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RCC1 (regulator of chromosome condensation 1) is the only known guanine nucleotide
exchange factor of Ran, a nuclear Ras-like G protein. RCC1 combines with chromatin
and Ran to establish a concentration gradient of RanGTP, thereby participating in a
series of cell physiological activities. In this review, we discuss the structure of RCC1
and describe how RCC1 affects the formation and function of the nuclear envelope,
spindle formation, and nuclear transport. We mainly focus on the effect of RCC1 on the
cell cycle during tumorigenesis and the recent research progress that has been made in
relation to different tumor types.
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RAN’S FUNCTION AFFECTS RAN-GTP GRADIENT

Decades of research have shown that regulator of chromosome condensation 1 (RCC1), the only
known guanine nucleotide exchange factor in the nucleus for Ran (Bischoff and Ponstingl, 1995), a
nuclear Ras-like G protein, directly participates in cellular processes such as nuclear envelope (NE)
formation, nucleocytoplasmic transport, and spindle formation. RCC1 also regulates chromatin
condensation in the late S and early M phases of the cell cycle (Dasso, 1993). The proper location of
RCC1 in relation to chromatin is crucial for the functions of Ran throughout the cell division cycle
(Bierbaum and Bastiaens, 2013). RanGTP gradients are generated at the nuclear pores, and this
gradient across the nuclear envelop drives the nuclear cytoplasmic transport (NCT) of various cargo
molecules (Bischoff and Ponstingl, 1991a,b). Ran GTPase also affects cell cycle and DNA damage
response (DDR) kinetics (Thompson, 2010; Blackinton and Keene, 2014). Following disassembly of
the nuclear envelope in mitotic cells, mitotic chromosomes are surrounded by diffusional RanGTP
gradients, which support the assembly and function of mitotic spindles (Kalab et al., 2002, 2006;
Forbes et al., 2015). RCC1 acts as a key cell cycle regulator (Ohtsubo et al., 1987) and can monitor
the process of DNA synthesis RAN (Seino et al., 1991).

An increasing number of studies have found that RCC1 also plays an important role in tumors,
where it mainly regulates the cell cycle process and affects tumorigenesis. RCC1 can also inhibit
the occurrence of certain tumors. For example, the expression of RCC1 in gastric cancers and
other tumors is significantly reduced, with different degrees of silencing occurring (Lin et al., 2015).
However, in some tumors, high expression of RCC1 will also act as a pathogenic partner, promoting
tumor development.

In this review, we highlight the newest findings about the RCC1’s role in the cell cycle and
tumorigenesis in the context of the published data.
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STRUCTURE OF RCC1

The human amino acid sequence analysis has revealed that
there are three isoforms, named RCC1α, RCC1β, and RCC1γ

(Hood and Clarke, 2007; Figure 1). The N-terminus contains a
lysine-rich region which includes the 20-residue bipartite nuclear
localization signal sequence (NLS) located on the tail of the
N-terminus. The NLS regulates intracellular transport of RCC1
through the importin α/β pathway. Phosphorylation of the NLS
prevents importin α/β from binding to RCC1, so that RCC1
couples the production of RanGTP to chromosome binding.
N-terminal binding to chromosomal DNA requires methylation
of the second serine at the N-terminal by N-terminal RCC1
methyltransferase (NRMT).

The C-terminal 7-blade β propeller domain, constituting the
RCC1-like domain (RLD), has strong structural similarity with
the WD40 repeat protein (Renault et al., 1998). Each blade in
the beta propeller structure consists of 51–68 residue repeats and
forms four antiparallel chains with loops between them. Both
sides of the β-propeller structure are decorated by equivalent
rings and mediate protein–protein interactions (Ruthenburg
et al., 2006; Schuetz et al., 2006; Patel et al., 2008; Song and
Kingston, 2008). In fact, the crystal structure indicates that one
side of the RCC1 β propeller interacts with Ran via a β-hairpin
extension called a β-wedge that protrudes from blade-3. RCC1
produces a RanGTP gradient around the chromosome through
this binding (England et al., 2010).

RCC1 COMBINES WITH CHROMATIN TO
ESTABLISH A CONCENTRATION
GRADIENT OF RANGTP

The cell cycle regulates RCC1 and chromatin affinity through the
CDK/CyclinB1 complex. RCC1 relies on binding to chromatin,
realizing the perception of chromatin state, and recruiting and
converting RanGDP into RanGTP. This ability to maintain high
levels of RanGTP in the nucleus, or a gradient of RanGTP
concentration around the chromosome in the nuclear envelope
breakdown (NEB) state, underlies the association of RCC1
with the cell cycle. Crucially, loss of RCC1 causes tsBN2
cells to condensate (Nishijima et al., 2000), indicating that
the loss of RCC1 may lead to early cell cycle condensation,
possibly due to the lack of RanGTP, and resulting in restricted
nuclear protein output.

The structure of RCC1 bound to Ran shows that all seven
blade rings on one side interact with Ran in the complex (Renault
et al., 2001). Ran stabilizes the dynamic interaction of RCC1
and chromatin in living cells through the N-terminal tail of
RCC1 (Hitakomate et al., 2010). Binding of RCC1 to chromatin
in living cells has been studied by fluorescence redistribution
(Beaudouin et al., 2006) and found to occur via the N-terminal
region (NTR) of RCC1, via residues 21–25 (Seino et al., 1992),
and one of the loop regions connecting the β-sheets (Bierbaum
and Bastiaens, 2013). Bichromatic fluorescence correlation
spectrometric measurements have shown that Ran interacts
primarily with the stationary portion of RCC1, which points

to catalytic sites on chromatin, and that chromatin interaction
with RCC1 is more stable during metaphase than during
interphase (Bierbaum and Bastiaens, 2013). It is possible that
histones interact with RCC1 on the other side through the
exposed spherical regions of the H2A/H2B surface (Nemergut
et al., 2001; Hao and Macara, 2008; England et al., 2010).
The localization of RCC1 to chromatin is critically dependent
on the flexible NTR (Moore et al., 2002) which is likely
to extend beyond the core structure. Chromatin interaction
with RCC1 is transient (Beaudouin et al., 2006), with the
residence time of RCC1 on chromatin an important kinetic
parameter of the guanine nucleotide exchange reaction. The
exchange response effectively binds to chromatin through the
affinity of the RanGTP complex, allowing local Ran activation
(Bierbaum and Bastiaens, 2013). Study of a D182A mutant
found that reduced affinity between this mutant and chromatin
disrupted the interaction with Ran (Azuma et al., 1999;
Hutchins et al., 2004).

Because of this potential correlation between RCC1 binding
to chromatin and RCC1’s Ran guanosine exchange function,
multiple epigenetic modifications to the N-terminal domain
of RCC1 may also influence the distribution of the RanGTP
gradient. The N-terminal α-methylation of RCC1 by NRMT
is important for stabilizing chromatin association and normal
mitosis of cells, and RCC1 is excluded from chromosome when
N-terminal tail methylation is removed RCC1 (Chen et al.,
2007; Tooley et al., 2010). However, it is controversial whether
RCC1 phosphorylation also affects chromatin affinity. Affinity
of RCC1 for the chromosome may rely on its phosphorylation
status (Hood and Clarke, 2007). The N-terminal tail of RCC1
is phosphorylated during mitosis, which inhibits binding to
importin α/β (Li and Zheng, 2004). According to Hutchins
et al. (2004) the phosphorylation of RCC1 is also important
in allowing dynamic binding to chromatin during mitosis. Li
and Zheng (2004) came to the same conclusion through the
loss of fluorescence in photobleaching experiments, finding that
phosphorylation leads to more stable binding to chromatin.
However, Bierbaum and Bastiaens (2013), studying the dynamics
of diffusion and binding of RCC1 and chromatin, found no
evidence of chromatin binding regulation by N-terminal serine
residue phosphorylation during mitosis.

RCC1 REGULATES NUCLEAR
ENVELOPE FORMATION, SPINDLE
FORMATION AND NUCLEAR
TRANSPORT

The binding of RCC1 to chromatin is critical for nuclear
envelope formation, spindle formation, and nucleocytoplasmic
transport. These functions require RCC1 to combine with
the nucleosomes to establish RanGTP gradients. At the end
of mitosis, a new nuclear envelope (NE) is formed around
chromatin, nuclear pore complexes (NPCs) are assembled in the
envelope, and nuclear barrier function and nucleocytoplasmic
transport are reestablished. The docking of RCC1 with H2A/H2B
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FIGURE 1 | RCC1 expression of three transcript variants in humans. The RCC1 protein domain is represented linearly (not to scale), showing the alignment of the
NTR of the human RCC1 protein with the insert-containing RCC1 isoform (the inserted sequence is shown in bold). Serine 2 and 11 are phosphorylation sites of NTR
and are indicated by circles labeled P.

FIGURE 2 | Effect of RCC1 on nuclear coating formation and spindle formation. (A) Model of RCC1 forming nuclear envelope and pores through chromatin.
(B) Model of RCC1 forming spindle through chromatin.

establishes the RanGTP gradient necessary for nuclear envelope
assembly (Nemergut, 2001). Nucleosomes, but not DNA alone,
mediate the chromosomal regulation of NE and NPC formation.
This process first requires the generation of RanGTP by
RCC1 recruited to nucleosomes (Zierhut and Funabiki, 2015).
Then small GTPase Ran regulates NE/NPC assembly (Zhang
et al., 2002; Horiike et al., 2009). Ran is activated by the
chromatin-bound form of RCC1 (Redondo-Muñoz et al., 2015)
and establishes a RanGTP gradient. NE/NPC assembly is
therefore regulated by mechanisms that control RCC1 binding
to chromatin (Figure 2A). This suggests that chromatin-
associated RCC1 locally promotes NPC formation. Studies
have shown that phosphoinositide 3-kinase β (PI3Kβ) regulates

the localization of RCC1 on chromatin and subsequently the
activation of Ran to exert regulation of the NE (Redondo-Muñoz
et al., 2015). Localized chromatin-bound RCC1 promotes NPC
formation inefficiently, which suggested that there may be a
Ran independent mechanism that promotes NPC formation by
nucleosomes. The nucleoporin ELYS (also known as MEL-28) can
combine RCC1 with DNA and bypass the need for nucleosomes
in the formation of NPC in a cooperative manner. Nucleosomes
play a direct structural role in NPC recruitment by combining
ELYS and RCC1 (Zierhut et al., 2014).

The location of RCC1 on the chromosome has been shown
to be critical for the assembly of chromatin and RCC1-regulated
spindles (Figure 2B), which requires the generation of a RanGTP
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gradient (Clarke and Zhang, 2008; Halpin et al., 2011; Funabiki
et al., 2018; Yau et al., 2020). During mitosis in mammalian cells,
GTP-bound Ran is concentrated near mitotic chromatin, while
GDP-bound Ran is more abundant distal to chromosomes. This
pattern spatially controls spindle formation because RanGTP
locally releases spindle assembly factors (Zierhut and Funabiki,
2015). Simultaneously, local enrichment of RCC1 can be
used as a factor that triggers microtubule nucleation and
subsequent spindle assembly (Moore et al., 2002). During mitosis,
spindle assembly in cells without centrosomes is ensured by
chromosome-induced microtubule aggregation.

Phosphorylation and methylation of RCC1 also play key roles
in proper mitotic spindle assembly. Notably, methylation of the
RCC1 N-terminal serine residue is necessary for proper mitotic
spindle assembly, which increases the affinity for chromatin
(Chen et al., 2007), while phosphorylation of serines, e.g.,
serine 11 in humans, located in or near the NLS of RCC1
by Cdc2 kinase is necessary for the generation of RanGTP on
mitotic chromosomes in mammalian cells (Li and Zheng, 2004;
Zierhut and Funabiki, 2015).

The biological function of RCC1 nuclear transport is to
generate a RanGTP gradient through the nuclear pore, which
is then used to drive various cargo molecules to overcome
their concentration gradients for transportation (Kahana and
Cleveland, 1999; Dworak et al., 2019). During the early stages of
apoptosis, histone modification regulates RCC1 to inhibit nuclear
transport. RCC1 is immobilized on the chromosome by Mst1
phosphorylation of histone H2B at Ser 14, leading to inactivation
of the nuclear transport machinery (Wong et al., 2009).

THE ROLE OF RCC1 IN
TUMORIGENESIS

Effect of RCC1 on the Cell Cycle
RCC1 has been shown to be a key cell cycle regulator which,
in a Ran-dependent manner, monitors the process of DNA
synthesis and links its completion to the occurrence of mitosis
(Ohtsubo et al., 1987; Dasso, 1993). Many factors for re-
entry of the cell cycle depend on nuclear cytoplasmic transport
(NCT) activity regulated by RanGTP. The nuclear localization
of interphase RCC1 ensures sufficient RanGTP concentration
to form the driving force of NCT. For example, the realization
of CyclinB1 and Gwl/Mastl kinase functions requires nuclear
shuttling by importin 1 to achieve the S to G2/M phase transition
(Dasso, 1993; Gavet and Pines, 2010). Twenty different NTRs
interact with RanGTP such that RCC1 can run multiple NTRs
simultaneously to speed up the cell cycle. In addition, there
are several important large multidomain proteins that act as
DNA repair regulators, and their transnuclear transport also
depends on the level of RanGTP within the nucleus (Peng et al.,
2013). Once spontaneous or drug-treated DNA damage occurs,
the expression of RCC1 in normal cells is reduced, and the
synergistic regulation of the Ran system amplifies this effect,
leading to severe impairment of NCT function, which decelerates,
or pauses, the cell cycle process. Alternatively, if RCC1/RanGTP
is unable to respond immediately, cells carrying faulty genetic

information go through the cell cycle smoothly, providing the
potential for tumorigenesis.

Moreover, RCC1 is located on chromosomes in mitotic cells
to maintain the gradient of RanGTP concentration around
chromosomes during nuclear membrane disintegration and is
involved in various genetic functions. Although RCC1 deficiency
does not cause chromosome segregation defects in chicken
TD40 cells, it does cause abnormalities in nuclear reconstitution,
known as end-stage/G1 clover shaped abnormalities in nuclear
morphology (Pemberton and Paschal, 2005). Thus, the correct
location and expression of RCC1 at all stages of the cell cycle
are crucial to its regulation. Of interest, Furuta et al. (2015)
identified the presence of an NLS mediated nuclear localization
of RCC1, through the introduction of RCC1 mutants into
RCC1 deficient cells, i.e., by histone/DNA binding site of the
catalytic domain, to bind chromatin and maintain binding
state to the next intercellular phase by NEB state of fission
(Pemberton and Paschal, 2005).

Since RCC1, ATM- and Rad3-related (ATR) kinases, and
chromatin (chromosome or double-stranded DNA) all interact
with each other, it is possible for RCC1 to regulate periodic
monitoring points through ATR. Most likely, an ATR complex
containing RCC1 is formed on chromatin after DNA damage or
by inhibiting DNA replication (Abraham, 2001; Osborn et al.,
2002; Furuta et al., 2015). Thus, RCC1 participates in the
function of ATR cell cycle checkpoint, and this is supported by
Nishitani et al.’s (2003) report of a correlation between RCC1-
RAN cycles and ATR-dependent cell cycle checkpoints. If Ran
is required to recruit ATR to damaged DNA or a closed DNA
replication fork, RCC1 inactivation may inhibit ATR transport
through the nucleoplasm. As an important functional target
of ATR checkpoint, phosphorylation of Chk1 ensures DNA-
induced cell cycle delay in response to unreplicated or UV-
damaged DNA. Guo et al. (2000) found that the phosphorylation
of Chk1 was eliminated in ATR-depleted xenopus egg extract
indicating that defects in nuclear and cytoplasmic transport
caused the checkpoint signal from ATR to Chk1 to be abolished
(Cekan et al., 2016), which in turn weakened cell cycle arrest.
Additionally, PIK-related protein kinase ATR restricts the
NCT of CyclinB1-CDK1 signal by affecting CyclinB1 serine
phosphorylation, ensuring the nuclear aggregation of CyclinB1
before NEB (Gavet and Pines, 2010). ATR functions as an
S/G2 phase monitor during the cell cycle, responsible for
preventing damaged DNA replication and inhibiting cell entry
into mitosis before genome replication is complete. In this state,
the reduction or inactivation of RCC1 destroys the ATR active
complex composed of ATR, RCC1, and other proteins and its
functions of DDR and cell cycle checkpoint. Excessive RCC1
will push the unrepaired or unreplicated cells into the division
phase, also causing genomic instability and the possibility
of tumorigenesis.

Effect of RCC1 on Tumorigenesis
The coordination of cell cycle progression with the repair of DNA
damage supports the genomic integrity of dividing cells. Current
research data indicate that differences in expression and function
of RCC1 may depend on the type of tumor.
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RCC1 Gene Mutations Have the Potential of Tumor
Development
As an integral part of cell cycle regulation, the genetic and
epigenetic stability of RCC1 is crucial for cell cycle progression
and maintenance of genomic stability. Therefore, mutations
of the RCC1 gene have the potential for tumor development.
In gastric tumor tissues, the results of differential methylation
hybridization microarray analysis reflected the hypermethylation
level of the RCC1 gene at the lesion site, mainly at the
ninth CpG site, which caused RCC1 silencing (Lin et al.,
2015). There are three specific transcription factor binding
sequences (HSF1, TFIIB, and NF-X3) in this region. Oxidated
nitro domain containing protein 1 (NOR1) is a candidate
tumor suppressor gene, and HSF1 is a functional promoter of
NOR1. The transcription factor TFIIB acts as a bridge between
TFIID and RNA polymerase and can recognize the interaction
of TFIIB recognition elements that are destroyed by DNA
methylation (Evans et al., 2001; Kalab and Heald, 2008; Li
et al., 2011). Clinicopathologically, the loss of RCC1 expression
in gastric cancer leads directly to the development of tumor
differentiation and invasion depth (Lin et al., 2015). In addition,
the RCC1∗ C. 1067_1086del19 mutation found in Tunisian
familial breast cancer patients also indicates that RCC1 mutations
have carcinogenic potential (Riahi et al., 2018).

RCC1 Promotes Tumor Progression as a Pathogenic
Partner
For cancers not caused by RCC1 mutations, RCC1 appears
to respond to tumor cycle progression through increased
expression. For example, RCC1 expression is higher in clinical
cancers, such as lung adenocarcinoma, than that of normal tissues
(Hsu et al., 2016). In clinical and basic studies, RCC1 is more
commonly involved in tumor development and progression in
this manner than direct RCC1 mutations or RCC1 gene silencing.
A typical example is in cervical cancer, as based on microarray
gene expression profiles, where RCC1 overexpression has only
been observed in the FIGO Stage III (Thomas et al., 2013).
Similarly, in genome-wide transcriptional analysis of carboplatin
sensitive/tolerant ovarian cancer cells, RCC1 expression was
higher in resistant cells at 2 h after carboplatin exposure, rather
than being sustained throughout the entire process (Peters et al.,
2005). In a study of human papillomavirus-related cervical
cancer, transcription factor c-Jun directly upregulated RCC1
transcription in HPV-E7 expressing cells (Qiao et al., 2018).
Similarly, the absence of mutations in the tumor suppressor
PTEN in many types of human cancers also leads to increased
RCC1 expression (Qiao et al., 2018). Abundant evidence indicates
that RCC1 is more consistent with the role of an intermediate
effector protein in tumors, and its high expression is misled by
upstream signals, thus promoting the cell cycle of cancer cells.

Therefore, in cancers that do not possess a mutated RCC1, it
may be possible to induce cell cycle arrest, as well as senescence
or apoptosis of cancer cells by lowering the expression of
RCC1. This has been demonstrated in several studies including
Zhang et al. (2011), who found that 6-bromine-5-hydroxy-4-
methoxybenzaldehyde was associated with the down-regulation
of RCC1 protein expression during inducing mitotic catastrophe

in human hepatocellular carcinoma (HCC) cells, and Qiao
et al. (2018), where RCC1 knockdown inhibited G1/S cell cycle
progression and DNA synthesis of HPV-E7 expressing cells.
A previous study on lung cancer showed that Latcripin-13
domain, which contains a regulator of the RCC1 domain, can
induce apoptosis and cell cycle arrest in human lung cancer
(Wang et al., 2016). In addition, although the knockdown
of KPNB1 in advanced stage prostate cancer did not affect
the expression of total RCC1, it did effectively reduce the
expression of downstream cycle regulators and phosphorylation
of RCC1, eventually leading to cycle arrest (Yang et al., 2019).
Although there is no direct evidence, it is most likely that
phosphorylation of RCC1γ is reduced. It is very interesting
that, among the three isoforms of human RCC1, RCC1γ, while
less abundant than RCC1α, when phosphorylated exhibits a
strong chromatin binding capacity, resulting in persistently high
RanGTP concentrations around chromatin (Hood and Clarke,
2007). Therefore, the inhibition of RCC1 phosphorylation can
also be considered as a decrease of RCC1 activity to some extent.

RCC1 Has the Value of a Tumor
Biomarker
The abnormal expression of RCC1 in a variety of malignant
tumors suggests its potential as a cancer biomarker. Ideally, RCC1
is a Ran-dependent cell cycle regulator, and to some extent, its
abnormal expression and epigenetic modification can effectively
reflect the abnormal cell cycle of the patient’s suspected cancerous
tissue. RCC1 may be used as a lone indicator or in conjunction
with other biomarkers for screening to assess cancer risk and
cancer progression for prediction and prognosis, respectively
(Dancey, 2014). Therefore, even though there have been relatively
few published reports, the biological function of RCC1 and its
overexpression in multiple types of cancer appears to be relatively
consistent (Hsu et al., 2016; Wang et al., 2016). However, due
to highly specific mutated forms of RCC1 in a small number
of cancer types, RCC1 could be used as a marker for diagnosis
of these specific cancers, examples being the two highly specific
fusion genes formed by RCC1 in testicular germ cell tumor
(Hoff et al., 2016) and the RCC1 truncated mutation specifically
observed in some Tunisian breast cancers (Hsu et al., 2016). In
addition, based on bioinformatics analysis and literature search,
RCC1 is one of the potential biomarkers for identifying primary
lung adenocarcinoma (Wong et al., 2009).

In conclusion, although RCC1 is still rarely used directly in
the clinical diagnosis of cancer, it is valuable to determine the
reference normal range of RCC1 in various tissues.

DISCUSSION

In recent years, an increasing number of studies have found that
RCC1 is related to cell cycle, DNA damage, and cancer.

As an important cell cycle regulator, RCC1 affects the progress
of the cell cycle. When DNA is damaged, the decrease in RCC1
expression in normal cells may lead to severe damage to NCT
and affect re-entry of the cell cycle (Cekan et al., 2016). The
continuous accumulation of DNA damage is also a major cause
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of cancer. The loss of ATR-related cell cycle monitoring points
increases the risk of DNA damage accumulation and increases
the likelihood of tumors (Guo et al., 2000). The high expression
of RCC1 in cancer cells accelerates the cell cycle and DNA repair,
and, as such, tumor cells may regulate cell mitosis by increasing
the expression of RCC1. RCC1 accelerates the formation of
the nuclear membrane and the spindle to promote the mitotic
process of cells. However, the mechanism by which RCC1 DNA
damage responds to the cell cycle through the exact NCT or
specific cell function requires further study.

Interestingly, RCC1 has different expression profiles and
functions in different tumors. On the one hand, RCC1
expression is negatively correlated with the development of
certain tumors. Targeting RCC1 can induce tumor cell apoptosis
and cell cycle arrest (Hsu et al., 2016). RCC1 mutations
or methylation can be key to tumor development, with
this process showing the potential to inhibit tumors and
regulate DNA replication (Lin et al., 2015). Already, there
are nanoparticles treatments containing inhibitory peptides
targeting RAN that have great potential in therapy of breast
cancer (Haggag et al., 2019). On the other hand, RCC1
can also promote tumorigenesis. ERK1/2 can increase the
expression of RCC1 through c-Jun, which affects the genome
stability and promotes the development of tumors. ERK1/2
signaling could promote the development of osteosarcoma
via regulating H2BK12ac (Xu et al., 2019). Histone interacts

with RCC1 through the H2A/H2B surface area. Therefore,
ERK1/2 may increase the expression of RCC1 through the
c-Jun pathway to regulate H2BK12ac. Phosphorylation of RCC1
can affect its binding to chromosomes and also inhibit the
proliferation of certain tumors. Its mechanism of action also has
research value.

At the same time, RCC1 has different expression profiles in
different tumors and shows promise as a potential biomarker. The
reason for the different effects of RCC1 on different tumor types
is not yet clear, but research on its role in the cell cycle, apoptosis,
and genome stability has significant prospects.
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