in vivo conditions of occult metastatic melanoma
cells in blood and establish the sensitivity of our assay, starting
from 1 × 106 M14 cells mixed with 7 × 106 cells from
blood of healthy donors (BHD) up to 1 M14 melanoma cell
as already described (Rapanotti et al., 2009, 2014). In order to
evaluate the level of detection, we performed serial dilutions
of M14 melanoma cells in 6 mL blood from healthy donors,
starting from 1 × 106 M14 cells into 7 × 106 cells from
BHD, up to 1 M14 melanoma cell. Performing one-step or
nested PCR, we brought the sensitivity down even before 1
or 10 single melanoma cells (Rapanotti et al., 2009, 2014).
The expression of proangiogenic, cell–cell adhesion factors
and matrix metalloproteinases (VEGF, bFGF,VE-Cadh, E-CADH
N-Cadh, MCAM/MUC18/CD146, MMP-2, and MMP-9) was
heterogeneous (Rapanotti et al., 2018; Table 2). Nevertheless, all
four melanoma cell lines (M10, M14, FO1, and Colo38) expressed
all aforementioned genes and the melanoma tissue stem and
differentiation markers TyrOH, MelanA/MART1, and ABCB5.
These molecular assays allowed us to ensure the efficiency,
specificity, and sensitivity of our amplification procedures,
considering the expected poor cellular samples.
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13 Expression of Melanoma-Initiating and
Melanoma-Differentiation Drivers,
Proangiogenic, Markers Cell–Cell
Adhesion Factors, and Matrix
Metalloproteinases in Enriched CMC
Subpopulations
The 63 enriched CMC samples collected at first were
divided into three distinct subpopulations (each group
consisting of 21 samples) and, based on the MCAM and
ABCB5 enrichment, were classified as “endothelial” E-CMCs
(CD45−MCAM+), “stem” S-CMCs (CD45−ABCB5+), and a
third hybrid biphenotypic population endothelial/stem E/S-
CMCs (CD45−MCAM+/ABCB5+). All these cellular subsets
were molecularly characterized by assessing the expression
panel of the 13 aforementioned genes. All 63 enriched CMC
samples expressed β2-microglobulin housekeeping gene. This is
a tangible demonstration of high-quality cell recovery and total
RNA extraction, despite the expected rare representations of cells.

Overall, 56 samples (84.8%) were found positive for expression
of 1 of the 13 transcripts at least in one fraction from their
blood (E-CMCs, S-CMCs, or E/S-CMCs). Twenty of twenty-
one (95.2%) patients expressed at least one transcript in one of
the three fractions. Fifteen patients showed detectable transcripts
both in two of the three (71.4%) and in all three subpopulations
(71.4%), suggesting that CMCs can be efficiently enriched and
isolated by either MCAM/CD146 or ABCB5 cell surface markers.

In this respect, peculiar case of a patient staged AJCC IV, who
died shortly after the blood sample, was found negative for all
transcripts, but for the housekeeping gene control.

Molecular detection of our 13 transcripts, documented in
all cases, divided into the three subpopulations, “endothelial”
E-CMCs, “stem” S-CMCs, and “hybrid-endothelial/stem,”
expressed as percentage was as follows:

MCAM/MUC18/CD146 5′-portion (38.0, 33.3, 33.8%), long
isoform (61.9, 9.5, 61.9%), short isoform (47.0, 33.3, 57.1%);
ABCB5 (9.5, 19.0, 14.2%); VEGF (4.8, 19.0, 14.2%); bFGF
(23.8, 19.0, 23.8%), VE-Cadh (38.0, 38, 57.1%), N-Cadh (23.8,
19.0, 23.8%), MMP2 (47.6, 33.3, 61.9%), and MMP9 (38.0,
50.9.0, 66.0%), respectively. Tyrosine hydroxylase, the first
melanoma-associated marker (Tyr-OH) to have been proposed
for CMC detection (Curry et al., 1996), was absent in
“endothelial” (CD45−MCAM+) and “hybrid-endothelial/stem”
(CD45−MCAM+/ABCB5+) populations, while positive (14.2%)
only in the “stem” fraction (CD45−ABCB5+), in both early and
advanced AJCC stage groups.

Melanoma-associated antigen MelanA/MART1 (Schittek
et al., 1999), another highly regarded marker, was never detected
in all 63 CMC samples; the same occurred for the main epithelial
cell adhesion molecule E-cadherin, E-Cadh.

The molecular analysis of the three subpopulations E-CMC
fraction, S-CMC, and E/S-CMC in eight “early-AJCC-staged
treatment-naive” patients and in 13 “advanced AJCC-staged
clinically evident disease-patients” is reported in Table 2.
As illustrated in Figure 1, the different expression of the
selected genes was observed between and within CMC samples

Frontiers in Molecular Biosciences | www.frontiersin.org 6 May 2020 | Volume 7 | Article 92

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org/
https://www.frontiersin.org/journals/molecular-biosciences#articles


fmolb-07-00092 May 27, 2020 Time: 19:59 # 7

Rapanotti et al. Stem-Mesenchymal Molecular Signature in CMCs

FIGURE 1 | Bar graphs showed the distribution of analyzed genes in subpopulations selected for this study. Distribution of cases considering positivity status of all
biomarker analyzed in the three different subpopulations (early: I–II AJCC-staged eight patients; advanced: III–IV AJCC -staged 13 patients).
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positive-enriched with MCAM-, ABCB5-, or MCAM/ABCB5-
coated beads, suggesting the molecular heterogeneity of these
three subpopulations in both AJCC-staged patient groups.

Overall, the advanced AJCC-staged clinically evident disease
patients were characterized by higher gene expression compared
to early-AJCC-staged treatment-naive, as expected (Table 3).

In early-AJCC-staged group, by comparing the two
endothelial and stem subpopulations, we found that E-CMCs
were characterized by the presence of MCAM 5′-portion
and long isoform expressions in 12.5–25% and related to
S-CMCs where it was absent (0%). On the other hand, the
expression of ABCB5, Tyr-OH, and VEGF was found exclusively
in S-CMCs fraction with respect to E-CMC fraction (0%).
Both subpopulations showed heterogeneous expression for
short MCAM isoform, bFGF, N-CADH, and MMPs (frequency
range = 12.5–37.5%). The third “hybrid-endothelial/stem”
fraction resulted into another distinct fraction, characterized by
the absence of MCAM 5′-portion, short MCAM isoform, ABCB5,
bFGF expression (0%), and a heterogeneous frequency for the
long MCAM isoform, VEGF, N-Cadh, Ve-Cadh, MMP2, and
MMP9 (frequency range = 12.5–37.5%).

In the advanced AJCC-staged group, considered as a “positive
control,” we documented an increased overall gene expression:
particularlyMCAM (MCAM 5′-portion, long and short isoforms)
and VE-Cadh expressions that significantly increased in the
E-CMC and hybrid enriched E/S -CMC (range = 46.1–84.6%),
whereas VEGF and bFGF showed a low and moderate expression
increase, respectively (frequency range = 15–38.5%). All these
data also showed a number of positive CMC subpopulations for
selected genes (Figure 1 and Table 3). No expression of these
13 genes was detected in E- (endothelial), S- (stem), and hybrid
E/S-enriched fractions derived from similarly evaluated healthy
donors (n = 20).

Relationship Between
Melanoma-Initiating and
Melanoma-Differentiation Drivers,
Proangiogenic, Markers Cell–Cell
Adhesion Factors, and Matrix
Metalloproteinases and Enriched CMC
Subpopulations
Despite our smaller case series, in the early-AJCC stage group
(eight patients), we could only emphasize a direct correlation
between MMP2 and MMP9 biomarkers in E-CMC and hybrid
E/S-CMC subpopulations (p < 0.05).

Here, we reported the most significant relationships for
the purpose of this preliminary study in advanced-AJCC
stage group (13 patients). For E-CMC subpopulation, we
highlighted the following different statistically significant positive
correlations among biomarkers in advanced AJCC stage group:
MCAM/MUC18/CD146 long and short isoforms (ρ = 0.59 and
0.79, p < 0.05); MCAM/MUC18/CD146 5′-portion, long and
short isoforms, and VE-Cadh (ρ = 0.40, 0.48, and 0.66; p < 0.05);
ABCB5 (ρ = 0.50; p < 0.05); VEGF and VE-CADH (ρ = 0.68 and
ρ = 0.48, respectively). In S-CMC subpopulation, we emphasized

correlations between MCAM/MUC18/CD146 long isoform and
N-Cadh (ρ = 0.68) and between VE-Cadh and TyrOH (ρ = 0.56)
andMMP2 (ρ = 0.56). Direct correlations betweenMMP9,MMP2
(ρ = 0.76), and bFGF (ρ = 0.569) were also reported. In the third
hybrid E/S–CMC subpopulation, we demonstrated a consistent
relationship between MCAM/MUC18/CD146, 5′-portion, long
and short isoforms, and AJCC stages (ρ = 0.71, 0.76, and 0.89).
MCAM/MUC18/CD146 5′-portion presence correlated directly
with VE-Cadh (ρ = 0.53) and MMP9 (ρ = 0.71) positives. All
correlations were statistically significant at p < 0.05. We used
Spearman correlation test.

DISCUSSION

Various cell surface antigens have been involved in the pathway
of human melanoma metastases (Murakami et al., 2004; Medic
et al., 2007; Rodic et al., 2014). Metastatic process involves
altered and dysregulated processes of adhesion, migration,
invasion, and proliferation of cancer cells that implicate
cytokine receptors, adhesion molecules, and drug resistance–
related antigens. Proteins associated with stem and progenitor
cells are also detected in melanoma and include cancer testis
antigens (Simpson et al., 2005; Velazquez et al., 2007), bone
morphogenetic proteins (Hsu et al., 2008; Rothhammer et al.,
2007), Notch receptors (Balint et al., 2005), Wnt proteins
(Weeraratna et al., 2002), or specific stem cell–associated
markers, such as multidrug resistance transporters of the ABC
family, CD133, CD166, CD34, Nestin, and c-Kit 2 (Frank
et al., 2005; Laga et al., 2010). Most of these studies employed
melanoma cell lines, and only a few analyzed expression of cell
surface antigens on human melanomas (Radford et al., 1996;
Selzer et al., 2000; Djerf et al., 2009). Herein, we described
how CMC subpopulations expressing MCAM, as melanoma-
associated antigen (Xie et al., 1997) and/or ABCB5, as melanoma-
initiating marker (Frank et al., 2005), display distinct gene
profiles. We selected MCAM/MUC18/C146 not only because it
is an effective marker to capture and detect CMCs, because of
its high surface expression, up to 80% (Lehmann et al., 1987; Xie
et al., 1997; Cristofanilli et al., 2004; Melnikova and Bar-Eli, 2006;
Cohen et al., 2008; de Bono et al., 2008; Rapanotti et al., 2009,
2013, 2014, 2017; Quintana et al., 2010), but also because it is
considered an EMT inducer (Shih, 1999; Bardin et al., 2001). In
addition to its function as key oncogene in driving melanoma
progression and metastasis, this membrane glycoprotein is a
component of the interendothelial junction (Delorme et al., 2008)
and is even recognized as a mesenchymal marker (Guezguez
et al., 2007). Circulating melanoma cells have an important role
in the interaction with bone marrow stromal cells that allow
motility and migration of hematopoietic microenvironment
to heterotopic sites (Sacchetti et al., 2007). Recently, an
MCAM/MUC18/C146 stromal/mesenchymal signature has been
described associated with poor prognosis in several cancers, in
particular in breast cancer. Circulating tumor cell association
to triple-negative receptor status promotes undifferentiated
malignant cell motility (Zabouo et al., 2009; Onstenk et al., 2015;
Stalin et al., 2017). In cancer, the EMT is associated with tumor
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stemness, metastasis, and resistance to therapy. The importance
of cell plasticity in driving the transition of poorly tumorigenic
epithelial carcinoma cells into highly aggressive stem CTCs via
induction of an EMT has been well described. Relatively little is
known about the specific cell states along the “E-to-M spectrum”
in which stem CTC populations reside and the role that cell
plasticity plays in enabling them to function effectively as tumor-
initiating cells. It has recently defined that EMT occurs through
distinct intermediate states with different invasive, metastatic,
and differentiation characteristics (Bracken et al., 2008; Burk
et al., 2008; Kalluri and Weinberg, 2009; Thiery et al., 2009; Yu
et al., 2013; Jolly et al., 2015; Pastushenko et al., 2018; Kröger
et al., 2019; Zhao et al., 2019). This network, from the molecular
point of view, is composed of two gene pathways, SNAIL and
ZEB, and two miR families, miR-200 and miR-34 (Bracken et al.,
2008; Burk et al., 2008). The epithelial phenotype corresponds to
high levels of miR-200 and miR-34, whereas the mesenchymal
phenotype corresponds to high levels of ZEB and SNAIL. An
experimental model provided direct evidence that residence in
a hybrid E/M state was sufficient for maintenance of stem cell
properties (Epithelial/Mesenchimal). Analysis of a large panel
of cell surface markers (EpCAM, CD44, CD51, CD61, CD104,
CD105, CD106), by combinatorial multicolor FACS, revealed
the existence of multiple tumor subpopulations associated with
different EMT stages in skin and solid cancers: from epithelial
to completely mesenchymal states, passing through intermediate
hybrid states. These cells share a mixed epithelial (e.g., adhesion)
and mesenchymal (e.g., migration) phenotype, which thereby
allow them to move collectively, as proposed by Jolly et al.
(2015), reaching efficiently the bloodstream intact, giving rise
to clusters of CTCs so forming metastases. Although all EMT
subpopulations present similar tumor-propagating cell capacity,
they display differences in cellular plasticity, invasiveness, and
metastatic potential. In addition, it has been shown that these
different EMT states are localized in different microenvironments
and in contact with different stromal cells. Isolation of these
CTC clusters and testing them along the E–M spectrum have
become the most promising diagnostic approach in the clinic.
However, it must be underlined that these reports have mainly
analyzed CTCs derived from epithelial cancers characterized
by cytokeratins and/or EPCAM (Epithelial Cell Adhesion
Molecule), antigens commonly expressed and used for their
isolation and detection. By contrast, CMCs do not commonly
express these markers, because melanocytes originate from the
neural crest lineage, and to date, it is not well formalized an
ubiquitary melanoma cell surface marker. Nonetheless, what is
known in melanoma, is that EMT is similarly characterized by
loss of typical melanocytic histologic features, including apical-
basolateral polarization, basement membrane integrity, and cell–
cell adhesion, and acquisition of a more invasive phenotype
(Pearlman et al., 2017).

Several findings documented that tumorigenic heterogeneity
within the melanoma VGP is the definition of a subpopulation
of human melanoma cells that express the multidrug
resistance transporter known as adenosine triphosphate–
binding cassette subfamily B, ABCB5 (Frank et al., 2005;
Klein et al., 2007; Schatton et al., 2008; Laga et al., 2010).

The ABCB5 transmembrane transporter, belonging to the
superfamily of integral membrane proteins, is associated with
melanomagenesis, stem cell maintenance, metastasis, and
chemoresistance (Schatton et al., 2008). Human tumorigenic
melanoma reveals that a minority of cells expresses the ABCB5
cell membrane–associated transporter. These cells tend to
display a primitive molecular profile and correlate with clinical
melanoma progression as determined by high-density tissue
microarrays that allowed the screening of numerous melanomas
representing progressive evolution from RGP to VGP and
metastatic disease (Elliott and Al-Hajj, 2009; Laga et al., 2010).
The association of an ABCB5-expressing melanoma subset with
tumorigenic growth, typical of the VGP, supports the rationale
that CMCs derive from rare cancer subpopulations that may
potentially initiate metastases (Schatton et al., 2008; Civenni
et al., 2011; Wilson et al., 2014).

Because the initiation and progression of vertical growth in
human melanoma, often accompanied by phenotypic changes
enabling greater cell motility and migration, are fundamental
for melanoma progression, we decided to enrich and analyze
CMCs from melanoma patients staged AJCC ≥ pT1b. At first,
we developed a highly effective home-made CMCs enrichment
protocol, selecting MCAM/MUC18/CD146 and ABCB5 as
melanoma-specific epitopes, followed by molecular qualitative
reference gene panel suitable to identify those genes that
could provide great potential and biological information to
better define melanoma high-risk and low-risk patients. The
most significant finding from our study is that, based on
gene expression data, MCAM/MUC18/CD146 and ABCB5
are suitable and effective cell-surface targets in liquid biopsy
procedures. A differential expression of the specific transcripts
was documented between and within the CMC fractions
enriched with MCAM-, ABCB5-, and both MCAM/ABCB5-
coated beads, confirming the consistency of our approach. The
absence of molecular gene expression in our panel observed in
healthy donors’ blood samples further validated our enrichment
approach. This study confirms the phenotypic and molecular
heterogeneity observed in melanoma CMCs (Klinac et al., 2014;
Luo et al., 2014; Hong et al., 2018) and highlights genes that may
be associated with the biology of these subpopulations and with
melanoma progression. Another significant finding from this
study is that, based on gene expression data, E-CMC, S-CMC, and
E/S-CMC are three distinct subpopulations. This consideration
is based on the only partial overlap detected among the gene
expressions found in the three enriched CMCs fractions. In the
early-AJCC-staged melanoma group, we exclusively detected in
the enriched endothelial fraction E-CMC, MCAM expression, 5′-
portion, and both isoforms, associated with VE-CADH, MMP2,
and MMP9 (these last genes mostly expressed). These findings
indicated that MCAM, as melanoma-associated marker involved
in heterotypic cell adhesion and tissue invasion of melanoma
cells, characterizes the E-CMCs equipped with tumorigenic
capabilities, such as migration and invasion.

Opposite to the MCAM-enriched CMC fractions, the
ABCB5-enriched CMCs confirmed the rare ABCB5 expression
(Velazquez et al., 2007), found only in S-CMC fraction,
when analyzing early-AJCC-staged patients. ABCB5, as
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melanoma-stem marker of slow-cycling population of tumor cells
with self-renewal differentiation and proliferation capabilities,
characterizes the S-CMC subpopulation, the only fraction
that showed ABCB5, TyrOH, and VEGF expressions. The
hybrid E/S-CMC fraction, despite the contextual MCAM and
ABCB5 enrichment, does not express ABCB5, only showing the
MCAM/MUC18/CD146 long isoform associated with VE-Cadh
and MMPS expressions. These findings suggest that these cells
are “hybrid equipped with tumorigenic capabilities,” such as
motility, migration, and invasiveness, as they travel through the
bloodstream.

We believe that the first purpose of our work can be
considered achieved, because we could define, by assessing a
robust qualitative gene-expression panel, those genes suitable
to identify early-AJCC-staged patients but carrying more
aggressive CMCs. These data have been confirmed when
analyzing blood samples from advanced AJCC-staged patients,
interpreted as positive control, a statistically significant increase
of MCAM/MUC18/CD146, ABCB5, MMPs, and VE-Cadh
expressions was shown. In parallel, all three distinct CMC
fractions in both AJCC-staged patients groups did not show a
very high molecular positivity of proangiogenic factors, VEGF
and bFGF. Even the N-Cadh expression was not highly expressed,
despite its well-known association with neuroectodermal
malignant tissue transformation, suggesting that we selected
three subpopulations sharing undifferentiated phenotypes.
This consideration is even strengthened by the absence of
MART1/MelanA and E-Cadh. Particularly, the loss of E-Cadh–
mediated adhesion characterized the transition from benign
lesions to invasive and metastatic cancer, associated with
EMT. Downregulation of molecular expression of E-Cadh, if
considered as a tumor suppressor gene, allows and enhances the
invasion of adjacent normal tissues, increasing the metastatic
potential.

We believe that this qualitative molecular expression
analysis performed on these enriched MCAM/MUC18/CD146
and/or ABC5 CMCs provides evidence that these are
three distinct CMC subpopulations, sharing primitive,
“stem-mesenchymal” behavior, which makes them highly
aggressive and able to metastasize. Despite our smaller
case series, this study is among the first (Gutiérrez garcía-
rodrigo et al., 2017; Aya-Bonilla et al., 2019; Zhao et al.,
2019), to characterize different cancer subpopulations,
contemplating a hybrid fraction, unveiling the molecular
expression and suggesting distinct biological pathways
activated in these cells. Molecular expression analysis
especially of MCAM/MUC18/CD146, MMPs, and VE-Cadh
could provide great potential and biological information

to better define more aggressive CMC subpopulations
and provide useful evidence to determine a suitable
clinical approach, when analyzing early-AJCC-staged
patients.

Our observations need to be validated on a larger case
series. Particularly, we need to extend the early-AJCC-stage
cohort of patients to achieve a stronger statistical significance.
Finally, quantitative real-time PCR should be assessed for at least
MCAM/MUC18/CD146, MMPs, and VE-Cadh to further validate
the prognostic role of these reference genes.
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