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Objective: To obtain molecular information in slides directly from H&E staining slides,
which apparently display morphological information, to show that some differences in
molecular level have already encoded in morphology.

Methods: In this paper, we selected Ki-67-expression as the representative of molecular
information. We proposed a method that can predict Ki-67 positive cells directly from
H&E stained slides by a deep convolutional network model. To train this model, we
constructed a dataset containing Ki-67 negative or positive cell images and background
images. These images were all extracted from H&E stained WSIs and the Ki-67
expression was acquired from the corresponding IHC stained WSIs. The trained model
was evaluated both on classification performance and the ability to quantify Ki-67
expression in H&E stained images.

Results: The model achieved an average accuracy of 0.9371 in discrimination of Ki-67
negative cell images, positive cell images and background images. As for evaluation of
quantification performance, the correlation coefficient between the quantification results
of H&E stained images predicted by our model and that of IHC stained images obtained
by color channel filtering is 0.80.

Conclusion and Significance: Our study indicates that the deep learning model has a
good performance both on prediction of Ki-67 positive cells and quantification of Ki-67
expression in cancer samples stained by H&E. More generally, this study shows that
deep learning is a powerful tool in exploring the relationship between morphological
information and molecular information.

Availability and Implementation: The main program is available at https://github.
com/liuyiqing2018/predict_Ki-67_from_HE

Keywords: digital pathology, immunohistochemistry, Ki-67, deep learning, fully convolutional network,
neuroendocrine tumor
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INTRODUCTION

In recent years, deep learning has developed rapidly and has
outperformed humans in some medical data analysis tasks (Li
et al., 2018; Norgeot et al., 2019; von Chamier et al., 2019).
Meanwhile, more and more tissue slides are digitalized by a
scanner and saved as whole slide images (WSIs). Thus, it is
natural to come up with the idea about applying deep learning
algorithms to these WSIs. In fact, many researched tasks have
explored the potential of deep learning on histopathological
image analysis (Komura and Ishikawa, 2018), such as detection
or segmentation of Region of Interest (ROI) (Spanhol et al.,
2016), scoring of immunostaining (Mungle et al., 2017), mitosis
detection (Roux et al., 2013) and so on.

In terms of pathology, hematoxylin and eosin (H&E), as
the gold standard stain in evaluations for many cancer types,
is routinely employed worldwide (Xu et al., 2019). In most
cases, pathologists rely on H&E for their diagnosis and the
majority of algorithms for histopathological image analysis, like
cell detection, tissue segmentation and cancer grading, are based
on H&E imaging (Ghaznavi et al., 2013). It is easy to acquire and
cost effective. However, H&E stained slides only contain basic
morphological information (Wittekind, 2003), such as the shapes
of cells, tissues and tissue blocks. Molecular information like the
expression of antigen (protein) in cells, which is more micro, is
not reflected in H&E stained slides, which makes it difficult for
pathologists and algorithms to analyze and assess.

To obtain molecular information in slides,
immunohistochemistry staining (or IHC staining) is often
employed in clinical practice. It allows the visualization
of specific proteins on the tissue slide by binding targeted
antibodies to corresponding proteins and highlighting the
protein-binded antibodies by using chromogens of different
colors (Ramos-Vara and Miller, 2014; Xu et al., 2019). Hence,
this method can distinguish cells that express particular proteins
from other components and therefore augment pathologist
interpretation and direct therapy.

If a patient needs further diagnosis (such as confirming
tumor subtype) or a targeted treatment plan, then an
immunohistochemical test is often needed although he has
already had H&E stained slides. It is because tumor subtype
classification and making the plan of immunotherapy need some
molecular information, which is not directly reflected in H&E
staining slides. If this information can be inferred from H&E
staining slides by some techniques like deep learning, it will
greatly improve diagnostic efficiency and save costs.

If the assumption holds that the differences between positive
cells (cells that contain a specific protein) and negative cells
(cells that do not contain a specific protein) in IHC-stained
slides have correlation with H&E-stained slides from the same
regions, then there should be a way to model the relationship
between the morphological information of cells in H&E images
and IHC stained conditions of the cells. It is then possible to
predict whether a cell can express specific proteins directly from
a H&E-stained slide, without additional IHC staining process. In
fact, some related works have been done to predict molecular
information from H&E stained images. Coudray et al. (2018)

founded six out of ten most commonly mutated genes in LUAD
can be predicted from pathology images. Kather et al. (2019)
showed that deep residual learning can predict microsatellite
instability directly from H&E histology.

Ki-67 is a cancer antigen that is sometimes considered a
good marker of proliferation, helping doctors determine patients’
cancer prognosis or their chance of recovery (Scholzen and
Gerdes, 2000). However, in clinical practice, not every patient is
tested for Ki-67 since it is time and money-consuming.

In this paper, we proposed a method that can predict
Ki-67 positive cells directly from H&E stained slides by a
deep convolutional network model, which realized a cell-level
transformation. After the training process, the model was
evaluated both on classification and quantification performance.
The classification accuracies for our model on training set
and validation set are 0.9780 and 0.9371. As for evaluation
on quantification performance, the correlation coefficients
of Dpos, Dneg and Rpos between these two different types
of images are 0.60, 0.73, and 0.80. The results reflect the
consistency of Ki-67-expression between real IHC staining
images and the output images of our model using H&E staining
images as the inputs.

MATERIALS AND METHODS

The overview of our method is displayed on Figure 1. first,
Consecutive sections of (formalin-fixed paraffin-embedded)
samples obtained from the neuroendocrine tumor of twelve
patients were cut and stained with H&E and Ki-67 antibody.
Then, the slides were digitalized and a set of Ki-67 positive or
negative cells in H&E stained images were annotated based on the
Ki-67 expression present in the IHC stained images. After that,
these cells along with some background patches were extracted
for training the model. In order to quantify Ki-67 expressions
in a bigger H&E stained image (sized 7,556 × 3,864 for each), a
transformation was applied to our trained convolutional network
to convert all the fully connected layers into convolutional layers.
In this way, the transformed network can take one ROI as the
input and output the classification map of the ROI. In order to
compare real IHC staining images and images predicted by our
model, we use color channel filtering to convert IHC staining
images into three-value colormaps.

Data Preparation
Patient Material
Formalin-fixed paraffin-embedded tumor samples of twelve
patients operated for neuroendocrine tumor within the Peking
university Shenzhen Hospital, China, were used in the study.
The samples were stored in archives of Department of pathology
in Peking university Shenzhen hospital and the Head of the
Department of Pathology approved the use of the samples.
The samples were anonymized and all patient-related data and
unique identifiers were removed. The procedures were performed
under the supervision and approval of the Ethics Committee
in Peking university Shenzhen hospital. Samples represented
different histological types: five cases with neuroendocrine tumor
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FIGURE 1 | The overview of our method. (a) selecting positive/negative regions in H&E stained WSIs with the guidance of IHC stained WSIs, (b) ROIs selection for
positive/negative/background samples extraction, (c) positive/negative/background samples annotation and extraction, (d) training CNN for cell classification, (e)
transforming fully connected layers into convolutional layers, (f) taking a test ROI as the input of the transformed model for positive/negative cell distribution
prediction.

of rectum(G1), two cases of neuroendocrine tumor of colon(G3),
one case of neuroendocrine tumor of small intestine(G1), two
cases of neuroendocrine tumor of duodenum(G3), one case
of gastric tubular adenocarcinoma with neuroendocrine tumor
(G3) and one case of rectal tubular adenocarcinoma with
neuroendocrine tumor (G3).

Staining Protocols
From each Formalin-fixed parafinembedded block, we cut two
consecutive sections (3.5 µm): One for H&E staining and one
for staining with the Anti-Ki67 antibody. For H&E staining,
we used undiluted Mayer’s hematoxylin and 0.5% eosin. For
IHC, we used Anti-Ki67 antibody (Roche, United States),
3,3’-diaminobenzidine as chromogen, and Mayer’s hematoxylin
as a counterstain with a 1:10 dilution.

Sample Digitization
Matched H&E and IHC stained slides were scanned at 40× with
Sqray slide scanner.

Construction of the Dataset
Based on the Ki-67-expression, we selected 300 regions of
interest (ROIs) sized 1,889 × 966 from 5 out of 12 H&E
stained slides. Then we extracted 5,900 images of positive cells,
6,086 images of negative cells and 6,776 images of background
from these ROIs.

The way of selecting positive and negative samples can be
described with Figure 2. As is shown in Figure 2, there are Ki-67

positive regions in Ki-67 stained slides where all cells are Ki-67
positive. We can infer that the corresponding regions in H&E
stained slides are also positive. Therefore, positive samples can
be obtained by the following steps: First, extract images from
the positive regions in H&E stained slides; Then, annotate each
cell in these extracted images with a point label by using a open
source annotation software Labelme. Finally, extract patches with
these annotated points as centers and these patches are what we
need. The way of obtaining negative samples is similar with that
of obtaining positive samples.

The method of extracting background samples is shown in
Figure 3. After the samples of positive cells and negative cells
are selected, the background samples are selected by random
sampling: a series of candidate boxes (shown in blue in Figure 3)
are randomly generated. If the candidate boxes do not overlap
with the boxes of negative cells (shown in green in Figure 3)
or positive cells (shown in red in Figure 3), they will be
retained and selected.

The size of these images was all 64 × 64 without any resize
operation. The reason why we use 64 × 64 as the patch size
is that the distribution of cell size is 40 pixel × 40 pixel ∼70
pixel × 70 pixel so the size of 64 × 64 can cover most situations.
In addition, 64 is integer power of 2 which is convenient for
computing. After that, the dataset consisting of all the images
were split randomly into training set and validation set with
the ratio of 8:2. The procedure of constructing the dataset were
illustrated in Figures 1a–c. Table 1 summarizes information
about the dataset.
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FIGURE 2 | The way of selecting positive and negative samples.

FIGURE 3 | The method of extracting background samples.

FIGURE 4 | The structure of Block.

Classification Using CNN
Deep Learning is a significant area of Machine Learning research.
It uses very deep (in terms of number of layers) neural network

TABLE 1 | Information about the dataset.

Parameters Values

Magnification/number of the H&E-IHC pairs 40×/12

Size/number of the ROIs selected for extracting training and
validation set

1,889 × 966/300

Numbers of positive cell/negative cell background images 5,900/6,086/6,776

Ratio of training set to validation set 8:2

Size/number of the ROIs selected for evaluation of cell
quantification

7,556 × 3,864/32

to solve problems, especially problems which are related to visual
recognition. The key aspect of all the deep learning architectures
is the use of Convolutional Neural Network (CNN) (Krizhevsky
et al., 2012). CNN is a biologically inspired form of the artificial
neural network, that has local connections and shared weights.
It is one of the most important tools of machine learning
when it comes to the current generation, and it has been very
popularly used to solve image recognition tasks, in the field of
Computer Vision. The CNN architecture can be obtained by
exploiting existing famous networks such as VGG (Simonyan and
Zisserman, 2014), Inception (Szegedy et al., 2015) or ResNet (He
et al., 2016), or by designing a new network. Both of them have
their own strengths and weaknesses. Using existing networks can
take advantages of pre-trained weights acquired from training
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TABLE 2 | Detailed information about the modified ResNet18 network.

Layer name Input size/output size Elements/params

conv1 3 × 64 × 64/64 × 32 × 32 Conv/7 × 7, k = 64, s = 2

BN/-

ReLu/-

pool1 64 × 32 × 32/64 × 16 × 16 MaxPool/3 × 3, s = 2

layer1 64 × 16 × 16/64 × 16 × 16 Block/k = 64, s = 1

Block/k = 64, s = 1

layer2 64 × 16 × 16/128 × 8 × 8 Block/k = 128, s = 2

Block/k = 128, s = 1

layer3 128 × 8 × 8/256 × 4 × 4 Block/k = 256, s = 2

Block/k = 256, s = 1

layer4 256 × 4 × 4/512 × 2 × 2 Block/k = 512, s = 2

Block/k = 512, s = 1

FC 512 × 2 × 2 (flattened)/3 fc/out = 3

The structure of Block is shown in Figure 4.

the networks on large scale public datasets such as ImageNet
(Deng et al., 2009) for transfer learning. This can accelerate the
process of training significantly and guarantee the classification
accuracy in the stage of inference, with only a small amount
of training set. However, these pre-trained weights are usually
generated by training the networks on natural images, which
have considerable difference from histopathological images. So,
the pre-trained models for natural image classification may not
entirely appropriate for recognition tasks on histopathological
images. Using self-designed network can be more flexible as we
can devise a more targeted model according to the characteristics

of the dataset. While this approach may not achieve a satisfied
result if the training set is limited. ResNet is a well-known deep
learning network architecture proposed by He et al. (2016).
By using “shortcut connections,” this network are easier to
optimize, and can gain accuracy from considerably increased
depth. In this paper, we adopted a modified ResNet18 as our
CNN classifier by removing the last average pooling layer to
make the network adaptable for locating positive or negative cells
in large-scale H&E stained images (which will be elaborated in
the next subsection) and changing the number of the output
nodes in the last fully connected layer into 3 since it was a
3-value classification problem. Table 2 lists detailed information
about the modified ResNet18 network including layer name,
input and output size, types of elements in each layer and
their parameters. k represents the number of the kernels and s
represents stride.

Figure 1d shows the stage of training CNN. The input to
the first layer is an RGB image containing one positive or
negative cell only or not containing any cell. The last layer
generated labels, showing the probability of the image whether
it represents a positive cell, a negative cell or background. Then
a loss function was calculated and back propagation will be
conducted to adjust the weighting parameters of the network so
as to minimize the loss.

Cell Quantification in ROIs Using Fully
Convolutional Network
We had trained a CNN classifier using the samples of positive
cell, negative cell and background. However, this classifier had a

FIGURE 5 | Description of the transformation method (Long et al., 2015).
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TABLE 3 | Training details of our modified ResNet18 model.

GPU TITAN Xp (12GB) × 1

Framework Pytorch 1.1.0

Data preprocessing Random Horizontal Flip Random
Vertical Flip Normalize (mean
vector = [0.485, 0.456, 0.406],
standard deviation vector = [0.229,
0.224, 0.225])

Batch size 64

Loss function Cross Entropy

Learning rate 1e-3 (epoch 1–10), 1e-4 (epoch 11–20)

Optimizer Adam with weight decay = 1e-5

Training on the pretrained model? Yes (pretrained model from ImageNet.)

Training epochs 20

TABLE 4 | Classification report on training set.

Precision Recall f1-score Support

Negative 0.962 0.976 0.969 4834

Positive 0.973 0.963 0.968 4760

Background 0.996 0.993 0.995 5415

Avg/total 0.978 0.978 0.978 15009

fixed size (64 × 64) of input and can only classify images with
that size. In order to obtain the classification maps of ROIs (sized
7,556 × 3,864 for each), a transformation method proposed in
Long et al. (2015) was applied to our trained CNN to convert all
the fully connected layers into convolutional layers, as is shown
in Figure 1e.

The transformation method can be described in Figure 5.
In training stage, the network learns a classification task. The
input is a fixed size image, and the output is the corresponding
category (cat for example) of the image. In the inference stage,
the fully connected layer of the trained network is rearranged
into a convolutional layer. In this way, the network can take
any size of the image as input and output a probability map,
representing the predicted probability of the target at each pixel
in the input image.

Thus, the transformed CNN can take one ROI as the input
and output the classification map of the ROI. The procedure was
displayed in Figure 1f.

Statistical Methods
To evaluate the classification result, we adopted accuracy,
precision, recall, F1-score and confusion matrix. For illustration
purposes, we will use T and F to indicate whether the network
prediction is correct or not. P and N are used to indicate whether
the sample is negative or positive. Therefore, TP (True Positive)
means positive and correctly predicted, while FN (False Negative)
means negative and wrongly predicted. The same is true for
TN and FP. In this way, accuracy, precision and recall can be
expressed as following:

Accuracy =
TP + TN

TP + FP + FN + TN

Precesion =
TP

TP + FP

Recall =
TP

TP + FN

F1-score is defined as a harmonic mean of precision and recall:

F1 =
2× precision× recall

preicision+ recall

Confusion matrix, which is represented by an n × n matrix,
is a specific table layout that allows visualization of the
performance of an algorithm. Each column of the matrix
represents the instances in a predicted class while each row
represents the instances in an actual class. A value in i
column j row represent how many samples in class j is
predicted to be class i.

To evaluate the quantification result, first we calculated dense
of positive cells (Dpos), proportional area of negative cells (Dneg)

FIGURE 6 | Left: Confusion matrix of training set. Right: Confusion matrix of validation set.
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TABLE 5 | Classification report on validation set.

Precision Recall f1-score Support

Negative 0.908 0.917 0.913 1252

Positive 0.913 0.906 0.909 1140

Background 0.985 0.982 0.983 1361

Avg/total 0.937 0.937 0.937 3753

and positive rate (Rpos) in H&E ROIs and IHC ROIs respectively,
which are defined as: 

Dpos =
Spos
SROI

Dneg =
Sneg
SROI

Rpos =
Spos

Spos+Sneg

where Spos is the area covered by positive cells, Sneg is the area
covered by negative cells, SROI is the area of a whole ROI.

The areas covered by positive cells or negative cells were obtained
simply by color channel filtering. Then we computed pairwise
correlation coefficient (r), as is defined in the equation below, for
measuring correlation between the quantification results of H&E
ROIs and that of IHC ROIs.

r(X, Y) =
Cov(X, Y)

√
Var [X]Var[Y]

where cov(X, Y) is defined as

Cov(X,Y) = E((X − E(X))(Y − E(Y)))

EXPERIMENTS AND RESULTS

Experimental Setup
In this section, we tested the performance of cell classification
and cell quantification of our model. Table 3 shows the training
details of our modified ResNet18 model.

FIGURE 7 | Three typical cases of Ki-67-expression: middle rate of Ki-67 positive cells (a,b), low rate of Ki-67 positive cells (c,d) and high rate of Ki-67 positive cells
(e,f). Each case contains four sub-figures, representing H&E stained ROIs (top left), IHC stained ROIs (top right), quantification results in H&E stained ROIs (bottom
left) and quantification results in IHC stained ROIs (bottom right).
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FIGURE 8 | Frequency histogram of (a) Dpos, (b) Dneg and (c) Rpos of H&E stained images; Frequency histogram of (d) Dpos, (e) Dneg and (f) Rpos of IHC
stained images; Correlation-plots of H&E stained images and IHC stained images of (g) Dpos, (h) Dneg and (i) Rpos.

Evaluation on Single Cell Classification
After the training process, we fed the validation set into our
trained model to evaluate its classification performance. The
classification accuracies for our model on training set and
validation set are 0.9780 and 0.9371. Table 4 and Figure 6 left
show the classification report and confusion matrix of the results
of the train set respectively. Table 5 and Figure 6 right show those
of the validation set. We also performed a 10-fold cross-validation
analysis. We randomly split the training set (15,009 images) in to
10 subsets (nine sets of 1,501 images and one set of 1,500 images).
In 10 training rounds, the average accuracy was 0.9310 (range:
0.9167–0.9427, std = 0.0085). These results are consistent with the
previous results obtained from the validation set of 3,753 images,
which suggest that the performance of our model is robust to how
we split our dataset for training and test.

Evaluation on Cell Quantification in ROIs
To further evaluate our model, we compared the quantification
results in H&E stained ROIs performed by the model and
the results in IHC stained ROIs performed by color channel
filtering. Figure 7 displays three typical cases of Ki-67 expression.
It’s obvious that the quantification results in H&E stained

ROIs are basically consistent with the quantification results in
IHC stained ROIs.

Specifically, the results in middle rate cases and low rate
cases are better than those in high rate cases. It is because in
ROIs with high rate of Ki-67 positive cells, the distribution of
positive and negative cells is more irregular than the other two
types of cases, which makes it difficult to distinguish positive
cells from negative cells in H&E stained ROIs in the process
of annotation. It is because when we label the cells, due to
the lack of correspondence between scattered cells in the H&E
stained regions and Ki-67 stained regions, it was not completely
determined whether a certain cell was a positive cell or a negative
cell in H&E stained ROIs unless all the cells in these regions are
all positive or negative. Though there are a mass of positive cells
in Ki-67 positive regions, a small number of negative cells are
inevitably mixed in with positive cells in this type of ROIs, which
makes labeling more difficult. While the similar situations appear
less in Ki-67 negative regions. In other words, negative cells in
Ki-67 negative regions can be extracted with more confidence
than positive cells in Ki-67 positive regions.

In addition, there are many glandular-like structures in ROIs
with low or medium density of negative cells. If all the cells on a
gland in KI-67 stained ROIs are negative or positive, then all the
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cells in the corresponding gland in H&E stained ROIs are also
marked as negative or positive, according to the correspondence
between glands in H&E stained ROIs and Ki-67 stained ROIs.

For statistical evaluation, we calculated Dpos, Dneg and Rpos
in 32 pairs of H&E-staining ROIs and IHC-staining ROIs.
Figure 8 shows the frequency histograms and correlation
plots of these three indexes in H&E stained images and
IHC stained images. The correlation coefficients of Dpos,
Dneg and Rpos between these two different types of ROIs
are 0.60, 0.73 and 0.80. The results reflect the quantitative
consistency of Ki-67 expression between the two types of
staining images. Moreover, The correlation coefficients of
Rpos has the highest value indicates that the evaluation
indexes considering both positive and negative cells can more
stablely reflect the relationship between H&E stained ROIs and
Ki-67 stained ROIs.

DISCUSSION

In this paper, we made an attempt to build a relationship
between H&E stained slides and Ki-67 antibody stained slides.
We introduced a modified ResNet18 model to predict Ki-67
expression directly from H&E stained images without any
IHC staining process. Our results show that morphological
information has close relation with molecular information,
which are consistent with the opinion proposed in Fuchs and
Buhmann (2011) that tissue and cell morphologies displayed in
histopathological images are a function of underlying molecular
drivers. Once their relationship is established, it should be
possible to faithfully predict the distribution of specific protein
abundance directly in samples only using a basic morphology
staining. However, it’s just the beginning of our research on this
topic. Challenges still exist, including:

1. Performance of the model is highly dependent on the quality
of input images. Low quality images may result in less accurate
results. The quality of images is influenced by many factors,
such as standardization of making slides, quality of stains and
accuracy of scanners.

2. The relationship between morphological information and
molecular information may be very complex, considering the
diversity of different lesions, tissues, cells and antibodies. For
the moment, our research has only focused on one specific
relationship so much work should be done if we want our
model to be more generalized.

3. At present we can only distinguish between positive cells and
negative cells in some certain regions of a H&E stained images

guided by the corresponding IHC stained image. It’s hard to
verify the positive degree of a cell in a H&E stained image even
with the help of IHC staining, which hampers a more precise
inference of the model.

Our future work will mainly focus on the following aspects.
first, Enlarge our dataset to contain more samples. So, the model
trained on the new dataset will have stronger ability of robust and
generalization; Second, Conduct more experiments on samples
with different tissues and stains to promote our conclusion to a
more general situation; Last but not least, Optimize our model.
For example, semi-supervised learning can be adopted to alleviate
the workload of annotation.
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