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Hsp60 is a chaperone belonging to the Chaperonins of Group I and typically functions
inside mitochondria in which, together with the co-chaperonin Hsp10, maintains protein
homeostasis. In addition to this canonical role, Hsp60 plays many others beyond the
mitochondria, for instance in the cytosol, plasma-cell membrane, extracellular space,
and body fluids. These non-canonical functions include participation in inflammation,
autoimmunity, carcinogenesis, cell replication, and other cellular events in health and
disease. Thus, Hsp60 is a multifaceted molecule with a wide range of cellular and
tissue locations and functions, which is noteworthy because there is only one hsp60
gene. The question is by what mechanism this protein can become multifaceted. Likely,
one factor contributing to this diversity is post-translational modification (PTM). The
amino acid sequence of Hsp60 contains many potential phosphorylation sites, and
other PTMs are possible such as O-GlcNAcylation, nitration, acetylation, S-nitrosylation,
citrullination, oxidation, and ubiquitination. The effect of some of these PTMs on Hsp60
functions have been examined, for instance phosphorylation has been implicated in
sperm capacitation, docking of H2B and microtubule-associated proteins, mitochondrial
dysfunction, tumor invasiveness, and delay or facilitation of apoptosis. Nitration was
found to affect the stability of the mitochondrial permeability transition pore, to inhibit
folding ability, and to perturb insulin secretion. Hyperacetylation was associated with
mitochondrial failure; S-nitrosylation has an impact on mitochondrial stability and
endothelial integrity; citrullination can be pro-apoptotic; oxidation has a role in the
response to cellular injury and in cell migration; and ubiquitination regulates interaction
with the ubiquitin-proteasome system. Future research ought to determine which PTM
causes which variations in the Hsp60 molecular properties and functions, and which of
them are pathogenic, causing chaperonopathies. This is an important topic considering
the number of acquired Hsp60 chaperonopathies already cataloged, many of which are
serious diseases without efficacious treatment.

Keywords: Hsp60, chaperonin, canonical functions, non-canonical functions, post-translation modification,
chaperonopathies
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INTRODUCTION

Post-translational modification (PTM) is a covalent change in
an amino acid in a protein that can modify the properties
and functions of the latter, for instance folding, ligand binding,
migration to the place of residence, interaction with other
molecules, and other specific roles, which in the case of molecular
chaperones could be any of the various modes of chaperoning
client polypeptides and any of their non-canonical tasks. The
occurrence of a PTM depends on the spatial orientation of the
target amino acid and on the neighboring residues in the protein
molecule, which confer selectivity and reactivity of the former by
affecting its electrophilic status (Santos and Lindner, 2017).

Hsp60 is a molecular chaperone that belongs to the
chaperonins of Group I; it is named HSPD1 or Cpn60 in
humans and is classically described as a mitochondrial resident
that maintains protein homeostasis in the organelle. However,
this chaperonin plays various other roles in health and disease,
particularly as a pathogenic factor in a range of inherited and
acquired chaperonopathies (Macario and Conway de Macario,
2005; Cappello et al., 2008, 2013, 2014; Marino Gammazza et al.,
2017b; Hoter et al., 2019; van Eden et al., 2019). For these
reasons, interest in Hsp60 has been steadily increasing in recent
years, especially because it holds promise for developing new
diagnostic and therapeutic procedures pertinent to common
and serious chaperonopathies such as various types of cancer,
and inflammatory and autoimmune disorders as well as for
a range of neurodegenerative diseases (Macario and Conway
de Macario, 2005; Cappello et al., 2008; Bross et al., 2012;
Cappello et al., 2013, 2014; Marino Gammazza et al., 2016,
2017b; Campanella et al., 2018; Meng et al., 2018; Hoter et al.,
2019; van Eden et al., 2019). For example, Hsp60 inhibitors
and modulators are being actively evaluated as novel anti-cancer
agents (Wang et al., 2013; Cappello et al., 2014; Meng et al., 2018;
Stevens et al., 2019).

Hsp60 occurs not only inside mitochondria but also in
other intracellular locations, for example the cytosol, and
extracellularly, and its functions vary accordingly, depending
on the interactors that surround it at the various locations.
For example, inside mitochondria Hsp60 assists the folding and
trafficking of other proteins, but in the cytosol it can favor
apoptosis or the contrary, for example in some cancer cells, and
can thus be anti- or pro-cancer, respectively (Campanella et al.,
2014; Marino Gammazza et al., 2017b).

Structurally, the Hsp60 molecule has functional modules
and three structural domains and if any of these modules-
domains is altered by a PTM, its functions may be seriously
impaired as shown, for example, with the chaperonin CCT
(Macario and Conway de Macario, 2020). This type of
modification might change Hsp60 from cytoprotective into
pathogenic, causing a chaperonopathy. To the best of our
knowledge, there is no article describing all known Hsp60
PTMs together, in a way that would be a useful resource
for practitioners and scientists in their studies of Hsp60
chaperonopathies in patients or experimental models. The
main goal of this article is to contribute to filling in this
information gap. Consequently, we present a comprehensive

review of known PTMs of Hsp60, with a brief discussion
of the possible impact of a few of them on some of its
properties and functions.

Hsp60 STRUCTURE AND
CHAPERONING CYCLE

Hsp60 is highly conserved in evolution, from bacteria and
archaea to complex plants and animals (Gupta, 1995; Marino
Gammazza et al., 2012; Ansari and Mande, 2018).

In mammals, Hsp60 and its co-chaperone Hsp10 are
classically located inside mitochondria where they constitute
the protein folding apparatus with a mechanism elucidated
using the bacterial homologues GroEL and GroES, respectively
(references in Richardson et al., 1998; Cappello et al., 2014;
Vilasi et al., 2018). Hsp60 forms a stable tetradecameric double-
ring complex in the absence of Hsp10 and nucleotide (Enriquez
et al., 2017). The crystal structure of Hsp60 in complex with
Hsp10 shows a symmetric double-ring, American football-like
structure with extensive interring contacts and the symmetry
of the Hsp60 subunits within each ring observed in the
bacterial chaperonin is not preserved in the human counterpart
(Nisemblat et al., 2015). Moreover, the interring nucleotide
asymmetry that characterizes the GroEL folding cycle is absent,
because both Hsp60 rings are in the ADP-bound state. Hsp60
binds unfolded proteins catalyzing their folding in an ATP
dependent manner (Weiss et al., 2016; Bhatt et al., 2018;
Bigman and Horovitz, 2019). Hsp10 acts as a cap sitting on
the outer border of the mouth of the heptameric ring, opening
and closing the tetradecamer central cavity, regulating both
the interactions of the Hsp60 monomers and ATP hydrolysis
(Dubaquie et al., 1997; Richardson et al., 1998; Vilasi et al.,
2018). Hsp60 monomers are formed of three structural domains
named apical, intermediate and equatorial (Figures 1, 2): (i)
the apical domain binds the substrate and the co-chaperone
and it is implicated in ATP turnover; (ii) the intermediate
domain connects the apical with the equatorial domain; and
(iii) the equatorial domain facilitates interactions between the
single subunits within a ring and between the two heptameric
rings of the chaperonin (Braig et al., 1994; Ishida et al., 2018).
Electron microscopic analysis of the human Hsp60 showed that
the Hsp60/Hsp10 complex goes through a more complicated
functional cycle than that of the GroEl/GroES complex, and
this increased complexity depends on distinctive structural
features of Hsp60 and of the Hsp60/Hsp10 complex. Hsp60
can start as a single ring that enters the double-ring cycle
by binding to another ring along with Hsp10 and ATP. After
ATP hydrolysis, Hsp60 releases ADP and Hsp10, returns to the
single-ring structure and enters the next ATP-dependent cycle
(Weiss et al., 2016; Enriquez et al., 2017; Bhatt et al., 2018;
Bigman and Horovitz, 2019). Previous research had shown that
mitochondrial Hsp60 exists in solution in dynamic equilibrium
as monomer, heptamer (single ring), and tetradecamer (double
ring), depending on protein concentration, temperature, and
presence of cofactors (ATP and Hsp10) (Levy-Rimler et al., 2001).
Also, biophysical methods have highlighted the importance of
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FIGURE 1 | Cartoon representing the human Hsp60 monomer drawn to show
some of the known PTM sites and their modifications. Amino acids shown
are: Y222 (yellow), Y226 (orange), K396 (cyan), and C237 (blue) in the apical
domain (lime); and C442 (light pink) and ATP (red) binding site in the equatorial
domain (pale green). Nitration of the much conserved Y222 and Y226, and
ubiquitination of K396 in the apical domain might seriously impair chaperoning
functions, since this domain is crucial for Hsp10 and client protein binding.
S-nitrosylation of C237 was found beneficial for the maintenance of
mitochondrial DNA stability, during experimental peritonitis in mice (Suliman
et al., 2010). C442 is located near the ATP-binding site in the equatorial
domain and its S-guanylation might impair ATPase activity and oligomerization
ability. The amino acid sequence of the human Hsp60 was retrieved from the
PubMed website (http://www.ncbi.nlm.nih.gov/genbank/), using the
accession number NM_002156. The cartoon was drawn using
SWISS-MODEL (http://swissmodel.expasy.org/) accessible via the ExPASy
web server (http://www.expasy.org/); and was visualized and modified by
PyMol (http://www.pymol.org).

protein-protein interactions underlying the formation of stable
Hsp60 oligomeric complexes (heptamers and tetradecamers), in
equilibrium with minor populations of monomers, in aqueous
solutions (Vilasi et al., 2014).

Data from the GroEL crystal structure and from the
alignment of Hsp60 sequences from a wide range species have
revealed highly conserved sequence segments and residues
(Brocchieri and Karlin, 2000). The study of the connections
of the conserved residues inside Hsp60 tri-dimensional
structure and of their chemical and physical properties can
lead to an understanding of the possible disruptive effects
of PTMs on the protein stability and functions. One of the
most complete papers regarding this topic reported several
conserved residues between GroEL and Hsp60 (Brocchieri
and Karlin, 2000). For example, 246-PLLIIAED-253 and 275-
AVKAPGFGDRRK-286 are two conserved sequences of the
apical domain containing five aliphatic residues and enriched
in charged residues. The sequence 191-EGMQFDRGYISPY-203

between the intermediate and the apical domain contains
several aromatic residues for substrate binding. As connection
between the intermediate and the apical domains, the conserved
segments 363-EKLQERLAKLAGGVAVIKVG-382 and 402-
ATRAAVEEGIVPGGG-416 include charged residues at
positions 275–286 and 363–382 and the glycine triplet at
positions 402–416 represent the binding domain for ATP/ADP
(Sigler et al., 1998). The apical domain contains also highly
conserved hydrophobic/aromatic residues that contribute
to substrate and co-chaperone binding such as Y199, Y203,
Y222, F204, Y226, L234, L237, L259, V263, and V264 (Braig
et al., 1994; Fenton et al., 1994). Any alteration, such as
a PTM of the corresponding Hsp60 residues involved in
substrate binding may result in functional defects, probably
leading to protein misfolding and aggregation, and causing
a chaperonopathy. The equatorial domain contains residues
essential for the functioning of the chaperonin at positions
52–60 and 85–95 implicated in the binding of ATP/ADP and
Mg2+/K+ ions (Brocchieri and Karlin, 2000). Any alteration
of these sites or blocking them with a chemical compound
might inactivate Hsp60. Other sites crucial for the typical
chaperoning process mediated by GroEL/GroES during
polypeptide folding are in the apical domain and represent
the contact positions for GroES binding (L234, L237, and
N265); these hydrophobic residues, highly conserved between
species and necessary for substrate binding, contact GroES at
the conserved hydrophobic residues I25, I26, L27, and A31
(Brocchieri and Karlin, 2000).

The formation and functioning of the Hsp60 tetradecamer
depend on the inter-monomer and intra-ring connections. The
interaction between equatorial domains of contiguous monomers
involves the hydrophobic residues I6, L73, L513, T517, and
V521 from one side and the residues V39, L40, I49, and I60
on the opposite surface. The connections are completed via
the presence of opposite charged interactions between K4-E518
and E61-R36 (Brocchieri and Karlin, 2000). The conserved
hydrophobic residue V464 represent the interactions between
rings. The residues K105, E461, and E467, the residues A108,
A109, and S463 with the opposite charged residues E434
and D345 contribute to the salt bridge K105-E434 and to
allosteric switch (Chen et al., 1994; Brocchieri and Karlin,
2000; Sot et al., 2003). All these data regarding the chemical
and physical characteristics of the residues distributed along
GroEL and by similarity along Hsp60 domains show that
several residues are crucial for the correct assembling of the
two-ringed machine. Analysis of the crystal structure of the
complex Hsp60/Hsp10 revealed some differences in the interring
contact points of Hsp60 compared to GroEL but no differences
were mentioned for other conserved and functionally important
residues (Nisemblat et al., 2015). The symmetric key of A109
in GroEL is replaced with a salt bridge between K109 and
E105 in Hsp60 and a new symmetric hydrophobic interaction
is formed between two A10 as well as a new symmetric
hydrogen bond is formed between two D11. Moreover, the salt
bridge between E461 and R452 that is present in GroEL is
replaced by a salt bridge between E462 and K449 in Hsp60
(Nisemblat et al., 2015).
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FIGURE 2 | Hsp60 post-translational modifications. Linear representation of human Hsp60 with the N-terminal, 26 amino acids-long, mitochondrial import sequence
(MIS) to the left; the two segments of the equatorial domain in gray (residues 30–157 and 434–548 in the Hsp60 full-length sequence), containing the ATP-binding
pocket; the two segments of the intermediate domain in light gray (residues 158–214 and 402–433), connecting the equatorial and the apical domains; and the
apical domain in dark gray (residues 215–401), involved in substrate-recruitment and co-chaperonin binding. On the left of the figure all reported PTMs are indicated
with a letter with a color code: Phosphorylation (P) in orange, Acetylation (A) in green, Ubiquitination (U) in red, Succynilation (Sc) in light blue, Methylation (M) in
brown, S-Nitrosylation (s-N) in blue, S-guanylation (s-G) in magenta, and Nitration (N) in dark purple. Along the linear representation of the Hsp60, aligned with each
letter, the residues involved in the corresponding PTM are indicated with the same color as that of the pertinent modification. The data were obtained from the PTM
database PhosphoSitePlus (http://www.phosphosite.org) and from the scientific literature.

PTM of these and other residues, will most likely cause a
failure of tetradecamer formation, impairing Hsp60 chaperoning
ability and causing disease, a chaperonopathy.

Hsp60 POST-TRANSLATIONAL
MODIFICATIONS

Hsp60 is a multifaceted molecule with canonical and
non-canonical functions in a variety of physiological and
pathological processes depending among other factors on
cellular localization, Table 1. Any of the Hsp60 function may be
affected by PTMs. It is, therefore, necessary to survey some of the
roles of Hsp60 to gain insights on where, when, and how a PTM
can make a significant impact.

In humans, Hsp60 is encoded by a nuclear gene (HSPD1) on
chromosome 2q33.1, and subsequently translated in the cytosol
(Jindal et al., 1989). The protein consists of 573 amino acids
(Figure 2), including a mitochondrial import signal (MIS) at
the N-terminus of 26 amino acids necessary for its import into
mitochondria (Singh et al., 1990) and, in addition, a series of G
repeats at the C-terminus with unknown function (Brocchieri
and Karlin, 2000). The mitochondrial import mechanism of
Hsp60 is very complex involving the potential of mitochondrial
membranes (Yogev and Pines, 2011) and other chaperones
present in the matrix space (e.g., Hsp70) and in the cytosol (Singh
et al., 1990; Vilasi et al., 2018). Intra-mitochondrial cleavage of the
MIS generates the mature Hsp60 protein, with 547 amino acids
and a molecular mass of about 60 kDa.

Proteins with PTM are involved in all fundamental cellular
processes. For example, lysine modification of nuclear proteins
play a crucial role in gene regulation (McIntyre and Woodgate,
2015), and modified proteins are critical to maintain protein
homeostasis (Minguez et al., 2012; Lindstedt et al., 2019).
Likewise, phosphorylation, S-nitrosylation, and acetylation of
mitochondrial proteins occur to modulate their functions inside
the organelle (Foster et al., 2009; Mailloux et al., 2014).

PTMs can drastically change the function of a protein,
which makes the understanding of the networks in which the
modified protein is involved very difficult. There is abundant
information regarding the effects of PTMs on some molecular
chaperones like Hsp70 and Hsp90 (Cloutier and Coulombe,
2013), but comparatively little is known about Hsp60 PTMs.
Given the key role of Hsp60 in the regulation of cellular
homeostasis, the decoding of the different PTMs that affect
it can represent a turning point in many areas of cellular
research. Some PTMs occurring in a specific and sequential
manner describe a sort of code, the interpretation of which could
reveal much about the activity of molecular chaperones in cells
(Cloutier and Coulombe, 2013).

Hsp60 PTMs have not been investigated extensively even
though elucidation of the impact of modifications of this
multifaceted molecule will most likely shed light on the various
mechanisms underpinning the diverse roles and migration of
the chaperonin. It is possible that PTMs would affect key Hsp60
properties and functions if the modifications occur at one or more
of the various critical sites on the Hsp60 molecule, such as the
ATP-binding and substrate binding sites, the sites involved in
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TABLE 1 | Hsp60 localization and functions.

Localization Functions References

Mitochondria Replication and
transmission of
mitochondrial DNA

Kaufman et al., 2000, 2003

Protein folding Weiss et al., 2016

Pro-survival or pro-death
functions

Itoh et al., 2002; Chandra
et al., 2007

Cytosol Pro-survival and/or
pro-death functions

Itoh et al., 2002; Chandra
et al., 2007; Campanella
et al., 2008; Chun et al.,
2010; Caruso Bavisotto et al.,
2017b; Zhou et al., 2018

Activation of the apoptotic
cascade

Gupta and Knowlton, 2005

Cell membrane Membrane transport,
cell–cell signaling

Belles et al., 1999;
Dziewanowska et al., 2000;
Pfister et al., 2005; Cappello
et al., 2008; Merendino et al.,
2010; Campanella et al.,
2012; Caruso Bavisotto et al.,
2017a

Immune system alerting Habich and Burkart, 2007;
Cappello et al., 2009; Marino
Gammazza et al., 2017b

Extracellular
space

Either pro- or
anti-inflammatory

Watanabe et al., 2003;
Swaroop et al., 2016, 2018

Pro-tumoral signal Campanella et al., 2015a;
Caruso Bavisotto et al.,
2017b; Marino Gammazza
et al., 2017a

Immune system alerting Xiao et al., 2005; Habich and
Burkart, 2007; Shamaei-Tousi
et al., 2007; Marino
Gammazza et al., 2014

Correlation with disease
severity and cardiovascular
risk

Bonanad et al., 2013

Extracellular
vesicles

Activation of late apoptosis
in cardiomyocyte

Gupta and Knowlton, 2007;
Malik et al., 2013

Tumor progression signal Campanella et al., 2015a,b;
Caruso Bavisotto et al.,
2017a; Marino Gammazza
et al., 2017a; Campanella
et al., 2019

intra- and inter-ring contacts, and sites pertaining to networking
and to migrating and taking residence in the different intra- and
extra-cellular locations in which Hsp60 resides and works. In this
section we discuss Hsp60 PTMs described in the literature and
the effects of these modifications.

Phosphorylation
Among the various PTMs that can occur on Hsp60 (Table 2
and Figure 2), phosphorylation is involved in physiological
and pathological processes. The amino acid sequence of Hsp60
contains a number of potential phosphorylation sites (K72-
V73-T74, K130-I131-S132, K157-Q158-S159, K250-I251-S252,
K396-L397-S398, and K469-R470-T471) and the potential impact
of their modification is still unclear (Jindal et al., 1989;

Khan et al., 1998). Hsp60 can be tyrosine phosphorylated at Y227
and Y243 (Rikova et al., 2007; Gu et al., 2011) and Hsp60
tyrosine phosphorylation is required for its surface activation
(Asquith et al., 2004). Under physiological conditions, for
instance during the sperm-zona recognition, Hsp60 tyrosine
phosphorylation triggers conformational changes, contributing
to the activation of the zona pellucida receptor complex on the
surface of mammalian spermatozoa and, thus, leads to sperm
capacitation (Asquith et al., 2004). In an in vitro model of
leukemia, the extra-mitochondrial form of Hsp60 localized in the
plasma-cell membrane was found to interact with the histone
2B (H2B) and its phosphorylation regulated the docking of
H2B by Hsp60 (Khan et al., 1998). Differential phosphorylation
patterns of Hsp60 have been observed in rat hepatomas, in
which the phosphorylation regulates the functions of microtubule
associated proteins (Albrethsen et al., 2011). Phosphorylated
Hsp60 was identified as a molecular mediator for α3β1 integrin
activation in the adhesion of metastatic breast cancer cells to the
lymph nodes and to bone osteoblasts (Barazi et al., 2002). Many
malignant cells require tyrosine phosphorylation of Hsp60 to
escape immunosurveillance by NK and CD8 T cells (Leung et al.,
2015). Hyperglycemia induces an increased phosphorylation
pattern of Hsp60, which might be associated to mitochondrial
dysfunction (Gu et al., 2011). In response to rotavirus infection,
phosphorylation and the subsequent transient degradation of
mitochondrial Hsp60 are associated with an escape mechanism
by which the virus leads to a delay of the early apoptosis activation
(Chattopadhyay et al., 2017).

O-GlcNAcylation, N-Glycosylation, and
Acetylation
The O-linked-b-N-acetylglucosamine modification (O-
GlcNAcylation) of Hsp60 occurs at the serine and/or threonine
residues, which is important for regulating a range of biological
activities of Hsp60, including metabolism, signaling, and
transcription (Gu et al., 2011; Gorska et al., 2013; Marino
Gammazza et al., 2017a). Under high glucose condition, also an
aberrant O-GlcNAcylation occurs in Hsp60 of myoblasts that it
is associated with its phosphorylation, creating a crosstalk related
to mitochondrial metabolism (Gu et al., 2011). In pancreatic
β-cells, the O-GlcNAcylation of Hsp60 inhibits its binding to Bax,
which is a pro-apoptotic protein that becomes free to translocate
to mitochondria and activate cell death (Kim et al., 2006).

In tumors, as well as in normal cells under stress,
N-glycosylated Hsp60 is expressed on the cell surface or
secreted extracellularly (Barazi et al., 2002). The chaperonin
has three potential N-linked glycosylation sites, N103, N230,
and N426 (Helenius and Aebi, 2001). On the surface of
a tumor, N-glycosylated Hsp60 would be able to modulate
the immune response within the tumor microenvironment
(Hayoun et al., 2012).

Our group demonstrated that Hsp60 hyperacetylation,
following anticancer treatment in human tumor cells, contributes
to the death of these cells (Gorska et al., 2013). The
post-translational hyperacetylation of Hsp60 might affect its
interaction with p53 and signal for Hsp60 degradation via the
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TABLE 2 | Examples of Hsp60 PTM.

PTMa Modified amino acid or site Effect/function affected References

Phosphorylation Tyrosine Sperm capacitation Asquith et al., 2004

Serine/threonine Docking of H2B and
microtubule-associated proteins

Khan et al., 1998; Albrethsen et al.,
2011

Serine/threonine Mitochondrial dysfunction Gu et al., 2011

Not defined Tumor invasiveness Barazi et al., 2002

Tyrosine Immune escape Leung et al., 2015

Tyrosine at positions 90, 223, 227, and
503

Delay of apoptosis activation Chattopadhyay et al., 2017

O-GlcNAcylation, N-glycosylation Serine and/or threonine Pro-apoptotic Kim et al., 2006; Gu et al., 2011;
Gorska et al., 2013; Marino Gammazza
et al., 2017a

Lysine Modulation of Hsp60/Hsp10 complex
activity

Lu et al., 2015; Bross and
Fernandez-Guerra, 2016

N-linked glycosylation sites (N103,
N230 and N426)

Immune system modulation Helenius and Aebi, 2001; Barazi et al.,
2002; Hayoun et al., 2012

Nitration Cysteine 442 Stability of the mitochondrial
permeability transition pore

Ghosh et al., 2010; Rahaman et al.,
2014

Tyrosine 222, and 226 Inhibition of Hsp60 folding activity Campanella et al., 2015a

Hsp60 ATP binding site (amino acid not
defined)

Disturbance of insulin secretion Koeck et al., 2009

S-nitrosylation Cysteine Cardioprotective effects Sun et al., 2007; Lin et al., 2009; Kohr
et al., 2014

Cysteine 237 Mitochondrial stability and endothelial
integrity

Suliman et al., 2010; Huang et al., 2012

Citrullination Not defined Pro-apoptotic Lu et al., 2016

Methylation Lysine 490; Arginine Pro-proliferative Lim et al., 2008; Lim et al., 2010; Cao
et al., 2013

Oxidation Not defined Response to cellular injury and cell
migration

Suh et al., 2004; Lin et al., 2016

Biotinylation Lysine Anti-oxidant effect Li et al., 2014

Ubiquitination Lysine 396 Regulation of stress-activated
ubiquitin-proteasome pathway

Leach et al., 2011; Tang et al., 2013;
Marino Gammazza et al., 2017a

aPTM, post-translation modification.

ubiquitin-proteasome system, thus leading to cellular senescence
and tumor growth arrest (Marino Gammazza et al., 2017a).

Large-scale proteomic approaches showed numerous
mitochondrial acetylated proteins; however, in most cases, their
regulation by acetyltransferases and deacetylases remains unclear.
Sirtuin3 (SIRT3) is an NAD+-dependent mitochondrial protein
deacetylase that regulates enzymes in crucial metabolic pathways
(Rardin et al., 2013). SIRT3-dependent acetylation of the Hsp60
co-chaperone, Hsp10 (Lys-56 residue) is critical in the dynamic
interaction between the Hsp60/Hsp10, affecting protein folding
in the mitochondria (Lu et al., 2015). Lysine acetylation is key for
the Hsp60/Hsp10 complex activity. Therefore, alteration of the
acetylation levels in certain amino acids of Hsp60 can promote
development of disease (Bross and Fernandez-Guerra, 2016).

Nitration and S-Nitrosylation
Mitochondrial metabolism and integrity are ensured by the
correct functioning of mitochondrial proteins, including their
adequate response to stress. A particular PTM, related to
nitration, i.e., S-guanylation, was identified in the Hsp60
C442, which is located near the ATP-binding site and can

play a crucial role in its chaperoning activity and in the
ability to oligomerize (Rahaman et al., 2014; Figure 1). This
modification may influence Hsp60 stability and the functioning
of the mitochondrial chaperoning subsystem with regard to the
opening of mitochondrial permeability transition pore (Ghosh
et al., 2010; Rahaman et al., 2014). Nitric oxide (NO) induces
S-nitrosylation of Hsp60 C237 (Figure 1), facilitating interactions
with the proteins required to maintain mitochondrial DNA
stability during experimental E. coli peritonitis in mice (Suliman
et al., 2010). Also, Hsp60 S-nitrosylation might mediate the
beneficial effect of statins on endothelial integrity, but the
mechanism remains to be explained (Huang et al., 2012).
The positive effect of S-nitrosylation on proteins, included
Hsp60, may be of significance in the regulation of energy
production in mitochondria and, thereby, would play a role
in cytoprotection, as investigated in cardiac injury in vivo
models, in which a pathway involving the S-nitrosylation
of key cardioprotective proteins was described (Sun et al.,
2007; Lin et al., 2009). Along this line of thought, a role of
GAPDH as mediator of NO transport in mitochondria has
been proposed (Kohr et al., 2014). Among the cysteine residues
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involved in S-nitrosylation, C442 and C237 are present in Hsp60
(Figure 1) but not in GroEL and represent interesting sites
for the development of electrophilic Hsp60-binding compounds
(Cappello et al., 2014).

Hsp60 nitration, e.g., in response to an excess of ROS,
was shown to decrease ATP-hydrolysis activity, which disrupts
the interaction of the chaperonin with its substrates and,
thus, inhibits its substrate-folding ability (Campanella et al.,
2015a). These serious effects of nitration happen because the
modification most probably occurs in the highly conserved
residues Y222 and Y226 of the apical domain (Figure 1), and
this domain is crucial for Hsp10 and substrate binding by
Hsp60. In pancreatic β-cells, Hsp60 nitration on the ATP binding
site affects the process by which the insulin is secreted in
secretory granules (Koeck et al., 2009). Therefore, this could be
a mechanism underlying the onset and progression of diabetes
(Koeck et al., 2009).

Hsp60 nitration could be a signal to release it into the
extracellular space and circulation, for example via exosomes,
where it would interact with the immune system (Caruso
Bavisotto et al., 2013, 2017a; Campanella et al., 2014, 2015a).

In mitochondria, NO has an ambiguous role. On the one hand,
NO produces various inhibiting effects on electron transport, and
prolonged exposure is pro-apoptotic (Campanella et al., 2015a).
On the other hand, NO induces S-nitrosylation of Hsp60 C237
(Figure 1), facilitating interactions with the proteins required
to maintain mitochondrial DNA stability during experimental
E. coli peritonitis in mice (Suliman et al., 2010). Also, Hsp60
S-nitrosylation could mediate the beneficial effect of statins
on endothelial integrity, but the mechanism remains unclear
(Huang et al., 2012).

Citrullination and Methylation
Hsp60 is also known to be subjected to citrullination or
deamination, which is a conversion of the amino acid arginine
into the amino acid citrulline (Jiang et al., 2013). Citrullinated
Hsp60 was found in the surface of cells of a human sarcoma
osteogenic cell line, inducing apoptosis through TLR4 signaling, a
mechanism involved in joint damage in patients with rheumatoid
arthritis (Lu et al., 2016). Data from different cell lines
demonstrated that one functional methylation present on Hsp60
is the mono-methylated lysine 490 (K490me1) (Cao et al.,
2013). Senescent fibroblasts showed low level of asymmetric
arginine di-methylation of Hsp60 compared to low-passage
fibroblasts. This means that arginine asymmetric di-methylation
of Hsp60 is correlated with the proliferation potential of
cells and might be useful as a marker of cellular senescence
(Lim et al., 2008, 2010).

Oxidation and Biotinylation
As a redox sensitive protein, Hsp60 is oxidized in HepG2 cells
exposed to alcohol (Suh et al., 2004) and it is responsible
for cellular injury and cell migration (Lin et al., 2016). The
C-terminal motif in Hsp60 might be considered a ROS acceptor
thanks to a combination of PTMs in its residues (Li et al., 2014).
It has been proposed that biotinylation of lysines in Hsp60 close
proximity to sulfoxidation sites (methionine) contributes toward

the elimination of ROS via the methionine/methionine sulfoxide
reductase pathway in human cell cultures (Li et al., 2014).

Ubiquitination
In monocytes treated with azacytidine, a stress response occurs
with Hsp60 upregulation and ubiquitination in its K396 residue
(Tang et al., 2013; Figure 1). The role of this PTM is still unclear,
but it may play important roles in key cellular processes, such as
in the stress-activated ubiquitin-proteasome pathway (Tang et al.,
2013; Marino Gammazza et al., 2017a). A mutation in the target
point of the small ubiquitin-like modifier (SUMO) contributes
to aberrant growth morphology in Candida albicans, confirming
the importance of Hsp60 for cell survival under certain stress
conditions (Leach et al., 2011).

CONCLUSION AND PERSPECTIVES FOR
THE FUTURE

PTMs of Hsp60 have effects on its properties and functions,
for instance ATP and substrate binding, and interaction with
the co-chaperonin Hsp10, all of which in turn very likely
have an impact on the chaperoning ability and on any of
the other roles played by this chaperonin. Sites that undergo
PTM are distributed in all structural domains of Hsp60 and
can affect any of its functional modules, suggesting that any
one of the many functions, canonical and non-canonical, of
this chaperonin may be affected by the modifications. Since
Hsp60 is essential to the maintenance of cellular and tissue
physiology, it is of great interest to elucidate which PTMs occur in
health and in the various diseases, i.e., Hsp60 chaperonopathies,
in which the chaperonin is known or suspected to play an
etiopathogenic role. Likewise, it would be very useful to identify
PTMs that control, or at least partly determine, the Hsp60
locale of residence inside and outside cells. The chaperonin
may act intracellularly or at sites distant from its cell of origin,
and the destination may be dictated by specific modifications.
This emphasizes the need for more studies on Hsp60 PTMs,
particularly in cancer and other serious diseases, in which spread
of the disease may be associated with Hsp60 migration or
with other aberrant properties of the chaperonin that make
it pathogenic. Furthermore, learning about PTMs and their
effects on the properties and functions of Hsp60 will reveal
clues on what sites and modifications may be used to either
block the chaperonin (negative chaperonotherapy in case Hsp60
is an etiopathogenic factor), or to boost its activity (positive
chaperonotherapy in cases of chaperonopathies by defect).
In this regard, the newly reported crystal structure of the
Hsp60/Hsp10 complex (Gomez-Llorente et al., 2020) will be
instrumental to dissect the possible effects of PTMs on structure
and function.
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