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The free energy of a process is the fundamental quantity that determines its spontaneity

or propensity at a given temperature. In particular, the binding free energy of a drug

candidate to its biomolecular target is used as an objective quantity in drug design.

Recently, binding kinetics—rates of association (kon) and dissociation (koff)—have also

demonstrated utility for their ability to predict efficacy and in some cases have been

shown to be more predictive than the binding free energy alone. Some methods exist to

calculate binding kinetics from molecular simulations, although these are typically more

difficult to calculate than the binding affinity as they depend on details of the transition

path ensemble. Assessing these rate constants can be difficult, due to uncertainty in the

definition of the bound and unbound states, large error bars and the lack of experimental

data. As an additional consistency check, rate constants from simulation can be used

to calculate free energies (using the log of their ratio) which can then be compared

to free energies obtained experimentally or using alchemical free energy perturbation.

However, in this calculation it is not straightforward to account for common, practical

details such as the finite simulation volume or the particular definition of the “bound”

and “unbound” states. Here we derive a set of correction terms that can be applied

to calculations of binding free energies using full reactive trajectories. We apply these

correction terms to revisit the calculation of binding free energies from rate constants

for a host-guest system that was part of a blind prediction challenge, where significant

deviations were observed between free energies calculated with rate ratios and those

calculated from alchemical perturbation. The correction terms combine to significantly

decrease the error with respect to computational benchmarks, from 3.4 to 0.76 kcal/mol.

Although these terms were derived with weighted ensemble simulations in mind, some

of the correction terms are generally applicable to free energies calculated using physical

pathways via methods such as Markov state modeling, metadynamics, milestoning, or

umbrella sampling.

Keywords: free energy, molecular dynamics, enhanced sampling, binding kinetics, statistical mechanics,

nonequilibrium
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1. INTRODUCTION

In recent years there is a growing appreciation for the utility of
binding kinetics in the prediction of drug efficacy (Lu and Tonge,
2010; Carroll et al., 2012; Vauquelin et al., 2012; Pei et al., 2014;
Ayaz et al., 2016; Copeland, 2016; Costa et al., 2016; Guo et al.,
2016; Tonge, 2017; Bruce et al., 2018; Lee et al., 2019; Nunes-
Alves et al., 2020). Pharmacokinetic and pharmacodynamic
models of drug activity in the body are inherently out of
equilibrium: a drug is administered, it is absorbed, distributed to
different tissues, metabolized and eliminated from the body. As
such, kinetic constants of binding and release—beyond just the
equilibrium constants of binding—are required to model drug
action when the timescales of binding and release cannot be
separated from the other competing processes (Bernetti et al.,
2017). The relationship between molecular structure and the
kinetics of binding (also called “structure-kinetic relationships”
or SKR) is complicated, as small changes to structure can
change kinetic constants by orders of magnitude (Ayaz et al.,
2016). It is important to note that changes in kinetics are not
always tied to changes in affinity (Guo et al., 2014), and that
to accurately predict changes in kinetics, models of the ligand-
binding transition state are needed to estimate transition-state
stabilization or destabilization (Spagnuolo et al., 2017).

Computational methods that reveal structures of transition
states and calculate binding (kon) and unbinding (koff) rate
constants for real compounds are in their infancy, but are
quickly developing (Dickson et al., 2017). It is a tremendous
challenge to obtain reliable values for these quantities, as (1)
they depend on the entire (un)binding pathway, not just its
endpoints, and (2) the timescales of ligand binding and release
often exceed the capabilities of molecular dynamics simulations
by orders of magnitude. Specialized computing platforms have
been applied to generate continuous binding pathways (Dror
et al., 2011), although the unbinding process is typically beyond
the reach of molecular dynamics simulation for compounds
beyond millimolar drug fragments (Guo et al., 2016; Pan et al.,
2017). Recent studies have used enhanced sampling methods in
molecular dynamics to simulate ligand (un)binding pathways
and determine mechanisms and rate constants kon and koff
(Casasnovas et al., 2017; Tiwary et al., 2017; Dickson, 2018;
Kokh et al., 2018; Lotz and Dickson, 2018; Bruno et al., 2019;
Deb and Frank, 2019; Kirberger et al., 2019; Dixon et al.,
2020). Some of these rate constants have shown surprisingly
good agreement with experiment—given the extraordinarily
long timescales involved—however these have the confounding
uncertainty of force field accuracy (Yin et al., 2017; Camilloni and
Pietrucci, 2018), there is a possibility for fortuitous cancelation of
error. Unfortunately, the computational cost required to predict
these quantities is typically massive (Camilloni and Pietrucci,
2018), especially for large protein systems and ligands with
extremely long residence times, precluding the study of these
events under a series of different simulation conditions (e.g.,
forcefields, water models, polarizability).

In the field of biomolecular modeling, blind challenges—
where a series of objectives are released by the organizers, and
participants entries are directly judged by their agreement with

experiment—have been useful catalysts for the development
of predictive algorithms (Lensink et al., 2017; Synapse, 2018;
Croll et al., 2019; Parks et al., 2020). Although no blind
challenge currently exists for the prediction of kon and koff, we
recently participated in the SAMPL6 SAMPLing challenge, which
required participants to compute free energies as a function
of simulation time and to compare the computational cost of
different free energy calculation methods (Dixon et al., 2018;
Rizzi et al., 2018, 2020). This challenge allows sampling methods
to be assessed independently of force field accuracy, as all
entries used the same initial coordinates, force field parameters
and partial charges. Importantly, the challenge makes use of
very small model systems (host-guest) that require considerably
less computational resources to simulate, which allowed us to
efficiently simulate binding and release for a number of systems,
determine kon and koff, and predict values for the binding free
energy (1G) that would then be compared to experimental
observables, as well as results from alchemical free energy
perturbation methods (Gilson et al., 1997; Shirts and Chodera,
2008).

The standard free energy of binding was determined as a
function of rate constants:

1G = −kBT ln
C0kon

koff
(1)

where C0 is a reference concentration of 1 mol/L. In this paper,
we revisit this equation in detail and explicitly examine the
assumptions made when the rate constants used in Equation
(1) are computed through typical simulations with finite box-
size and periodic boundary conditions. In section 3.1, we derive
three correction terms that can be easily computed and facilitate
a better connection with both experiment and alchemical
computational free energy calculations. One term accounts for
the particular definitions of the bound and unbound states. The
second term accounts for residual electrostatic interactions that
might still be present between the molecules, which is especially
useful if one or both of the molecules carry an explicit charge.
The third term accounts for the volume of the unbound state
in the simulation box, which is useful to keep the simulated
volume as small as possible during rate calculations. These terms
were derived particularly with weighted ensemble simulations in
mind, where rates are computed using the trajectory flux between
two non-equilibrium ensembles. However, the second and third
term can be directly applied to other simulation methods which
employ physical simulation of the transition path ensemble, such
as Markov state modeling (Singhal et al., 2004; Gu et al., 2014),
metadynamics (Laio and Parrinello, 2002; Tiwary et al., 2017),
milestoning (Faradjian and Elber, 2004; Votapka et al., 2017), and
umbrella sampling (Torrie and Valleau, 1977; Nishikawa et al.,
2018).

To examine questions of convergence, we reproduce our
binding and unbinding simulations for a host-guest system with
larger numbers of replicas and longer simulation times. We also
explore the effects of the Langevin integrator on the prediction
of unbinding and binding rates; in particular, how altering
the friction coefficient (γ ), defined in the Langevin integrator,
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impacts the binding and release processes. Although γ does not
appear in the internal energy function, and hence cannot affect
thermodynamic properties such as the binding free energy, we
examine whether lower friction coefficients can accelerate the
convergence of unbinding simulations.

2. METHODS

2.1. Host-Guest Systems
The host-guest system utilized in this study is referred to as “OA-
G6” (Figure 1), where the host is a Gibb deep cavity cavitand,
referred to as an “octa acid” or “OA” (Gan et al., 2011). OA forms
a basket-like structure with 4-fold symmetry, functionalized with
four benzoic-acid substituents on the top rim of the basket and
four more on the bottom. The guest ligand we study here is 4-
methyl pentanoic acid (referred to as “G6”). This ligand harbors
a negative charge at the carboxyl end of the alkyl chain.

2.2. Molecular Dynamics
The OA-G6 configuration was obtained from the organizers of
the SAMPLing challenge (Rizzi et al., 2020). The system was
solvated in a (roughly) cubic box with box length 4.28, 4.33, and
4.33 nm in the x, y and z dimensions, respectively. The system
provided had a total of 7,976 atoms: 2,586 water molecules to
solvate the system, 12 sodium and 3 chloride ions to neutralize
the system, and the remaining atoms belonging to either the
host or the guest. Forcefield parameters for the system are as
provided by the original organizers of the SAMPLing challenge
(Rizzi et al., 2018). The system was parameterized using GAFF
(Wang et al., 2004) and then converted into Gromacs format.
The conversion was done using ParmEd version 2.7.3. OpenMM
v7.2.1 (Eastman et al., 2017) was used to run dynamics with the
CUDA v9.0.176 platform. A Monte Carlo barostat is used to
maintain a constant pressure of 1 atm. A timestep of 2 fs was used
across all simulations.

We utilize the Langevin integrator, which uses a drag term
and a noise term to account for the friction of solvent molecules
and high velocity collisions that perturb the system. Langevin
dynamics allows for the temperature to be controlled and can
be used as a thermostat; we run all dynamics here at 300 K.
Our host-guest system is propagated with the Langevin equation,
shown below:

F = ma = −∇U(r)−mγ v +

√

2mγ kBT

τ
R(t) (2)

where U(r) is the particle interaction potential, R(t) is a
random Gaussian noise term evaluated every timestep, T is the
temperature, kB is the Boltzmann constant, τ is the timestep and
γ is the friction coefficient in units of inverse time. The friction
term plays two different roles here, both modulating the second
“drag” term, and the Gaussian noise. As γ approaches zero, the
noise gets weaker and the dynamics becomes more deterministic.
Here we run binding and unbinding simulations with γ values of
1.0, 0.1, and 0.01 ps−1.

2.3. Reweighting of Ensembles by Variance
Optimization
To generate an ensemble of ligand unbinding events, we
need to employ enhanced sampling as the timescale of ligand
unbinding events in this system is prohibitively long: we found
in previous studies a mean first passage time of 2.1 s (Dixon
et al., 2018), which is six orders of magnitude longer than
the reach of conventional MD sampling. In this work, we
implement the REVO resampling method, based on weighted
ensemble (WE) framework, to encourage the sampling of rare
unbinding/rebinding events. WE accelerates the sampling of rare
events using an ensemble of trajectories that are each assigned
a statistical weight (Huber and Kim, 1996). The ensemble is
integrated forward in time in a parallel fashion, and periodically
“resampled” by cloning certain trajectories and merging others.
When a trajectory is cloned, its weight is divided amongst the
clones, but the multiple copies of the trajectory go on to evolve
independently. By repeatedly cloning trajectories that are in
undersampled regions of space we can obtain statistics on very
long-timescale events using only short-timescale simulations.

The REVO resampling method (Resampling Ensembles by
Variation Optimization) was designed to efficiently perform
cloning and merging operations on small ensembles of
trajectories that are evolving in high-dimensional spaces
(Donyapour et al., 2019). This is valuable in situations where it
is difficult to define one or two progress variables that capture
the long-timescale events of interest. In REVO, coupled cloning
and merging operations are proposed (e.g., clone trajectory i, and
merge trajectories j and k) and are accepted or rejected based on
an objective function called the “trajectory variation”:

V =
∑

i

Vi =
∑

i

∑

j

(dij/d0)
αφiφj (3)

where dij is the distance between trajectories i and j, α and d0 are
parameters, and φx is a function that measures the importance,
or “novelty” of a trajectory x, which in our work here is strictly a
function of the weight of the trajectory: φi = logwi − C, where
wi is the weight of trajectory i and C is a constant. Trajectories
with the highest Vi values in Equation (3) are chosen for cloning,
and those with the lowest Vi are chosen for merging. More
information about the algorithm can be found in previous work
(Donyapour et al., 2019).

We run separate simulations for the binding and unbinding
processes. In our unbinding simulations, the ligands start in
the bound state and are terminated as they unbind. In the
rebinding simulations, the ligands start in the unbound state
and are terminated as they bind. The distance function (dij) we
use in Equation (3) is different for these two simulation types.
For the unbinding simulations, we superimpose the hosts from
trajectories i and j, and then compute the root mean squared
distance (RMSD) between the guest molecules, without any
further alignment (Dickson and Lotz, 2016, 2017),. As there is
4-fold symmetry in this system, we perform the alignment four
times (once for each symmetrically-equivalent mapping) and use
the smallest such distance as dij. For the rebinding simulations,
we calculate the distance to the native state for each trajectory
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FIGURE 1 | (A) The initial pose for the OA-G6 system (side view: left, top view: right). Note that some atoms from the host are removed in the side view for clarity. The

carboxyl oxygens are shown in sphere representation. (B) The chemical structure of the G6 ligand in the deprotonated form.

(dnative(Xi)), which again takes into account the four symmetry
mappings, using the lowest such distance. The distance between
trajectories i and j is then calculated as dij = |1/dnative(Xi) −
1/dnative(Xj)|, where the inverse is used to prioritize differences
between small values of dnative.

2.4. Calculating Rates by Ensemble
Splitting
A major advantage of the REVO method, much like other
weighted ensemble methods, is that it can calculate kinetic
parameters in real time as the simulation progresses. This is
achieved by running separate simulations for the binding and
unbinding processes, and in each case, measuring the trajectory
flux into the opposite basin (Dickson et al., 2009, 2011; Vanden-
Eijnden and Venturoli, 2009; Costaouec et al., 2013; Suárez et al.,
2014). The unbound basin is defined as the set of structures where
the closest host-guest interatomic distance is > 1 nm, following
previous work (Dickson and Lotz, 2016, 2017; Lotz and Dickson,
2018). The bound basin is defined as the set of structures where
the guest RMSD (compared to the native structure) is < 0.1 nm
after aligning to the host. Again, this RMSD measurement takes
into account the four symmetry-equivalent mappings of OA.

In our studies, the binding and rebinding REVO simulations
are conducted separately. However, the methodology of
obtaining on and off rates is essentially the same. After each
dynamics step, if a walker has entered the opposite basin, as
described above, its weight is recorded and its structure is
“warped” back to the starting structure at the beginning of
the simulation. The atomic coordinates are set to the starting
structure and the velocities are reinitialized; however, the
weight of the trajectory remains the same. Before the warping
event to the starting structure, the structure of the walker is
recorded and is referred to as an “exit point.” In our unbinding
simulations, the initial starting structure is the initial bound
pose provided. In our rebinding simulations, the initial starting
structure is chosen from a set of exit points generated from the
unbinding simulations. Therefore, the unbinding analyses were
performed prior to initialization and the subsequent running of
our rebinding simulations.

The off and on rates are calculated by using the flux of
trajectories into either the unbound or bound state, respectively.

koff(t) =

∑

i wi

t
(4)

kon(t) =

∑

i wi

Ct
(5)

where the sum is over the set of “warped” trajectories, t is the
elapsed simulation time, and C is the concentration of ligand,
computed as 1/V where V is the box volume. The box volume
was approximately 80.2 nm3, corresponding to a concentration
of ligand of 0.0207 M.

There are a few key differences between the REVO simulations
discussed here and our previous studies (Dixon et al., 2018).
For both the unbinding and rebinding simulations in this study,
the total simulation time is 2.25 times longer compared to
our previous study, as our current unbinding and rebinding
simulations were run for 4,500 and 450 cycles, respectively.
Additionally, ten independent unbinding simulations were run
for each of the four friction coefficients, whereas our previous
study only ran five independent simulations for each starting
pose. However, only five independent rebinding simulations were
run for each of the coefficients, as we observe much less variation
in the kon estimates. Finally, 48 walkers were used in both
studies and the time per cycle is consistent, where the unbinding
simulations are 20 ps/cycle and the rebinding simulations are
200 ps/cycle.

2.5. Calculating Electrostatic Interaction
Energies
The electrostatic energy between the host and guest molecules
for use in the second correction term was calculated as: Eint =

1
4πǫw

QiQj

rij
where Qa is the partial charge of atom a used in

the force field during simulation. rij is the interatomic distance
between atoms i and j calculated by using the minimum image
convention. ǫw = 6.88 × 10−10 F/m is the permittivity of water
at 300 K calculated by linear interpolation of the water dielectric
constant at 298.15 and 303.15 K (Archer and Wang, 1990).

3. RESULTS

3.1. Derivation of Correction Terms
The binding free energy can be calculated using the rate constants
kon and koff as 1G = Gbound − Gunbound = −kT lnKeqC0 =

−kT ln C0kon
koff

, whereKeq is the binding equilibrium constant,C0 is
the reference concentration of 1 mol/L, k is Boltzmann’s constant
and T is the temperature in Kelvin. While this relationship is
correct in the macroscopic limit, it fails to account for the box
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FIGURE 2 | Splitting an equilibrium ensemble (A) into two history-dependent ensembles using basins. The bound and unbound basins are shown in gray and light

orange, respectively. The unbinding ensemble (B, top) contains all trajectories that last visited the bound basin, which are shown in black. The binding ensemble (B,

bottom, also referred to as the “rebinding” ensemble) contains all trajectories that last visited the unbound basin, shown in red. Simulations in a given ensemble are

terminated once they reach the destination basin and thus switch ensembles. The trajectory flux between ensembles is denoted by φu→b and φb→u. The quantity πb

refers to the probability of the entire top ensemble, and the quantity fb denotes the probability of the bound basin within the unbinding ensemble.

size and the volume of the unbound state in finite simulation
environments with periodic boundary conditions. Here we derive
a more accurate expression for the binding free energy that
accounts for the finite box size in a typical MD simulation.

Our starting point is an expression for Keq, which is valid
for a dilute solution in thermodynamic equilibrium. We use the
notation of Woo and Roux (see Equation 4 fromWoo and Roux,
2005):

Keq =

∫

bound d1
∫

dXe−βU

∫

bulk d1δ(r1 − r∗1)
∫

dXe−βU
(6)

where U is the internal energy of the system, β = 1/kT is
the inverse temperature, r1 is the center of mass of the ligand
(referred to as a “guest” molecule) and r∗1 is an arbitrary position
of the guest in the bulk. Note that d1 integrates over the guest
positions, and dX integrates over everything else: the host and
the solvent degrees of freedom. Note also that Keq has units of
volume, as the delta function constraining the center of mass in
the denominator removes three spatial degrees of freedom.

Here we examine the calculation of free energies using
rates determined from split ensemble calculations (Figure 2, see
section 2.4 for more details). We denote the probability of these
two ensembles as πb and πu, where πb + πu = 1, and:

πb

πu
=

φu→b

φb→u
(7)

where φa→b is the time-averaged flux from the a ensemble to
the b ensemble (i.e., across the dotted lines in Figure 2). The
equilibrium probability of a position X can be obtained by
combining estimates from both ensembles:

p(X) = pu(X)πu + pb(X)πb (8)

where pa(X) is the probability of conformation X in ensemble a,
which is normalized such that

∫

pa(X)dX = 1.

Let us define the bound state as the domain of the integral in
the numerator of Equation (6), and the unbound state as a set
of structures considered unbound in simulation (not the same as
the bulk state in Equation 6). These states are shown as shaded
regions in Figure 2. The ratio of the probabilities of these two
states, at equilibrium, is given by:

pbound

punbound
=

∫

bound d1
∫

dXe−βU

∫

unbound d1
∫

dXe−βU
(9)

which can also be calculated in our ensemble
splitting simulations:

pbound

punbound
=

πb

∫

bound pb(X)dX

πu

∫

unbound pu(X)dX
=

πbfb

πufu
(10)

where fa is the probability of the basin state within ensemble a.
Expanding Equation (6) we have:

Keq =

∫

bound d1
∫

dXe−βU

∫

unbound d1
∫

dXe−βU

∫

unbound d1
∫

dXe−βU

∫

bulk d1δ(r1 − r∗1)
∫

dXe−βU

=
πbfb

πufu

∫

unbound d1
∫

dXe−βU

∫

bulk d1δ(r1 − r∗1)
∫

dXe−βU
. (11)

The unbound state in simulation is far enough that the host and
guest do not interact directly through van derWaals interactions,
although if both molecules carry an explicit charge—as in
the example considered here—there could still be significant
host-guest electrostatic interactions. To account for these, we
introduce another intermediate state with an altered energy
function (U∗) which is the same as U except that it does not

Frontiers in Molecular Biosciences | www.frontiersin.org 5 June 2020 | Volume 7 | Article 106

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


Hall et al. Free Energy Correction Terms

include electrostatic interactions between the host and the guest:

Keq =
πbfb

πufu

∫

unbound d1
∫

dXe−βU

∫

unbound d1
∫

dXe−βU∗

∫

unbound d1
∫

dXe−βU∗

∫

bulk d1δ(r1 − r∗1)
∫

dXe−βU

(12)

=
πbfb

πufu

〈

eβEint
〉−1
unb

∫

unbound d1
∫

dXe−βU∗

∫

bulk d1δ(r1 − r∗1)
∫

dXe−βU
(13)

where Eint = U − U∗ and the subscript “unb” indicates an
ensemble average over structures in the unbound state obtained
with the normal energy function U. Note the final step used
the relation:

∫

unbound d1
∫

dXe−βU∗

∫

unbound d1
∫

dXe−βU
=

∫

unbound d1
∫

dXeβEinte−βU

∫

unbound d1
∫

dXe−βU
=

〈

eβEint
〉

unb .

(14)

We can now reasonably assume that the guest in the unbound
state is non-interacting with the host. This allows us to write
e−βU as e−βUGe−βUHS , where UG are the terms in the energy
function that depend only on the coordinates of the guest, and
UHS are terms that only depend on the host and the solvent. We
can then pull the integral

∫

dXe−βUHS out of the numerator and
denominator of the last term of Equation (11):

∫

unbound d1
∫

dXe−βU∗

∫

bulk d1δ(r1 − r∗1)
∫

dXe−βU
=

∫

unbound d1e
−βUG

∫

bulk d1δ(r1 − r∗1)e
−βUG

. (15)

The bottom integral has the center of mass of the ligand fixed
and is only over internal and rotational degrees of freedom of
the ligand. This can also be separated and removed from the
numerator, which simplifies the ratio to be the volume of the
unbound state, defined as:

Vunbound =

∫

unbound d1e
−βUG

∫

guest dG1e−βUG
=

∫

box
dRφu(R) (16)

where we use G1 to denote the internal and rotational degrees
of freedom of the guest that remain after specification of r1. The
quantity φu(R) is the fraction of conformers with center of mass
R that satisfy the unbound boundary conditions: here, that the
guest atoms are all farther than a cutoff distance of 1 nm away
from the host. This integral can be calculated by Monte Carlo,
where a center of mass position and orientation of the ligand
is randomly generated, and the number of successful unbound
conformers is recorded:

Vunbound = Vbox
Nunbound

Ntrials
. (17)

Note that for large boxes Vunbound ≈ Vbox.
Putting this all together we have:

Keq =
πbfb

πufu

〈

eβEint
〉−1
unb Vunbound, (18)

which differs from the straightforward interpretation used in our
previous work (Dixon et al., 2018):

K0
eq =

πb

πu[L]
=

πb

πu
Vbox (19)

Using 1G = −kT ln(KeqC0), we have:

1G = 1G0−kT ln

(

fb

fu

)

+kT ln
〈

eβEint
〉

unb−kT ln

(

Vunbound

Vbox

)

(20)

which explicitly shows 1G as the sum of 1G0 = −kT ln(K0
eqC0)

and the three newly derived correction terms. The first term
will go to zero in the limit that the basin states are chosen to
represent the vast majority of the probability in both the binding
and unbinding ensembles. In other words, this term goes to zero
when both fb and fu approach one. The second term is likely to
only be non-negligible in the case of explicitly charged host and
guest molecules and regardless would go to zero as the definition
of the unbound state is moved to farther and farther distances.
The third term would also go to zero for large simulation boxes,
but in practice this is often not feasible due to computational
constraints. Consequently, Vunbound/Vbox could be much less
than one, introducing a correction in the positive direction.
Below we calculate these three correction terms and apply them
to free energy calculations.

3.2. Extended Trajectory Ensembles With
Lower Friction Coefficients
In previous work, we used a Langevin integrator with a value of
γ = 1 ps−1 for the friction coefficient. As the simulations already
have explicit solvent, this adds extra friction into the system that
is not physical. Here we investigate whether reducing γ to values
less than one will significantly affect our rate calculations. We
thus run a set of trajectory ensembles at multiple values of γ

and extend each ensemble to be larger and longer than those
published in our prior study (Dixon et al., 2018) to more fully
examine questions of convergence.

As γ governs the coupling to the Langevin thermostat, we
determine the minimum value of γ where our target temperature
(300 K) is maintained. We first ran a series of short simulations
(one 10 ns trajectory for each γ ) and find that temperature
control is completely lost for friction coefficients less than γ =

0.001 (Figure 3A). We then ran longer simulations for γ = 1,
0.1, 0.01, and 0.001, examining not only the mean temperature,
but the probability of significant temperature fluctuations,
which could spur anomalous results in our ligand dissociation
simulations. Figure 3B shows the probability distribution of
observed temperatures over an ensemble of 240 trajectories run
for 90 ns each. For γ = 0.01, 0.1 and 1 ps−1, the temperature
distribution is normally distributed around the mean (300 K) as
seen by the parabolic curves on a log scale. Temperature control is
not fully maintained for γ = 0.001 ps−1, as shown by a rightward
shift and slight widening of the parabolic distribution. We thus
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FIGURE 3 | (A) Average temperatures observed in short simulations for different friction coefficients (γ ). (B) Probability distributions of observed temperatures from

ensembles of longer simulations with different γ .

restrict our analysis to three values of the friction coefficient:
γ = 0.01, 0.1, and 1 ps−1.

We run both unbinding and rebinding REVO simulations
for the OAG6 system. For unbinding, we ran 10 simulations
for each of the three friction coefficients; for rebinding, we
ran five simulations for each coefficient, yielding a total of 30
simulations for unbinding and 15 simulations for rebinding.
A set of binding and unbinding simulations were also run for
γ = 0.001—despite the impaired temperature control—which
are reported in the Supplemental Information. The estimates
for the unbinding and binding fluxes are depicted in Figure 4,
where each curve represents an individual REVO simulation.
The averages, illustrated with a bolded line, are calculated by
averaging the trajectory flux over the entire set of simulations
for that value of γ . The upward jumps on these plots indicate
that an exit point was recorded that has a higher weight than was
previously observed.

By reducing γ to values <1, we observed no change in the
binding rates, and small changes to the unbinding rates which
are on the border of significance. With regard to unbinding rates,
the two largest friction coefficients yielded the smallest error
and similar koff values, where γ = 1 yielded an average off
rate of 16.4 s−1 and γ = 0.1 yielded an off rate of 11.5 s−1.
The off-rate increased by 10-fold for γ = 0.01, although this
is mostly driven by exit points observed in a single simulation.
In our previous OA-G6 results using γ = 1, we calculated
an unbinding rate of 0.48 s−1 which slightly differs from the
value calculated in this study using γ = 1 (Table 1). Unbinding
rates for γ = 0.001 ps−1 were approximately 1000-fold higher,
although these are known to be affected by a higher average
temperature (Supplemental Information). Taking a closer look
at the binding rates, we saw no discernible difference across
the friction coefficients. The binding rate was approximately 109

s−1 M−1, for all friction coefficients, which was about 5-fold
larger when compared to our previous study using γ = 1. For
both binding and unbinding rates we have more confidence in
the results obtained here, as they are based on more extensive
simulation data.

TABLE 1 | Binding and unbinding rates as a function of friction coefficient (γ ).

kon (108 M−1 s−1) koff (s
−1)

γ = 0.01 17 ± 1 122 ± 94

γ = 0.1 16 ± 2 22 ± 12

γ = 1 13 ± 1 16.4 ± 9.4

Dixon et al. (2018) (γ = 1) 2.8 ± 1.0 0.48 ± 0.11

The uncertainties shown use the standard error of the mean calculated from 5 and 10

independent REVO runs for binding and unbinding, respectively. The quantities from Dixon

et al. (2018) were obtained with 5 REVO runs that used different initial conformations, each

of which were 2,000 cycles in length.

For both the unbinding and rebinding simulations, across all
friction coefficients, we observed at least 1,000 warping events
(Figure S4). As expected, we observe that rebinding occurs with
a much higher probability when compared to unbinding, by
several orders of magnitude. The unbinding walker weights are
limited at the low end by the minimum walker probability
(pmin), which is set to 10−12. The rebinding walker weights are
limited at the high end by the maximum walker probability
(pmax), which is set to 10−1. respectively. Figure S4 shows that
the 10-fold larger unbinding rate fro γ = 0.01 was largely
due to a single unbinding point in a single simulation, which
underscores the sensitivity and uncertainty of rate calculations
using trajectory fluxes. Figure S2 shows unbinding fluxes for
γ = 0.001, which is known to have elevated temperatures. There
we see a large number of high-weight unbinding events in two
different simulations, leading to the 1,000-fold increase in koff.

3.3. Free Energy Estimates, Correction
Terms, and Comparison With Previous
Benchmarks
As the friction coefficient unevenly affected the rates of binding
and unbinding, there was a net effect on the binding free energies.
As shown in Figure 5 and Table 2, the binding free energy
increases as the friction coefficient is lowered, independent of the
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FIGURE 4 | Predicted on- (top) and off-rates (bottom) as a function of simulation time. Each panel is labeled according to the friction coefficient used for that set of

simulations. The independent simulations are shown in shades of orange (kon) and blue (koff), and the averages are depicted by bold black lines.

free energy correction terms derived in section 3.1. Table 2 shows
the free energies computed using the averaged fluxes across all
simulations at each γ value. For all friction coefficients, the
calculated free energy was always higher than that from our
previous study (−12.1 kcal/mol; red line), even for γ = 1,
signifying that extending the simulation time aided in predicting
experimentally determined binding free energies.

The correction terms are calculated using data obtained from
the simulations, but they are mostly functions of geometric
properties of the simulation box and boundary conditions, and
are not expected to change as a function of γ . The first term,
−kT ln fb/fu, was calculated to be 0.74 ± 0.10 kcal/mol, with
fb and fu taking on values of 0.157 and 0.54, respectively. As
described in section 3.1, fb is the probability of the being in
the bound basin given that you are in the unbinding ensemble,
which is calculated using the sum of the weights of trajectories
in the bound basin, divided by the total sum of the weights of
the trajectories considered. The fb value in particular was lower
than expected, indicating that our definition of the bound state
might be too restrictive, even though we did account for all
symmetry-equivalent conformations in our calculation of fb.

The second term, +kT ln
〈

eβEint
〉

unb, was calculated to be
1.64 ± 0.002 kcal/mol. This was calculated by determining the
electrostatic interaction energies (see section 2.5) for the set
of unbound states observed in the rebinding simulations. The
expectation value in the correction term again accounted for
trajectory weights and was computed using 71,428 interaction

energy measurements that were selected from the unbound
ensemble. The uncertainty was computed as the standard error of
the mean of this set of energies. To calculate the third correction

term, −kT ln
(

Vunbound
Vbox

)

, we directly estimated Vunbound/Vbox

using the Monte Carlo procedure described in section 3.1. The
ratio was computed as 0.56± 0.0037 using five batches of 10,000
trials each, where the uncertainty is the standard error of the
mean across the sets of trials.

Together these three terms sum to 2.72 kcal/mol, which is
a significant correction to the binding free energies computed
here. Over half of this comes from the residual electrostatic
interaction energy between the host and the guest. Note that both
the host and the guest have negative charges, and the residual
interaction between the two molecules is repulsive. Turning this
interaction off releases 1.64 kcal/mol of energy, which lowers the
free energy gap between the bound and unbound states. The
corrected and uncorrected free energies are shown as a function
of γ in Figure 5. For γ ≥ 0.01 the calculated free energies are
almost equal to within standard error and the correction terms
significantly reduce the error with respect to the computational
reference value (Rizzi et al., 2018, 2020).

4. DISCUSSION AND CONCLUSION

In this study, we sought to better connect the calculation of
binding and unbinding rates with the calculation of binding
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FIGURE 5 | Free energies as a function of friction coefficient. The dark blue

line shows the uncorrected free energies calculated at three different γ values.

The light blue line shows the corrected values, which are shifted upwards by

2.72 kcal/mol. The thin red line shows the value reported in Dixon et al. (2018),

which employed a friction coefficient of 1.0 ps−1 and used a smaller dataset

than is reported here. The black horizontal line shows the value of a

computational reference computed using alchemical perturbation, reported in

Rizzi et al. (2020). The dashed gray line shows the experimental measurement,

reported in Sullivan et al. (2019). The shaded area for each line shows its

associated uncertainty, which is less than the line thickness for the

computational reference and the experimental measurement.

free energies. The rate calculations measured the microscopic
fluxes of trajectories from one basin to another. These fluxes can
be visualized in an extended history-dependent conformation
space, where trajectories change their “color" based on which
basin (“bound” or “unbound”) they have most recently visited
(Dickson et al., 2009, 2011; Vanden-Eijnden and Venturoli, 2009;
Costaouec et al., 2013; Suárez et al., 2014). The ratio of these rates
gives a ratio of two populations: the trajectories that have most
recently visited the “bound” basin and the trajectories that have
most recently visited the “unbound” basin. The first correction
term adjusts this ratio to instead only account for the probability
contained within the basins themselves and is particular to rates
that are calculated using this history-dependent formalism. The
third term can be seen as a volume correction term, which is
used to accurately account for the volume in the unbound state.
This is done in other approaches where restraints are used, such
as methods based on calculation of the potential of mean force
(Deng and Roux, 2009). In our case the unbound state cannot be
easily approximated by a geometric object, such as the volume of
a spherical shell.

The second term accounts for residual interactions in the
unbound ensemble. This could be used by other approaches
that directly determine free energy differences between bound
and unbound conformations, such as Markov state modeling,
metadynamics, milestoning, and umbrella sampling. The
conventional approach is to define a simulation box that is
large enough such that the interactions between the host and
guest are negligible in the unbound state. However, this can
significantly increase the cost of the simulation. It is worth

TABLE 2 | Raw (1G0) and corrected (1Gcorr) free energy values using simulation

data from three different friction coefficients.

1G0 (kcal/mol) 1Gcorr (kcal/mol)

γ = 0.01 −9.83 ± 0.46 −7.11 ± 0.47

γ = 0.1 −10.78 ± 0.32 −8.06 ± 0.33

γ = 1 −10.85 ± 0.34 −8.13 ± 0.36

Dixon et al. (2018) (γ = 1) −12.1 ± 1.0 −9.38 ± 1.0

Comp. (Rizzi et al., 2020) – −7.0 ± 0.1

Exp. (Sullivan et al., 2019) – −4.97 ± 0.02

Values are in kcal/mol and uncertainties are calculated using propagation of the standard

error of the mean.

noting that umbrella sampling results for this system (OA-G6)
obtained by Song et al. (2018), −8.50 kcal/mol, were also below
both the computational benchmark and the experimental value.
Their unbound state was defined as a 20 Å distance between an
atom in the guest and a dummy atom in the center of the host,
which is roughly comparable to our unbound basin of 10 Å of
clearance between the host and the guest. Assuming a similar
value for the electrostatic correction term, it would have brought
their prediction to −6.86 kcal/mol, which is in line with the
computational benchmarks (Rizzi et al., 2020).

The electrostatic term can also be viewed as a sort of
“decoupling” between the host and the guest, and it is warranted
to discuss similarities and differences with similar procedures
in alchemical free energy methods. They are similar in that we
are computing a free energy between two Hamiltonians, one in
which an interaction is turned off. We could thus use similar
techniques for computing these free energy differences, such
as thermodynamic integration (Kirkwood, 1935; Bhati et al.,
2019), BAR (Gutiérrez et al., 2019), MBAR (Shirts and Chodera,
2008; Bhati et al., 2019), or MM/PBSA (Rifai et al., 2019),
although here we effectively use a simple free energy perturbation
(FEP) expression (Zwanzig, 1954; Jorgensen and Thomas, 2008).
The approaches are different in that we are only considering
ensembles of structures where the interactions being turned off
are relatively weak. We are assuming here—as is always the
case with FEP—that the conformational ensembles of both the
host and the guest are highly overlapping between the two
Hamiltonians, which considerably simplifies the problem. We
also note that although we employ electrostatic decoupling to
compute free energies, our simulations still reveal important
information about the (un)binding kinetics and mechanism.

Given these correction terms for the binding affinity, it
is reasonable to ask if and how the rate constants should
be modified. The correction terms each have the effect of
“loosening” the interaction, indicating that either the corrected
off-rate should increase, or the corrected on-rate should decrease.
It is reasonable to assume that lowering the on-rate should
account for the vast majority of this correction, as the on-rate
measured starts from an unbound conformation that is much
closer (a clearance of 1 nm between the host and guest) than
is likely in experimental conditions. More accurate calculations
of the binding rate can be achieved with better sampling of
the unbound state, for instance using the Northrup-Allison-
McCammon method (Northrup et al., 1984). It would be
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interesting to see whether such calculations can recapitulate part
of the free energy differences observed here.

We also examined the role that the Langevin integrator
plays in the prediction of kinetic and thermodynamic quantities.
In particular, we adjusted the friction coefficient (γ ), defined
in the Langevin integrator, while maintaining the stability of
temperature at 300 K. We did not expect that altering the
friction coefficient would have an impact on the calculation of
equilibrium quantities. As γ does not appear in the Hamiltonian
of the system, it should not affect the probability of a given
microstate P(X), which is given by the Canonical probability
density exp(−βU(X)). While we did expect it to affect rates, we
expected that these effects would offset: that if unbinding was
accelerated 10-fold, we would observe the binding process to be
sped up by the same factor. However, we observe that the on-
rate was very stable as a function of γ , while the off-rate changed
slightly. One explanation is that unbinding is a much more rare
event when compared to rebinding, and estimates of koff were
not converged. Lower friction coefficients could be accelerating
sampling of these events and making it easier to observe higher
probability walkers unbind in our simulations.

Convergence is of utmost priority in weighted ensemble
simulations that calculate kinetic quantities. In our previous
study, we hypothesized that it was possible that extending
the time of the unbinding simulations could capture more
high weight walkers exiting from the bound state. Indeed,
we observe a higher unbinding flux in this study across all
friction coefficients. In Figure 4, we observe large upward
jumps, for all γ values, even after 40 ns of simulation time
per walker, which was sampling limit in our previous study.
These upward jumps, as previously described, signify that
an exit point was recorded that has a higher weight than
previously observed. This highlights the challenges involved
in accurate determination of rate fluxes for rare events. It is
worth noting that by using our correction terms to account for
small unbound volumes and persistent but small electrostatic
interactions in the unbound state, we can keep box sizes
small, allowing for better convergence of rate fluxes at fixed
computational cost.

Of course the binding free energy alone is still an important
quantity for drug design (Homeyer et al., 2014). If one is only
interested in the absolute binding free energy, calculating it
through the ratio of rates is needlessly complicated; free energy
is a state function and thus only depends on the endpoints of
the binding pathway. The prediction of koff and kon themselves
is challenging, since they are not state functions: they depend on
the transition path ensemble between the bound and unbound
state. Sampling of these physical pathways is a large challenge
for molecular dynamics, largely due to the long timescales of the
binding and release processes. Ensuring that the ratio of rates is
consistent with binding free energy calculations—as done here—
provides an additional, powerful consistency check. In particular,
comparing to well-converged computational benchmarks ismore
useful than experimental quantities, as we avoid an additional
layer of uncertainty associated with the force field used to
describe the system.
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