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Nanotechnology has been extensively studied and exploited for cancer treatment as
nanoparticles can play a significant role as a drug delivery system. Compared to
conventional drugs, nanoparticle-based drug delivery has specific advantages, such
as improved stability and biocompatibility, enhanced permeability and retention effect,
and precise targeting. The application and development of hybrid nanoparticles, which
incorporates the combined properties of different nanoparticles, has led this type of
drug-carrier system to the next level. In addition, nanoparticle-based drug delivery
systems have been shown to play a role in overcoming cancer-related drug resistance.
The mechanisms of cancer drug resistance include overexpression of drug efflux
transporters, defective apoptotic pathways, and hypoxic environment. Nanoparticles
targeting these mechanisms can lead to an improvement in the reversal of multidrug
resistance. Furthermore, as more tumor drug resistance mechanisms are revealed,
nanoparticles are increasingly being developed to target these mechanisms. Moreover,
scientists have recently started to investigate the role of nanoparticles in immunotherapy,
which plays a more important role in cancer treatment. In this review, we discuss
the roles of nanoparticles and hybrid nanoparticles for drug delivery in chemotherapy,
targeted therapy, and immunotherapy and describe the targeting mechanism of
nanoparticle-based drug delivery as well as its function on reversing drug resistance.
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myeloid derived suppressor cell; MDR, multidrug resistance; MMP, matrix metalloproteinase; MNPs, magnetic nanoparticles;
MOMP, mitochondrial outer membrane permeabilization; mTOR, mammalian target of rapamycin; NF-κB, nuclear factor
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INTRODUCTION

Finding new and innovative treatments for cancer is a major
problem across the world (Siegel et al., 2020). With an increase
in the number of methods that can treat cancer and the concept
of an individualized treatment, the therapeutic efficacy of some
malignant tumors has greatly improved. Chemotherapy is a
conventional and widely used cancer treatment method. While
chemotherapy works through a number of different mechanisms,
its major function includes indiscriminately killing vigorously
growing cells, including tumor and normal cells, which causes
some serious side effects including bone marrow suppression,
hair loss, and gastrointestinal reactions (Zitvogel et al., 2008).
Therefore, developing drugs that more accurately target tumor
cells, instead of normal cells, has been the purpose of a large
proportion of cancer-related research in the past few decades.
Although the emergence of targeted therapy has made great
progress in precision therapy, there are still many unavoidable
adverse effects, and the development of drug resistance has always
been a problem. Currently, cancer remains the second leading
cause of death, and current therapies for many cancers are
inadequate. Hence, increasingly more studies are seeking precise
therapy of cancer and solutions for drug resistance.

Over the last few decades, nanotechnology has been
increasingly used in medicine, including applications for
diagnosis, treatment, and tumor targeting in a safer and more
effective manner. Nanoparticle (NP)-based drug delivery systems
have shown many advantages in cancer treatment, such as good
pharmacokinetics, precise targeting of tumor cells, reduction of
side effects, and drug resistance (Dadwal et al., 2018; Palazzolo
et al., 2018). NPs used in drug delivery systems are usually
designed or chosen based on their size and characteristics
according to the pathophysiology of the tumors. Mechanically,
nano-carriers in cancer therapy target to tumor cells through the
carrier effect of NPs and the positioning effect of the targeting
substance after being absorbed. Next, they release the drugs to
tumor cells in order to induce killing. Drugs located on the inside
of the nano-carriers include traditional chemotherapy agents and
nucleic acids, indicating that they can play a role in both cytotoxic
and gene therapy (Chen et al., 2015). In addition, for some poorly
soluble drugs, NPs offer a platform that can help encapsulate
them and deliver the drugs into circulation (Kipp, 2004; Zhang
et al., 2008). Due to the size and surface characteristics of NPs
and their function of enhancing permeability and retention,
nano-carriers can increase the half-life of drugs and induce
their accumulation into tumor tissues (Bertrand et al., 2014;
Kalyane et al., 2019). Meanwhile, the targeting system protects
normal cells from the cytotoxicity of drugs, which helps ease
the adverse effects of cancer therapy. For example, doxorubicin-
loaded PEGylated liposomes reduced cardiotoxicity compared to
free doxorubicin (O’Brien et al., 2004). Additionally, nanoparticle
albumin-bound paclitaxel exhibited less side effects and allowed
higher tolerated doses than solvent-based taxanes (Cortes and
Saura, 2010). In addition to chemotherapy and gene therapy,
various studies have reported the application of NP drugs in
immunotherapy and ablation treatment for cancer (Riley and
Day, 2017; Yoon et al., 2018). The nanoparticle-based drug

delivery system is believed to enhance immunotherapy, as well
as reverse the tumor immunosuppressive microenvironment
(Zang et al., 2017).

In recent years, an increasing number of nanotherapeutic
drugs have been commercialized or entered the clinical stage.
The first phase I clinical trial that used a targeted nanoparticle-
based system to deliver small interfering RNA (siRNA) in
patients with solid cancers was conducted in 2010 (Davis et al.,
2010). Another clinical study reported a more favorable tumor
treatment efficacy of an actively targeted polymeric nanoparticle
containing the chemotherapeutic docetaxel (DTXL) compared
to a solvent-based DTXL formulation (Hrkach et al., 2012).
The development of hybrid NPs has made even more progress
in the arena of NP-based drug delivery systems. Hybrid NPs
combine the properties of different NPs, thereby enhancing the
function and stability of each drug delivery system (Mottaghitalab
et al., 2019). In addition, NPs have shown certain advantages
when it comes to anti-tumor multidrug resistance (MDR), as
they provide platforms for drug combination therapy as well
as inhibit the function of some mechanisms of drug resistance,
such as efflux transporters on cell membranes (Li et al., 2016).
Nowadays, nanoparticle-based therapy has been reported to
have potential in overcoming MDR in several types of cancers,
including breast cancer (Alimoradi et al., 2018), ovarian cancer
(Wang et al., 2018b), and prostate cancer (Zhang J. et al., 2019).
Nanotechnology in medicine has opened a new stage of cancer
treatment, and the combination of these two fields deserves more
in-depth research. This review outlines the basic principles of
the application of the nano-carrier system in cancer therapy,
presents the current challenges, and describes the directions of
future research.

NPs IN CANCER THERAPY

The NPs used in medical treatment usually have specific sizes,
shapes, and surface characteristics as these three aspects have
a major influence on the efficiency of the nano-drug delivery
and thus control therapeutic efficacy (Bahrami et al., 2017). NPs
with a diameter range of 10 to 100 nm are generally considered
suitable for cancer therapy, as they can effectively deliver drugs
and achieve enhanced permeability and retention (EPR) effect.
Smaller particles can easily leak from the normal vasculature (less
than 1–2 nm) to damage normal cells and can be easily filtered
by kidneys (less than 10 nm in diameter) (Venturoli and Rippe,
2005), while particles that are larger than 100 nm are likely to
be cleared from circulation by phagocytes (Decuzzi et al., 2009).
Moreover, the surface characteristics of NPs can influence their
bioavailability and half-life. For instance, NPs that are coated with
hydrophilic materials such as polyethylene glycol (PEG) lessen
the opsonization and therefore avoid clearance by the immune
system (Yang et al., 2014). Therefore, NPs are generally modified
to become hydrophilic, which increases the time period of drugs
in circulation and enhances their penetration and accumulation
in tumors (Perrault et al., 2009; Wong et al., 2011; Yang et al.,
2014). Collectively, the various characteristics of NPs determine
their therapeutic effect in cancer management. Different types of
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FIGURE 1 | Different types of nanoparticles (NPs) for cancer therapy. NPs applied to drug delivery systems include organic NPs, inorganic NPs and hybrid NPs. The
organic NPs contain liposome-based NPs, polymer-based NPs and dendrimers. Among polymer-based NPs, polymeric NPs and polymeric micelles are common.
The inorganic NPs consist of gold NPs (Au NPs), carbon nanotubes, silica NPs, magnetic NPs, and quantum dots. Hybrid NPs combine the advantages of different
NPs, including lipid-polymer hybrid NPs, organic-inorganic hybrid NPs, and cell membrane-coated NPs.

NPs for cancer therapy are shown in Figure 1 and the following
text will describe their respective advantages in tumor treatment.

ORGANIC NPs

Organic NPs have been widely explored for decades and contain
many types of materials. Liposome, the first nano-scale drug
approved for clinical application (Zylberberg and Matosevic,
2016), consists of an outer lipid layer and a core entrapping
either hydrophobic or hydrophilic drug. Liposomes can carry
out many functions by modifying the lipid layer structure,
including imitating the biophysical characteristics (e.g., mobility
and deformation) of living cells (Hua and Wu, 2013; Lemière
et al., 2015), which can help achieve the purpose of more
effective therapeutic drug delivery. With decades of research, the
development of liposomes has gone through several generations.
With regard to cancer therapy, liposomes provide a good
platform for in vivo delivery of many anti-tumor drugs, such
as doxorubicin and paclitaxel, among other chemotherapeutic
agents, as well as nucleic acids (Chen et al., 2010; Wang X.
et al., 2017). In the field of breast and prostate cancer (Yari
et al., 2019), the application of liposomes has been increasingly
common (Satsangi et al., 2015; Tang B. et al., 2020). Multiple

paclitaxel liposomes have been demonstrated to have higher
anti-tumor efficiency and improved bioavailability compared to
free paclitaxel (Han et al., 2020). Liposomal doxorubicin has been
proven to reduce cardiotoxicity and has comparable efficacy in
breast cancer (O’Brien et al., 2004; Geisberg and Sawyer, 2010).
Furthermore, liposome-based nanosystems have also offered an
option for drug combination, which can enhance the therapeutic
effect (Eloy et al., 2016; Chen et al., 2017) and even reverse the
drug resistance (Meng et al., 2016). Nowadays, more varieties of
liposome-based drugs have entered into clinical use for cancer
treatment (Misra et al., 2010).

Polymer-based NPs are another type of NP with specific
structural arrangements for drug delivery formed by different
monomers (Amreddy et al., 2018). Polylactic-co-glycolic
acid (PLGA), a common polymeric NP, encompasses co-
polymerization of glycolic acid and lactic acid. Given its
better biocompatibility and biodegradation, as well as the
EPR effect, PLGA is widely used as a carrier for drug delivery
(Acharya and Sahoo, 2011; Saneja et al., 2019). Additionally,
dendrimers are another class of polymers that have been
applied to nanomedicine. They are versatile and biocompatible
macromolecules that are characterized by a three-dimensional
branch structure (Nanjwade et al., 2009; Sherje et al., 2018).
Their multiple functional groups on the surface enhance
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the capability of loading and delivering therapeutic agents.
Furthermore, polymeric micelles, which are characterized
by polymer self-assembly into nano-aggregates as they are
composed of amphiphilic copolymers, constitute another kind
of widely investigated polymer NPs (Zhou et al., 2018). The
hydrophobic core enables the insoluble anticancer drugs to be
absorbed and delivered smoothly, while the hydrophilic segment
increases stability, thus reducing the uptake of the drug by the
reticuloendothelial system and prolonging their time period in
circulation (Cagel et al., 2017).

INORGANIC NPs

Inorganic NPs have the advantages of a higher surface area to
volume ratio. They have a wide and easily modified surface
conjugation chemistry and facile preparation, although this
usually occurs at the expense of poorer biocompatibility and
biodegradability (Jiang et al., 2016). The inorganic NPs that
have been studied include gold NPs (AuNPs), carbon nanotubes
(CNTs), quantum dots, magnetic NPs (MNPs), and silica NPs
(SNPs). AuNPs are the most widely studied inorganic NPs, and
mixed monolayer-protected clusters based on the gold core are
considered to be a promising candidate in the drug delivery
system (Han et al., 2007). The gold core is inert and non-toxic,
and surface-functionalized AuNPs have been proven to enhance
drug accumulation in tumors as well as to overcome the drug
resistance (Cheng et al., 2013). Moreover, AuNPs are thought
to be involved in multimodal cancer treatment including gene
therapy, photothermal therapy and immunotherapy (Han et al.,
2007; Jiang et al., 2016; Riley and Day, 2017).

carbon nanotubes are a type of tubular material that have been
shown to have broad potential in the drug delivery field due to
their unique biological, physical, and chemical properties. As a
result, they have been used to deliver anticancer agents including
doxorubicin, paclitaxel, and methotrexate siRNA for a variety of
cancers (Madani et al., 2011). Meanwhile, CNTs produce heat
when they are exposed to near-infrared radiation, which could be
applied to thermal ablation for cancer therapy (Luo et al., 2013).

Mesoporous silica nanoparticle carriers are a type of SNPs
which are suitable for drug delivery (Almeida et al., 2014; Gao
et al., 2019). The large internal pore volume enables them to
encapsulate the maximum amount of anticancer drugs, and the
supramolecular components act as a cap, allowing capture and
release of drugs (Cheng et al., 2019; Lei et al., 2019). Due to
better pharmacokinetics and treatment efficacy, as well as high
stability, SNPs are considered one of the best vehicles for drug
delivery (Zhang F. et al., 2017; Xu et al., 2019). Moreover, porous
silicon NPs have shown great potential in immunotherapy as
its immunoadjuvant properties include promotion of antigen
cross presentation, polarization of lymphocytes and secretion of
interferon-γ (IFN-γ) (Fontana et al., 2017b).

Magnetic NPs (MNPs) used for drug delivery usually contain
metal or metal oxide NPs. In order to improve the stability
and biocompatibility, MNPs are commonly coated with organic
materials, including polymers and fatty acids. They have been
shown to demonstrate high efficacy in chemotherapy and gene

therapy for cancer treatment (Basoglu et al., 2018; Mandriota
et al., 2019). Furthermore, magnetic hyperthermia using MNPs
can achieve thermal ablation of tumors, which offers alternative
cancer treatment (Hoopes et al., 2017; Legge et al., 2019).

HYBRID NPs

As both organic and inorganic NPs have their own advantages
and disadvantages, combining the two in a single hybrid drug
delivery system endows the multifunctional carrier with better
biological properties that can enhance treatment efficacy as well
as reduce drug resistance (Mottaghitalab et al., 2019).

Lipid-polymer hybrid NPs, which consist of an inner
polymeric core and a lipid shell, have been demonstrated to be a
promising drug delivery platform in the treatment of pancreatic
cancer (Hu et al., 2010; Zhao et al., 2015), breast cancer (Gao
et al., 2017; Li et al., 2019), and metastatic prostate cancer (Wang
Q. et al., 2017). This type of hybrid NPs combines the high
biocompatibility of lipids with the structural integrity provided
by polymer NPs, and are therefore capable of encapsulating both
hydrophilic and hydrophobic drugs in order to achieve a better
therapeutic effect (Cheow and Hadinoto, 2011; Zhang R.X. et al.,
2017). Meanwhile, this system can be effectively internalized by
cancer cells (Su et al., 2013) and avoids fast clearance by the
reticuloendothelial system (Hu et al., 2015).

The combination of organic and inorganic hybrid nano-
materials is a common method of NP design. For example, a
liposome-silica hybrid (LSH) nanoparticle consists of a silica core
and a surrounding lipid bilayer and has been synthesized and
shown to be valid in delivering drugs to kill prostate and breast
cancer cells (Colapicchioni et al., 2015). The LSH nanoparticle
has also been reported to offer a platform for the synergistic
delivery of gemcitabine and paclitaxel to pancreatic cancer in a
mouse model of the disease (Meng et al., 2015). Kong et al. (2015)
created an advanced nano-in-micro platform by assembling the
porous silicon NPs and giant liposomes onto a microfluidic chip,
and co-delivery of synthesized DNA nanostructures and drugs in
this platform was proven to significantly enhance cell death of
doxorubicin-resistant breast cancer cells. Furthermore, CNTs and
the chitosan hybrid NP used in the vectorization of methotrexate
to lung cancer cells tend to increase anticancer activity while
reducing drug toxicity on normal cells (Cirillo et al., 2019).
Moreover, half-shells of metal multilayers (such as manganese
and gold) and PLGA hybrid NPs have the potential of combining
targeted drug delivery and hyperthermia, which can enhance the
destruction of tumor cells (Park et al., 2009).

The hybridization of natural biomaterial with organic or
inorganic NPs is another method for NP design. For example,
cell membrane coating nanotechnology is emerging and has
increasingly gained more attention. This technology tends to
bestow the NPs with biological characteristics directly by coating
NPs with naturally derived cell membranes, which enhances
the potency and safety of conventional NPs (Fang et al., 2018).
The coatings include cell membranes derived from leukocytes,
red blood cells, platelets, cancer cells, and even bacteria. Parodi
et al. (2013) have shown that coating nanoporous silicon particles
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with a cell membrane which is purified from leukocytes can
prevent the nano-carrier from clearance by phagocytes, and
the characteristics of this hybrid particle allow the drug to
have extended time period in circulation, leading to increased
accumulation in the tumor. Similarly, some studies have utilized
cancer cell membrane-cloaked mesoporous silica NPs for cancer
treatment, which improves the stability and targeting ability of
nano-carriers (Liu et al., 2019). Moreover, the development of
dual-membrane coated NPs can further enhance the function of
NPs. For instance, erythrocyte-platelet hybrid and erythrocyte-
cancer hybrid membrane-coated NPs were proven to exhibit
better stability and longer circulation life (Dehaini et al., 2017;
Wang et al., 2018a; Jiang et al., 2019).

Furthermore, (Wong et al., 2011) proposed a multistage NP
delivery system to achieve deep penetration into tumors by
changing the size and characteristics of NPs at different stages.
In their study, the size change of NPs was achieved by protease
degradation of the cores of 100-nm gelatin NPs within the tumor
microenvironment in order to release 10-nm quantum dot NPs.

MECHANISMS OF TARGETING

Targeting of cancer cells specifically is a vital characteristic of
nano-carriers for drug delivery, as it enhances the therapeutic
efficacy while protecting normal cells from cytotoxicity.
Numerous studies have been carried out to explore the targeting
design of NP-based drugs. In order to better address the
challenges of tumor targeting and the nano-carrier system
design, it is crucial to first understand tumor biology and the
interaction between nano-carriers and tumor cells. The targeting
mechanisms can be broadly divided into two categories, passive
targeting and active targeting (Figure 2).

PASSIVE TARGETING

Passive targeting is designed to utilize the different characteristics
of tumor and normal tissue. In passive targeting, the drugs
are successfully delivered to the target site in order to play
a therapeutic role. High proliferation of cancer cells induces
neovascularization, and large pores in the vascular wall lead to a
worsening permselectivity of tumor vessels compared to normal
vessels (Carmeliet and Jain, 2000). The rapid and defective
angiogenesis enables macromolecules, including NPs, to leak
from blood vessels that supply the tumor and accumulate within
tumor tissue. Meanwhile, the poor lymphatic drainage associated
with cancer increases the retention of NPs, allowing the nano-
carriers to release their contents to tumor cells. These processes
cause the EPR effect, one of the driving forces of passive targeting
(Maeda, 2001). The EPR effect is influenced by the size of NPs,
as many studies have demonstrated that smaller NPs have better
penetrability but do not leak into normal vessels (Torchilin, 2005;
Carita et al., 2018). On the other hand, larger particles are more
likely to be cleared by the immune system (Sykes et al., 2014).

In addition to the EPR effect, the tumor microenvironment is
also an important factor in the passive delivery of nanomedicines.

Glycolysis is one of the metabolic characteristics of cancer cells
and is the main source of energy for cancer cell proliferation
(Pelicano et al., 2006). Glycolysis yields an acidic environment
and reduces the pH of the tumor microenvironment.
Subsequently, some pH-sensitive NPs are triggered by the
low pH level and are able to release drugs within the vicinity of
cancer cells (Lim et al., 2018).

However, there are some limitations with regards to
passive targeting, including non-specific drug distribution, non-
universal existence of the EPR effect and different permeability of
blood vessels across various tumors (Jain, 1994).

ACTIVE TARGETING

Active targeting specifically targets cancer cells through direct
interactions between ligands and receptors. The ligands on
the surface of NPs are selected to target the molecules that
are overexpressed on the surface of cancer cells, which allows
them to distinguish targeted cells from healthy cells (Shi et al.,
2011; Kamaly et al., 2012). The interaction between ligands on
NPs and the receptors on the surface of cancer cells induces
receptor-mediated endocytosis, which allows internalized NPs to
successfully release therapeutic drugs (Farokhzad and Langer,
2009). Therefore, active targeting is particularly suitable for
macromolecular drug delivery, such as proteins and siRNAs.
The types of targeting moieties include monoclonal antibodies,
peptides, amino acids, vitamins, and carbohydrates (Danhier
et al., 2010). These ligands specifically bind to receptors on
targeted cells, and the widely investigated receptors include
transferrin receptor, folate receptor, glycoproteins, and the
epidermal growth factor receptor (EGFR).

Targeting to Cancer Cells
Transferrin, a type of serum glycoprotein, functions to transport
iron into cells. Transferrin receptors are overexpressed in most
solid tumor cells and are expressed at low levels in normal cells.
Thus, transferrin-conjugated NPs are used as an active targeting
method to deliver drugs for cancer treatment (Amreddy et al.,
2015; Liu et al., 2015; Santi et al., 2017). Compared to unmodified
NPs, transferrin-modified NPs have been shown to exhibit higher
cellular uptake efficiency and enhanced intracellular delivery
of drugs (Cui et al., 2017). Moreover, evidence indicates that
transferrin-conjugated polymeric NPs play a significant role in
overcoming drug-resistant chemotherapy (Soe et al., 2019).

Folic acid, a type of vitamin, is essential in nucleotide
synthesis. It is internalized by a folate receptor that is expressed
on few normal cell types. However, the alpha isoform of folate
receptor (FR-α) is overexpressed in approximately 40% of human
cancers, while FR-β is expressed on the surface of hematopoietic
cancers (Low and Kularatne, 2009). Thus, the folate receptor-
targeting strategy by folate-conjugated nanomaterials has been
widely used for cancer treatments (Muralidharan et al., 2016;
Samadian et al., 2016).

In addition, cancer cells usually express various types of
glycoproteins, including lectins, which are non-immunological
proteins that recognize and specifically bind to certain
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FIGURE 2 | Passive and active targeting of NPs to cancer cells. Targeting of NPs enhance therapeutic efficiency and reduce systemic toxicity. Passive targeting of
NPs is mainly achieved by the enhanced permeability and retention (EPR) effect, which exploits the increased vascular permeability and weakened lymphatic
drainage of cancer cells and enables NPs to target cancer cells passively. Active targeting is achieved by the interaction between ligands and receptors. The
receptors on cancer cells include transferrin receptors, folate receptors, glycoprotein (such as lectin), and epidermal growth factor receptor (EGFR).

carbohydrates (Minko, 2004). Targeting cancer cell-surface
carbohydrates by lectins conjugated to NPs constitutes the direct
lectin targeting pathway, while inversely targeting lectins on
cancer cells using carbohydrates moieties that are incorporated
into NPs is referred to as the reverse lectin targeting pathway
(Minko, 2004; Obaid et al., 2015).

Epidermal growth factor receptor is a member of the ErbB
family of tyrosine kinase receptors. EGFR, which is overexpressed
in varieties of cancers, is involved in several processes of tumor
growth and progression and has already been utilized as a
target for cancer treatment (Nicholson et al., 2001; Sigismund
et al., 2018). For example, targeting human epidermal receptor-
2 (HER-2) is a common therapy for HER-2 positive breast
and gastric cancer. Hence, NPs that have been designed to
incorporate modified ligands that bind to EGFR in order to
target EGFR-overexpressed cancer cells is a promising method
of drug delivery (Alexis et al., 2008). Furthermore, conjugating
two cancer-specific ligands into a single NP is another way
of active targeting, as it can help improve target specificity
(Balasubramanian et al., 2014).

Targeting to Endothelium
Some NPs do not directly target cancer cells but instead
have an effect on angiogenesis, which is another method of
cancer treatment. The interaction between vascular endothelial
growth factor (VEGF) and VEGF receptors (VEGFRs) plays an
essential role in vascularization (Apte et al., 2019). Additionally,
targeting VEGFR-2 and VEGFR-3, two major VEGF receptors,

simultaneously by liposomes has been shown to enhance
therapeutic efficacy (Orleth et al., 2016).

Integrins are cell surface receptors for extracellular matrix
proteins that play an important role in tumor cell migration and
invasion (Desgrosellier and Cheresh, 2010). The αvβ3 integrin is
highly expressed in tumor neovascular endothelial cells, rather
than the resting endothelial and normal cells, and is important
in the calcium-dependent pathway that induces endothelial cell
migration (Nisato et al., 2003). Hood et al. have reported the
favorable treatment efficacy of cationic NPs coupled with an
αvβ3 integrin-targeting ligand for gene delivery into tumor-
bearing mice (Hood et al., 2002). In addition, αvβ3 integrin
is associated with VEGFR-2 signaling (Ruoslahti, 2002), and
blocking αvβ3 integrin-binding can lead to a reduction in VEGF
signaling, indicating that targeting αvβ3 integrin can enhance the
effectiveness of anti-VEGFR treatment.

Vascular cell adhesion molecule-1 (VCAM-1) is an
immunoglobulin-like glycoprotein that is also expressed on
the surface of the tumor endothelium and is involved in
angiogenesis by interacting with vascular endothelial cells.
Overexpression of VCAM-1 can be observed in various cancers
(Dienst et al., 2005), indicating its potential role in the active
targeting of NPs for drug delivery. A study by Pan et al. (2013)
have reported the high efficiency of VCAM-1 targeted NPs in a
breast cancer model.

Moreover, matrix metalloproteinase (MMP), a component of
the tumor microenvironment, is engaged in extracellular matrix
remodeling and tumor neovascularization (Lia et al., 2009).
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MMP-sensitive NPs have been reported to play a potential
antitumor effect in several types of cancers, including breast
cancer, pancreatic cancer, and melanoma (Mansour et al., 2003;
Xiao et al., 2018; Cun et al., 2019).

MECHANISMS OF NPS IN OVERCOMING
DRUG RESISTANCE

Drug resistance is still a major problem in cancer treatment,
despite the fact that methods of cancer therapy are increasing.
Multidrug resistance leads to a failure of various types of cancer
treatments, leading to cancer progression and poor prognosis.
The mechanisms of tumor drug resistance include cellular and
physiological factors, such as overexpression of ATP binding
cassette (ABC) transporters (e.g., efflux transporter) (Litman
et al., 2000), defective apoptotic machineries, interstitial fluid
pressure, and acidic and hypoxic tumor microenvironment.
Nanotechnology applied to drug delivery for cancer treatment
has been shown to play a significant role in overcoming
drug resistance (Table 1).

TARGETING EFFLUX TRANSPORTERS

Efflux transporters belong to a family of ABC transporters that
have been proven to play essential roles in drug resistance.
Efflux transporters reduce intercellular drug concentration by
pumping the drug out of the cell, leading to a failure of treatment.
Among them, P-glycoprotein (P-gp), one of the most widely
investigated efflux transporters, is overexpressed in several drug-
resistant tumors (Schneider and Hunke, 1998; Allen et al.,
2000). In addition, high expression of P-gp has been associated
with poor treatment-response in many tumors, such as breast
(Chintamani et al., 2005) and ovarian cancer (Agarwal and
Kaye, 2003). A myriad of studies have demonstrated that some
chemotherapeutics-loaded NPs can bypass the exposure of anti-
tumor drugs to efflux transporters, since NPs largely enter the
cell through endocytosis instead of diffusion and release the drug
at a perinuclear site within the cell, away from cell membranes
and efflux pumps (Murakami et al., 2011). The nanoparticle-
based drug delivery system can modify the control of drug
release. For example, several researches have utilized low pH level
and redox as triggers for drug release in NPs (Yu et al., 2018;
Kundu et al., 2019). Furthermore, NPs, such as polymers, also
act as MDR modulators (Qin et al., 2018). For instance, micelles
based on amphiphilic diblock polymer of N-(2-hydroxypropyl)
methacrylamide (HPMA) and poly (propylene oxide) block
(PPO) are able to inhibit P-gp (Braunová et al., 2017).

Combination therapy is another strategy to treat drug-
resistant cancers. To this end, NP-based combination therapy
has been able to overcome the problem of pharmacokinetic
differences between different drugs by assembling multiple
therapeutic agents within a single drug carrier, thereby fighting
drug resistance and improving the therapeutic effect of cancer
therapy (Cuvier et al., 1992; Schneider and Hunke, 1998; Allen
et al., 2000; Susa et al., 2009). In addition to bypassing efflux

transporters, inhibiting their expression and function would be
another option to cope with efflux transporter-mediated drug
resistance. This strategy can be achieved by designing NPs that
encapsulate both efflux pump inhibitors and chemotherapeutics
(Soma et al., 2000), or by reducing the ATP that is supplied to
the efflux pump (Wang et al., 2018c). As COX-2 has been shown
to be involved in P-gp-mediated multidrug resistance in cancer, a
selective COX-2 inhibitor can down-regulate the P-gp expression
(Sui et al., 2011). Indeed, a recent study conducted by Zhang S.
et al. (2019) confirmed that co-delivery of COX-2 inhibitors and
doxorubicin by NPs reversed the multidrug resistance of breast
cancer cells. Furthermore, several studies have revealed that co-
delivery of P-gp-targeted siRNA and anticancer drugs by NPs
helps overcome drug-resistant cancers, which is exerted through
inhibiting the expression of ABC transporters (Patil et al., 2010;
Navarro et al., 2012). A recent study revealed the effectiveness of
overcoming drug resistance in lung cancer therapy by combining
miRNA-495 and doxorubicin into a cancer cell membrane-
coated silica nanoparticle, results of which indicated that miR-
495 effectively down-regulated P-gp expression in multidrug-
resistant cancer cells (He et al., 2019).

In addition, (Bai et al., 2013) reported that nanoparticle-
mediated drug delivery to the tumor neovasculature was able
to overcome P-gp-expressing multidrug resistant cancer by
targeting KDR receptors, which are highly expressed in the tumor
vasculature. This system showed a more effective anti-tumor
function when compared to chemotherapeutic and P-gp inhibitor
combination therapy.

TARGETING APOPTOTIC PATHWAY

Defective apoptotic machineries enable cancer cells to evade
apoptosis and increase survival, thereby contributing to drug
resistance in cancer (Viktorsson et al., 2005). The defective
apoptotic pathway is often triggered by deregulating Bcl-2 and
nuclear factor kappa B (NF-κB). Bcl-2 is a widely investigated
anti-apoptotic protein, is highly expressed in many cancers, and
is a key player in drug resistance, suggesting its potential as
a target for reversing drug resistance. Accumulating evidence
has indicated that co-delivery of Bcl-2-targeted siRNA and
chemotherapeutics by NPs is an alternative to overcoming drug
resistance in cancer (Wang et al., 2006; Saad et al., 2008; Chen
et al., 2009; Choi et al., 2019). Moreover, NF-κB inhibitors
have been used in NP-based combination therapy, including
pyrrolidine dithiocarbamate (PDTC) (Fan et al., 2010) and
curcumin (Misra and Sahoo, 2011; Zhao et al., 2019).

In addition to suppressing anti-apoptotic moieties, the
activation of pro-apoptotic compounds can also be used
to combat apoptotic pathway-mediated drug resistance. For
example, combining ceramide with the chemotherapeutic drug
paclitaxel augments the therapeutic efficacy of various drug-
resistant tumor models (Devalapally et al., 2007; van Vlerken
et al., 2010). On the other hand, a recent study revealed
that ceramide is able to restore the expression of wild-type
p53 protein, an important tumor suppressor, by modulating
alternative pre-mRNA splicing. In this process, NPs offers a
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TABLE 1 | The application of nanoparticle-based drug delivery system for overcoming drug resistance.

Targeted pathway Mechanisms (in addition to antitumor
efficiency)

Drugs References

Efflux transporters Bypass efflux transporters NP itself (Murakami et al., 2011)

Inhibit efflux transporters COX-2 inhibitors (Zhang S. et al., 2019)

P-gp-targeted siRNA (Patil et al., 2010; Navarro et al., 2012)

miRNA-495 (He et al., 2019)

Apoptosis Inhibit anti-apoptosis pathway Bcl-2-targeted siRNA (Wang et al., 2006; Saad et al., 2008;
Chen et al., 2009; Choi et al., 2019)

NF-κB inhibitors (pyrrolidine
dithiocarbamate/curcumin)

(Fan et al., 2010; Misra and Sahoo,
2011; Zhao et al., 2019)

Activate pro-apoptosis pathway Ceramide (Devalapally et al., 2007; van Vlerken
et al., 2010)

p53 gene therapy (Prabha and Labhasetwar, 2004; Choi
et al., 2008)

Efflux transporters
and apoptosis

Inhibit efflux transporter expression meanwhile
promoting apoptosis through down-regulation
of Bcl-2 and NF-κB expression

Bcl-2 convertor gene-loaded NPs (Cheng et al., 2018)

Resveratrol (Zhao et al., 2016; Singh et al., 2018)

Inhibit efflux transporters and promote
apoptosis by inducing mitochondrial outer
membrane permeabilization

Mitochondria-targeted NPs (Wang et al., 2020)

Hypoxia Silence the HIF-1α gene HIF-1α siRNA (Zhao et al., 2015; Luan et al., 2018;
Hajizadeh et al., 2020)

Inhibit the function of HIF-1α HIF-1α inhibitors (Reddy et al., 2011)

Indirectly downregulate HIF-1α expression Inhibitors of the PI3K/Akt/mtor pathway (Zhang et al., 2018)

HSP90 inhibitors (Long et al., 2018)

Abbreviations: Bcl-2 = B cell lymphoma-2; COX-2 = cyclooxygenase 2; HIF-1α = hypoxia-inducible factor 1α; HSP90 = heat shock protein 90; NF-κB = nuclear factor
kappa B; NPs = nanoparticles; P-gp = P-glycoprotein; PI3K = phosphoinositol-3-kinase; siRNA = small interfering RNA.

more effective platform to deliver ceramide into cancer cells that
carry p53 missense mutations, an important cancer phenomenon
(Khiste et al., 2020). As p53 plays a significant role in apoptosis,
reinstating p53 function or other tumor suppressors is considered
a potential way to overcome drug resistance in cancer. Therefore,
p53 gene therapy utilizing a nanoparticle-based delivery system
has been further researched. Transfecting the p53 gene by
cationic solid lipid NPs and PLGA has been reported in
lung (Choi et al., 2008) and breast cancer cells (Prabha and
Labhasetwar, 2004), respectively. These results show the effective
induction of apoptosis and inhibition of tumor growth.

Furthermore, some NP-based drug delivery systems function
by inhibiting efflux pumps, as well as promoting apoptosis.
Cheng et al. (2018) utilized an amphiphilic cationic NP
complex encapsulating paclitaxel and the Bcl-2 convertor gene
in order to inhibit drug-resistant liver cancer cell growth.
Findings from the study showed that this NP complex impaired
P-gp-induced drug efflux and the activation of apoptosis.
This work is a pioneer study that was able to successfully
overcome both pump- and non-pump-mediated drug resistance.
In addition, co-delivery of doxorubicin and resveratrol in
NPs have shown significant cytotoxicity on doxorubicin-
resistant breast cancer cells by inducing apoptosis through
the down-regulation of Bcl-2 and NF-κB expression, as well
as through the inhibition of efflux transporter expression
(Zhao et al., 2016). Similarly, another study demonstrated

the effectiveness of folic acid-conjugated planetary ball-milled
NPs that were encapsulated with resveratrol and docetaxel for
the treatment of multidrug-resistant prostate cancer. Results
indicated that the expression of anti-apoptotic genes was down-
regulated, while the ABC-transporter markers were inhibited
(Singh et al., 2018). Moreover, mitochondria-targeted NPs also
showed an effect on both efflux transporters and apoptotic
pathway. Targeting to mitochondria led to a reduction in
ATP production, which is required by ABC transporters.
Additionally, paclitaxel-loaded TPP-Pluronic F127-hyaluronic
acid nanomicelles caused mitochondrial outer membrane
permeabilization (MOMP), which resulted in the release
of cytochrome C and activation of caspase-3 and caspase-
9, leading to apoptosis of drug-resistant lung cancer cells
(Wang et al., 2020).

TARGETING HYPOXIA

Hypoxia is another factor that contributes to multidrug resistance
(Jing et al., 2019). Due to irregular blood vessels, as well as
the increased oxygen demand of rapidly proliferating cancer
cells, some cancer cells are often in a hypoxic state. Hypoxia
induces the drug resistance of tumors in many ways. For
instance, slowly dividing cells in hypoxic regions can escape
from cytotoxic chemotherapeutics such as alkylating agents
and antibiotics. Additionally, hypoxia produces a gradient of
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oxygen within the tumor, thereby increasing tumor heterogeneity
and promoting a more aggressive phenotype. Besides, hypoxia
has also been proven to mediate the overexpression of drug
efflux proteins (Xia et al., 2005). During the process, hypoxia-
inducible factor 1α (HIF-1α) plays an essential role, and
overexpression of HIF-1α has been observed in many human
cancers (Vadde et al., 2017). Therefore, targeting HIF-1α is
another treatment method for overcoming drug resistance
(Rey et al., 2017).

There is also an extensive study on the application of
NPs in the treatment of hypoxia. Silencing the HIF-1α gene
is one of the ways to inhibit hypoxic environment. Several
studies have reported the effectiveness of nanosystems containing
HIF-1α siRNA to overcome drug resistance in cancer (Zhao
et al., 2015; Luan et al., 2018; Hajizadeh et al., 2020). HIF-
1α inhibitors have also shown therapeutic efficacy in reducing
hypoxia-mediated drug resistance (Reddy et al., 2011). In
addition to directly inhibiting the function of HIF-1, indirect
inhibition of HIF-1 signaling has also been previously considered.
For example, the PI3K/Akt/mTOR pathway can regulate the
expression of HIF-1α, and the inhibition of this pathway down-
regulates HIF-1α expression, thereby enhancing the sensitivity
of MDR cells to cancer treatment (Zhang et al., 2018).
In this process, NPs, such as PLGA-PEG (Tang X. et al.,
2020) and PEGylated and non-PEGylated liposomes (Iwase
and Maitani, 2012), can offer better platforms to achieve
combination therapy. In addition, heat shock protein 90
(HSP90) is required for HIF-1 transcriptional activity, and
inhibition of HSP90 can also down-regulate HIF-1α expression
(Semenza, 2007). The HSP90 inhibitor in 17AAG-loaded NPs has
been shown to dramatically improve bladder cancer treatment
(Long et al., 2018).

THE ROLE OF NPS IN CANCER
IMMUNOTHERAPY

The development of immunotherapy has brought cancer
treatment into a new era. NPs not only play an important role
in delivery chemotherapy but have also shown great potential
for applications in immunotherapy. Cancer immunotherapy is
mainly achieved by activating the anti-tumor immune response
(Zang et al., 2017). NP-associated immunotherapy includes
nanovaccines, artificial antigen-presenting cells (aAPCs), and
targeting of the immunosuppressed tumor microenvironment
(TME) (Zang et al., 2017).

Nanovaccines deliver tumor-associated antigens (TAAs) and
adjuvants to APCs, such as dendritic cells (DCs) (Paulis
et al., 2013). Additionally, NPs can be used as adjuvants
themselves to increase APC antigen presentation and promote
DC maturation, leading to the activation of the anti-tumor
function of cytotoxic T cells (Shao et al., 2015; Yang et al., 2018).
NPs, such as liposomes, gold NPs, PLGA NPs, micelles, and
dendrimers all have the capability of cytoplasmic delivery of
TAAs into DCs, thus enhancing the immune response against
tumor cells (Guo et al., 2015). Among different types of NPs,
inorganic NPs such as mesoporous silica and polymers such as

acetylated dextran (AcDEX) have been shown to function as
an adjuvant in immunotherapy, leading to a stimulation of the
immune response (Fontana et al., 2017a,b). Unlike nanovaccines,
artificial APCs function with MHC-antigen complexes and co-
stimulatory molecules that directly bind to T cell receptors
(TCRs) and co-stimulatory receptors on T cells, respectively,
resulting in T cell activation (Perica et al., 2014). Targeting the
immunosuppressive TME is mainly achieved by targeting tumor-
associated macrophages (TAMs), myeloid derived suppressor
cells (MDSCs), and regulatory T cells (Tregs), all of which
are important cell types in the TME (Shao et al., 2015).
Furthermore, in order to minimize interactions with the
reticuloendothelial system, NPs are usually modified with PEG
(Zang et al., 2017).

In addition, the combination of chemotherapy and
immunotherapy is a promising strategy of cancer treatment.
For example, one study showed that co-loading of the
chemotherapeutic agent Nutlin-3a and the cytokine GM-CSF in
spermine-modified AcDEX NPs led to improved proliferation
of cytotoxic CD8(+) T cells and stimulated immune response,
leading to tumor cell death while avoiding toxicity in immune
cells (Bauleth-Ramos et al., 2017). Alternative approaches
of combined chemo-immunotherapy includes co-delivery
of chemotherapeutics and monoclonal antibodies into porous
silicon NPs, which have been effective in stimulating complement
activation, antibody-dependent cell cytotoxicity (ADCC), and
immune response against cancer cells (Li et al., 2018).

CONCLUSION AND FUTURE
PERSPECTIVES

Nanotechnology applied to cancer therapy has led to a new
era of cancer treatment. Various types of NPs, including
organic and inorganic NPs, have already been widely used
in the clinical treatment of several cancer types. Compared
to traditional drugs, NP-based drug delivery systems are
associated with improved pharmacokinetics, biocompatibility,
tumor targeting, and stability, while simultaneously playing a
significant role in reducing systemic toxicity and overcoming
drug resistance. These advantages enable NP-based drugs to be
widely applied to chemotherapy, targeted therapy, radiotherapy,
hyperthermia, and gene therapy. Moreover, nanocarrier delivery
systems provide improved platforms for combination therapy,
which helps overcome mechanisms of drug resistance, including
efflux transporter overexpression, defective apoptotic pathway,
and hypoxia tumor microenvironment. According to different
mechanisms of MDR, NPs that are loaded with varieties of
targeting agents combined with cytotoxic agents can achieve the
reversal of drug resistance.

With increasing research, various types of hybrid NPs have
shown improved properties for delivery and aroused more
attention. Further studies on the biological characteristics of
individual cancers will lead to more precise research directions
for these drugs. Furthermore, designing hybrid NPs that are
more suitable for cancer therapy and engineering NPs that target
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cancer cells more specifically using targeting moieties merits
further exploration. Notably, the interactions between NPs
and the immune system are complex (Najafi-Hajivar et al.,
2016). The NP size, shape, composition, and surface are
all the factors that affect the interactions of NPs with
the immune system. Although nanovaccines and artificial
APCs have demonstrated increased efficacy compared to
traditional immunotherapy, the clinical efficacy of this
treatment remains unsatisfactory, and the safety and tolerance
of these new approaches need to be further investigated.
Moreover, developing immunomodulatory factor-loaded NPs
may improve the effectiveness of vaccines for immunotherapy.
Accordingly, a better understanding of the TME and a further
investigation of the crosstalk between NP-based drug delivery
systems and tumor immunity are warranted for drug design
and exploitation.
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