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Background: The development of human tumors is associated with the abnormal
expression of various functional genes, and a massive tumor-based database needs to
be deeply mined. Based on a multigene prediction model, access to urgent prognosis
of patients has become possible.

Materials and Methods: We selected three RNA expression profiles (GSE32863,
GSE10072, and GSE43458) from the lung adenocarcinoma (LUAD) database of the
Gene Expression Omnibus (GEO) and analyzed the differentially expressed genes
(DEGs) between tumor and normal tissue using GEO2R program. After that, we
analyzed the transcriptome data of 479 LUAD samples (54 normal tissue samples
and 425 cancer tissue samples) and their clinical follow-up data from the (TCGA)
database. Kaplan–Meier (KM) curve and receiver operating characteristic (ROC) were
used to assess the prediction model. Multivariate Cox analysis was used to identify
independent predictors. TCGA pancreatic adenocarcinoma datasets were used to
establish a nomogram model.

Results: We found 98 significantly prognosis-related genes using KM and COX analysis,
among which six genes were found to be the DEGs in GEO. Using multivariate analysis,
it was found that a single gene could not be used as an independent predictor of
prognosis. However, the risk score calculated by weighting these six genes could serve
as an independent prognosis predictor. COX analysis performed with multiple covariates
such as age, gender, tumor stage, and TNM typing showed that risk score could
still be utilized as an independent risk factor for patient survival rate (p = 0.013) and
had an applicable reliability (area under the curve, AUC = 0.665). By combining risk
score and various clinical features, the nomogram model was constructed, which had
been proven to have high consistency for the prediction of 3- and 5-year survival rate
(concordance = 0.751) and high accuracy as tested by ROC (AUC = 0.71;AUC = 0.708).

Conclusion: We proposed a method to predict the prognosis of LUAD by weighting
multiple genes and constructed a nomogram model suitable for the prognostic
evaluation of LUAD, which could provide a new tool for the identification of therapeutic
targets and the efficacy evaluation of LUAD.
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INTRODUCTION

At present, pulmonary tumors have become the malignant
tumor with the highest morbidity and mortality in China
(Siegel et al., 2018). Among them, non-small cell lung cancer
(NSCLC) accounts for more than 85% of newly diagnosed
cases, and lung squamous cell carcinoma (LUSC) and lung
adenocarcinoma (LUAD) are the two major pathological types of
NSCLC (Lawrence et al., 2013). Recently, LUAD had surpassed
LUSC in increasing morbidity and became the most common
clinicopathologic type (Bray et al., 2018). Epidemiological
studies showed that LUAD was associated with risk factors
such as smoking, drinking, staying up late, and metabolic
disorders. Although various treatment strategies (e.g., surgery,
chemotherapy, radiotherapy, and biological agents) have made
progress, the effective diagnosis and prognosis prediction of
LUAD patients are still huge challenges in clinical practice
(Park et al., 2019).

Tumor occurrence is a complicated process along with
genetic gene changes at the same time, and these altered genes
usually show abnormal expression patterns, thus having clinical
significance for the diagnosis and prognosis of cancer (Tang
et al., 2018). Presently, some molecules have been considered as
markers for the diagnosis and prognosis of LUAD. For example,
carcinoembryonic antigen (CEA) is one of the most specific
carcinoembryonic proteins and one of the most widely used
tumor markers. In fact, 40–80% of lung cancer patients may
have elevated serum CEA. The degree of serum CEA increase is
related to the extent of cancer focus, and its dynamic changes
can reflect the patient’s response to treatment and prognosis.
Patients with a progressive increase in the measured value tend
to have a poor prognosis, while patients with firstly decreased
and then increased values are mostly experiencing signs of
tumor recurrence (Zheng et al., 2020). Glutathione-S-transferase-
π (GST-π) is significantly increased in patients with NSCLC.
The increase of GST-π indicates that the tumor is insensitive
to radiotherapy and chemotherapy and has a poor prognosis
(Zhao et al., 2018). Similarly, p53 gene is mutated in about 60%
of patients with NSCLC, and its mutation often occurs in the
early stage of tumor occurrence, so if specimens can be obtained
in time, it will be helpful for early diagnosis (Wu et al., 2020).
However, due to the limitations of sensitivity and specificity,
the existing biomarkers are not suitable for all LUAD cases.
Therefore, the screening and the identification of new functional
genes are urgent to understand the pathogenesis of tumors and
improve the accuracy of diagnosis and prognosis of LUAD.

Gene expression profile array could be used to identify
differentially expressed genes (DEGs) between tumor samples
and normal samples (Dong et al., 2020), and some key genes
can be identified by bioinformatics mining (Xiao et al., 2020).
However, integrating the contributions of several key genes to
improve the accuracy and the sensitivity of tumor prognosis
judgment has always been a difficult problem in its clinical
application. Therefore, this study used bioinformatics analysis
to screen six prognosis-related DEGs from the Gene Expression
Omnibus (GEO) and The Cancer Genome Atlas (TCGA)
databases and used risk score, which represented the predictive

power of multiple genes, as an independent predictor of tumor
prognosis by calculating risk score values and constructing a
nomogram model, showing higher accuracy.

MATERIALS AND METHODS

Data Collection
Gene Expression Omnibus is a gene expression data warehouse
that collects gene expression data in any animal species
(Barrett et al., 2013). In this study, we first downloaded
three RNA expression profiles (GSE32863, GSE10072, and
GSE43458) of LUAD from the GEO public database1. The
selection criteria for the expression profile are as follows: (1)
the test samples are tissues, (2) all tissues are diagnosed as
LUAD tissues and normal tissues, (3) the gene expression
profile is mRNA, (4) samples were collected from the same
ethnic group, (5) the probes can be converted into the
corresponding gene symbols, and (6) complete information
analysis. The array data of GSE32863 includes 58 LUAD
tumor tissues and matched adjacent normal tissue cases
(Selamat et al., 2012), GSE10072 includes 54 LUAD tumor
tissues and 54 normal tissue cases (Landi et al., 2008), and
GSE43458 includes 80 tumor tissues and 30 normal tissue cases
(Kabbout et al., 2013).

Data Processing
The differences between LUAD and normal samples were
analyzed by GEO2R2, a built-in online tool of GEO. The
significance of DEGs was evaluated by the adjusted P value and
| log fold change| (| log FC|), and the adjusted P < 0.05 and | log
FC| > 1 were used as screening criteria.

Construction of Prognostic-Related
Gene Screening and Prediction Model
In the TCGA3 database, we downloaded 479 LUAD
transcriptome data, including 54 normal tissue samples
and 425 cancer tissue samples as well as clinical follow-up
data (Gao et al., 2013). According to R language analysis
results of gene chip and transcriptome data, a total of 8,108
abnormally expressed genes were obtained, from which we
used R language to screen 98 prognostic genes significantly
related to prognosis, analyzed the genes screened in GEO
and TCGA, and finally got six abnormal expression genes
significantly related to the prognosis of LUAD. GEPIA was
used to verify the expression and prognostic potential of the
six genes in ten different types of tumors. Subsequently, we
carried out univariate and multivariate prognosis analyses on
the selected genes, constructed a Cox proportional hazard
regression model to fit the multi-gene prediction model, and
then conducted a survival analysis. The prediction efficiency
evaluation of the model adopted the area under curve (AUC)
of the time-dependent receiver operating characteristic curve

1http://www.ncbi.nlm.nih.gov-/geo
2http://w-ww.ncbi.nlm.nih.gov/geo/geo2r
3http://www.oncomine.org
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(ROC), and then we drew the risk curve and evaluated the
gene model as an independent predictor and the related
clinical feature analysis. Finally, predictive risk models of
the six genes (VIPR1, FCN3, CA4, CRTAC1, CYP4B1, and
NEDD9) were obtained.

Gene Risk Score and Clinical Feature
Prognosis Model
We calculated the individual prognostic risk score of six genes
and the mixed risk score of six genes, combined with clinical
data, and then constructed a gene risk score and clinical feature
prognosis model. Calibration and ROC were used to evaluate the
constructed model.

Statistical Analysis
All statistical analyses were performed using R v. 3.4.3 and
GraphPad Prism 7.0 (GraphPad Software, Inc., San Diego, CA,
United States). The relationship between markers was assessed by
Pearson’s correlation and regression. For comparisons, two-tailed
Student’s t-test and Welch’s t-test were applied, as appropriate.
Univariate- and multivariate Cox regression analyses were

performed to evaluate survival. Unless otherwise stipulated,
P < 0.05 was considered statistically significant.

RESULTS

Identification of DEGs of LUAD in GEO
According to the analysis of GEO2R, DEGs (1,266 in GSE32863,
662 in GSE10072, and 895 in GSE43458) were identified. Among
these DEGs, a total of 244 abnormally expressed genes which
have abnormal expression were extracted from three datasets
(Figure 1A), including 51 up-regulated genes and 193 down-
regulated genes (Figure 1B).

Screening of Genes Related to the
Prognosis of LUAD
To confirm the correlation between DEGs and prognosis, we
downloaded the original transcriptome data of 479 LUAD
samples from the TCGA database, which included 54 normal
tissue samples, 425 cancer tissue samples, and clinical follow-
up data. We screened 8,108 DEGs by using R language with
P < 0.05 and |log FC| > 1 as the standard. Based on clinical

FIGURE 1 | Identification of differentially expressed genes (DEGs) in lung adenocarcinoma. (A) Venn diagram of DEGs in GSE10072, GSE43458, and GSE32863.
The DEGs with P-value <0.05 and a fold change >1 were selected. (B) Expression of 244 DEGs in tumor tissues.

FIGURE 2 | Screening of genes related to the prognosis of lung adenocarcinoma. (A) Venn diagram of prognosis-related genes. (B) The expression heat maps of six
selected prognostic genes are shown, with red indicating high expression and green indicating low expression.
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prognostic data, KM and COX algorithm had screened 98
significantly prognosis-related genes from 8,108 genes, and
six of them were found to be the same as the DEGs from
GEO (Figure 2A), namely, VIPR1, FCN3, CA4, CRTAC1,
CYP4B1, and NEDD9. Consistent with the results of the
GEO dataset (Figure 1B), these six genes were also down-
expressed in the TCGA dataset (Figure 2B). The expression
and prognosis of 6 genes were verified by 10 kinds of
cancer data in GEPIA database. It was found that only 6
genes in LUAD had differential expression (Supplementary
Figure S1) and correlation with prognosis (Supplementary
Figure S2).

Prognostic Analysis of LUAD by
Univariate and Multivariate Analyses
In order to further examine the correlation between the six
genes and the prognosis of patients, we selected 425 LUAD
samples from the TCGA database and performed univariate
and multivariate analyses on the prognosis of the selected genes
(Figures 3A,B). Using the log-rank method, a univariate analysis
revealed that the six genes were all significantly related to the
prognosis of the patients (P < 0.05) (Figure 3A). To clarify
the correlation among the expression levels of the six genes
and whether they could be used as independent predictors of
prognosis, we used the COX method for multivariate analysis
and found that the expression level of the six genes is correlated.

Meanwhile, we also found that a single gene could not serve as
an independent predictor of prognosis (Figure 3A). To evaluate
the overall efficacy of the six genes as an assessment of prognosis,
we integrated the six genes and calculated a comprehensive risk
score (Figure 3C) that was later utilized as a single variate.
After COX analysis, we found that the comprehensive risk
score of the six genes was significantly related to the prognosis
(P = 0.026), suggesting that the comprehensive risk score of
the six genes could be used as an independent predictor of
prognosis (Figure 3B).

Evaluation of the Prognosis Model
According to the formula in Figure 3B, we separately calculated
the risk score values of six genes and analyzed the reliability of the
overall survival rate predicted by the individual risk score of the
six genes using ROC curves (Figures 4A–F). The results found
that the area under the ROC curve of CRTCA1 (AUC = 0.672)
was the largest (Figure 4E), while that of FCN3 (AUC = 0.584)
was the smallest (Figure 4B). NEDD9 has a paralogue CASS4
with similar function. Similarly, we found that CASS4 was also be
associated with OS prediction (Supplementary Figures S3A–E)
and low expression in LUAD (Supplementary Figures S3F–G).
Using the optimal threshold of the ROC curve as a cutoff value,
we divided 425 patients into two groups. The group with a value
greater than the threshold value was recognized as the high-risk
group, and accordingly the group with equal or lower values was
the low-risk group. The difference in overall survival time of

FIGURE 3 | Univariate and multivariate prognostic analyses of genes related to the prognosis of lung adenocarcinoma. (A) Dendrogram of six genes by univariate
prognostic analysis. (B) The calculation formula of the comprehensive risk score of the six genes. (C) Results of the risk score by multivariate prognostic analysis.
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FIGURE 4 | Evaluation of the predictive effect of the comprehensive risk score of the six genes. (A–F) The receiver operating characteristic (ROC) curve of the
individual risk scores of the six genes. (G–H) Kaplan–Meier (KM) survival curves of lung adenocarcinoma (LUAD) patients with low or high individual risk score of the
six genes. (N) KM survival curve of LUAD patients with low or high comprehensive risk score of the six genes. (M) The ROC curve of the comprehensive risk score of
the six genes. (O) Risk score of patients, with red indicating high risk and green indicating low risk. (P) Expression heat map of the six genes in the high-risk group
and the low-risk group (green for low expression and red for high expression). (Q) Distribution of the survival status of patients in the high-risk group and the low-risk
group (red for death and green for survival).

the six genes was calculated by the Kaplan–Meier survival curve
(Figures 4G–L). Results showed that there were differences in
the overall survival time between patients with high level and
low level of FCN3 (P = 2.543E-04), but the ROC validation was
poor (AUC = 0.548). Subsequently, we used the ROC curve to
analyze the reliability of the overall survival rate predicted by

the comprehensive risk score of the six genes. The area under
the ROC curve was 0.667 (Figure 4M), indicating that the model
had a good predictive ability. Additionally, the optimal threshold
of the ROC curve was 1.316 (Figure 4M), according to which
425 patients were divided into two groups, the high-risk group
(n = 213) with a value greater than 1.316 and the low-risk group

Frontiers in Molecular Biosciences | www.frontiersin.org 5 October 2020 | Volume 7 | Article 561456

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org/
https://www.frontiersin.org/journals/molecular-biosciences#articles


fmolb-07-561456 October 21, 2020 Time: 23:39 # 6

Jiawei et al. Six Gene Signature and Nomogram Model

(n = 212) with a value less than or equal to 1.316. We found
that there was a difference in the overall survival time between
the two groups. The overall survival time of patients in the
high-risk group was significantly lower than that in the low-
risk group, and the result of the log rank test was P = 8.56e-04
(Figure 4N). In addition, we also visualized the risk score in the
high-risk group and the low-risk group (Figure 4O). It was found
that, with the rise of risk score, the expression level of the six
genes decreased (Figure 4P), while the survival rate of patients
decreased (Figure 4Q), which confirmed that the comprehensive
risk score did have a predictive effect of survival and prognosis.

Evaluation of the Six-Gene Model as an
Independent Predictor
As the individual characteristics of different patients could affect
their survival rate, we included gender, age, tumor stage, and
tumor classification (T, M, N) into our analysis and established
a multivariate Cox proportional risk model after calculating the
individual and the comprehensive risk scores of six genes. In
the univariate analysis (Figure 5A), clinical characteristics (stage,
T, N), VIPR1, and six-gene comprehensive risk score were all
significantly associated with prognosis (P log-rank test <0.01).

In the multivariate analysis (Figures 5B–H), only the
individual prognostic risk score of NEDD9 was significantly
correlated with prognosis (P = 0.039), but the tumor
stage was always significantly correlated. At the same
time, the six-gene comprehensive risk score showed a
stronger prognostic correlation (P = 0.013), suggesting
that the six-gene comprehensive risk score could be used
as an independent predictor. The ROC curve was used to
evaluate the reliability of the prognosis predicted by the
individual or the comprehensive risk score of six genes

(Figures 5I–O), and it was found that the reliability of the
prediction model of the six-gene comprehensive risk score
(AUC = 0.665) was higher than that with the individual risk
score. Therefore, tumor stage played an important role in
tumor prognosis, and our constructed multi-genic prognostic
model similarly exhibited a good ability to predict the prognosis
of LUAD patients.

Correlation Between Prognosis-Related
Genes and the Clinical Features of LUAD
To further verify the correlation between the six genes that
we screened and the patients’ gender, age, stage, and TNM,
we selected the transcriptome data of LUAD in TCGA and
analyzed the correlation between the expression levels of the
six genes and the clinical characteristics of the patients: gender
was divided into two groups: male and female; age was divided
into two groups: >65 years old and ≤65 years old; tumor
stage was divided into two groups, stage I and II and stage
III and IV; T was divided into two groups: T1–2 and T3–
4; M was divided into two groups: M0 and M1; and N was
divided into two groups: N0 and N1–3. The R (bee swarm)
package was used to calculate the correlation between each
gene and clinical characteristics, and the screening condition
was p < 0.05 (Figure 6A). FCN3 and age (Figure 6B), tumor
stage (Figure 6C), T, and N were all correlated (Figures 6E,F),
but not with T (Figure 6D), of which T (P = 6.401E-04) was
most significantly correlated with FCN3, suggesting that FCN3
might play an important role in the size and the metastasis
of primary tumor. Risk score calculated by six genes mixing
was correlated with N and stage (Figures 6F,G), and the risk
value and the patient’s mortality rate increased with the rise of
N and stage. CRTAC1, VIPR1, and CYP4B1 were respectively

FIGURE 5 | Evaluation of the six-gene model as an independent predictor. Individual and comprehensive risk scores were involved in a multivariate analysis with
patient characteristics. (A) Univariate analysis. (B–H) Multivariate analysis. (I–O) Receiver operating characteristic curve.
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FIGURE 6 | Correlation analysis of the individual expression and the comprehensive risk values of six genes with clinical features. (A) Results of the correlation
analysis of the expression alone of the six genes and of the comprehensive risk value of the six genes with clinical features. Data are shown as R value (p value).
(B–J) Box plot of the expression and the comprehensive risk score of the six genes of patients grouped with clinical characteristics.

related to T stage (Figure 6H), N stage (Figure 6I), and
N stage (Figure 6J). In addition, with the rise of stage, the
expression level of three genes decreased in stage, which could

be contributed to the fact that these three genes were all low-risk
genes with a decreased expression, reduced survival of patients,
and poor prognosis.
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FIGURE 7 | The establishment and the evaluation of the prognostic model combining the comprehensive risk score of six genes with clinical features.
(A) Nomogram of the prognostic model. (B,C) Calibration tested the accuracy of the constructed model to predict the 3- and 5-year survival status, respectively.
(D,E) Receiver operating characteristic tested the accuracy of the constructed model to predict the 3- and 5-year survival status, respectively.
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Genetic Risk Score and Establishment
and Evaluation of Prognosis Model of
Clinical Features
To quantify the prognosis evaluation of LUAD patients, we
selected six genes according to parameters such as risk score,
gender, age, stage, and TNM, and then we constructed the
nomogram model with 3-year survival rate and 5-year survival
as evaluation indicators. The clinical data of LUAD in TCGA
were chosen and grouped by the following order: gender was
divided into male and female; tumor stage was divided into
stage I, stage II, stage III, and stage IV; T was divided into
T1, T2, T3, and T4; N was divided into N0, N1, N2, and
comprehensive risk score. The correlation between each factor
and survival time was calculated by R language program,
respectively, and the nomogram was drawn later (Figure 7A).
Calibration was used to calculate the concordance of the model
(concordance = 0.751), and the 3- and 5-year survival curves
coincided, indicating the reliability of the model (Figure 7B).
Subsequently, ROC curve also verified the accuracy of the model,
which displayed that the AUCs of 3- and 5-year survival states
were 0.71 and 0.708, respectively, suggesting that the model had
a high accuracy.

DISCUSSION

Global statistics about cancer show that lung cancer is the most
common malignancy and the leading cause of cancer-related
deaths, accounting for 11.6% of all malignancies and 18.4% of
cancer-related deaths. LUAD is the most common subtype of
malignant lung cancer, and its incidence is rapidly increasing.
Air pollution and smoking are two important risk factors
for LUAD (Li et al., 2019), which can cause multiple genetic
mutations in lung cancer patients (Guo et al., 2019). However,
due to the high heterogeneity among tumor cells, there are huge
differences in the signaling pathways and key gene expression
that regulate tumor growth, migration, transformation, and drug
resistance. Besides that, there are complementary compensatory
effects among the tumor-promoting mechanisms (Jing et al.,
2019a,b), which also pose great challenges to tumor diagnosis,
treatment, and prognosis. So far, no ideal tumor marker for
the diagnosis and the prognosis evaluation of LUAD has been
found out. Even common clinical biomarkers such as TTF-1,
NAPSA, and CEA need to be combined to diagnose LUAD
effectively, but they are not proto-oncogenes, and these indicators
are not effective in predicting prognosis. It has been reported
that microarray technology can detect the changes of tumor
gene expression profile with high throughput. It is an effective
method for screening biomarkers for the early diagnosis and
prognosis evaluation of LUAD (Eriksson and Sjödahl, 2019;
Jing et al., 2019a,b). In this study, we screened DEGs of
LUAD by RNA expression profile analysis, then screened out
six key genes by prognostic correlation analysis, and calculated
the comprehensive risk score of the six genes by assignment.
Through the validation model, we confirmed that the index
could be used as an independent predictor of survival rate

of LUAD patients and constructed the nomogram model to
provide the quantity indicators of prognosis risk assessment
for LUAD patients.

Based on different data sources and design ideas,
bioinformatics analysis usually uses different database
information to verify each other for improving the accuracy and
the applicability of the analysis results (Hu et al., 2019). First,
we downloaded three mRNA microarray datasets from the GEO
database and analyzed them. A total of 51 up-regulated genes and
193 down-regulated genes were identified (Figure 1). We used
479 original transcriptome data of LUAD in the TCGA database
to verify and screen out 8,108 DEGs. To confirm the correlation
between DEGs and the prognosis of LUAD patients, we used
COX and KM algorithm to screen out 98 differentially expressed
prognostic genes that were significantly related to the prognosis.
After analyzing the genes screened from GEO and TCGA
comprehensively, we finally obtained six key genes (VIPR1,
FCN3, CA4, CRTAC1, CYP4B1, and NEDD9) (Figure 2).

Vasoactive intestinal peptide receptor-1 (VIPR1) has a
significant growth effect on many common tumors, and it is
lowly expressed in human LUAD tissues and lung cancer cell
line H1299. When overexpressed, it is found to significantly
inhibit the growth, migration, and invasion of lung cancer cells
(Zhao et al., 2019). This study showed that LUAD, KIRC and
LIHC patients with low VIPR1 expression had poor prognosis
(Supplementary Figure S2A), which was consistent with the
findings in liver cancer and cervical cancer (Kim et al., 2013;
Lu et al., 2019). Fibronectin 3 (FCN3), encoded by the FCN3
gene, is a recognition molecule in the lectin pathway of the
complement system (Munthe-Fog et al., 2009). It is closely
related to immune function and is highly expressed in normal
human lung tissues but lowly expressed in lung cancer tissues
(Hummelshoj et al., 2008). LUAD and LIHC patients with low
expression of FCN3 have poor prognosis, which is consistent with
the findings in liver cancer and esophageal cancer (Yu et al., 2017;
Li et al., 2019). Carbonic anhydrase (CA4) is zinc metalloenzyme
that catalyzes the reversible hydration of carbon dioxide. It
participates in a variety of biological processes, including
respiration, calcification, acid–base balance, bone resorption, and
formation of aqueous humor, cerebrospinal fluid, saliva, and
gastric acid. It is down-expressed in human LUAD tissues (Yu
et al., 2020) and promotes the proliferation of cancer cells (Chen
et al., 2017). The prognosis of LUAD, KIRC and LGG patients
with low expression of CA4 is poor, which is consistent with the
findings in colorectal cancer and renal cell carcinoma (Takenawa
et al., 1998; Liu et al., 2020). Cartilage acidic protein 1 (CRTAC1)
is a glycosylated extracellular matrix protein, which exists in the
interregional matrix of cartilage in the particularly deep region
and participates in cell-to-cell or cell-to-matrix interactions.
It is highly expressed in normal human lung tissues (Ballard
et al., 2010) and poorly expressed in LUAD tissues. Patients
with LUAD, BLCA and LGG with low expression of CRTAC1
have poor prognosis, which is consistent with that found in
glioma (Xiao et al., 2020). Cytochrome P450 4B1 (CYP4B1)
is a tissue-specific detoxification-related monooxygenase and is
down-expressed in LUAD, but its role in tumorigenesis is still
unclear (Lim et al., 2020; Ni and Sun, 2019). The prognosis of
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LUAD, CESC and KIRC patients with low expression of CYP4B1
is poor, which is consistent with the findings of urethral cancer
and adrenal cancer (Genter et al., 2006; Murtha et al., 2017; Lin
et al., 2019). Neural precursor cell expressed developmentally
downregulated 9 (NEDD9) is a cytoskeletal protein molecule
that is related to biological functions such as cell adhesion,
migration, invasion, apoptosis, and cell cycle and promotes
cancer metastasis (Samokhin et al., 2018). Animal experiments
had shown that NEDD9, in combination with miR−363−3p,
could inhibit NSCLC (Chang et al., 2020). CASS4 is a paralogue of
NEDD9 gene, and LUAD patients with low expression of CASS4
have poor prognosis (Supplementary Figure S3). It has similar
expression pattern and prognostic effect to NEDD9 (Singh et al.,
2008; Kondo et al., 2012; Li et al., 2016), and is related to the
prognosis of many cancer patients such as gastric cancer and
glioma (Speranza et al., 2012; Shi et al., 2014). Consistent with
previous studies, the expression profile data selected in this study
showed that the six genes were down-expressed in LUAD tissues.

Compared with a single biomarker, the combination of
multiple biomarkers will improve the accuracy and the reliability
of tumor prognosis prediction. Therefore, we analyzed the
correlation between the six genes and prognosis by using
univariate Cox and found that VIPR1 had the strongest
correlation with the prognosis of patients. However, based on
multivariate analysis, we discovered that only the comprehensive
risk score of the six genes was correlated with prognosis
(Figure 3), which might be due to the synergistic expression
between the six genes. Furthermore, ROC curve was used to
verify that the predictive model of the comprehensive risk score
of the six genes was more effective.

The individual and the clinical features of tumor patients
are important factors affecting the prognosis. Therefore, gender,
age, stage, and TNM of patients were included in our analysis,
and the correlation among independent and comprehensive
risk scores of the six genes and the clinical features and the
prognosis was analyzed, respectively. It was found that tumor
stage and comprehensive risk score were strongly linked to
prognosis. ROC assessment showed that stage had the highest
accuracy, and comprehensive risk score took the second place.
Therefore, we again verified the important role of stage in the
prediction of tumor prognosis (Bao et al., 2020) and found that
the comprehensive risk score of the six genes could be used as an
independent predictor of the prognosis of LUAD. In addition, the
comprehensive risk score also had a significant correlation with
the patient’s clinical features, which was positively correlated with
stage and N. In other words, the higher the comprehensive risk
score was, the worse the patients’ prognosis and the condition
were. This also reminded us that when we combined the
comprehensive risk score and stage to predict the prognosis of
patients, more accurate results might be achieved.

Quantifying the contribution degree of prognostic factors
could provide an important data support and a convenient means
for clinical treatment and doctor–patient communication. We
built a visual and quantitative prognosis model based on six-
gene comprehensive risk score and clinical features (Figure 7),
which were used to predict the 3- and 5-year survival status of

patients. The predicted results had a high consistency (model
concordance = 0.751), and the accuracy of the model was high.
The AUC of the ROC curve of 3- and 5-year survival was 0.71
and 0.708, respectively. Therefore, our nomogram model could
provide the specific quantitative values of contribution degree of
different predictors and prognosis evaluation for the clinic.

In conclusion, this study provided a method to convert the
expression levels of multiple genes into an independent predictor
of the prognosis of LUAD and constructed a quantitative model
for its predictive efficacy, which would have great potential
application value in guiding the clinical treatment and the
prognosis assessment of LUAD. However, the reliability and the
scope of use of the comprehensive risk score and quantitative
model of the six genes used in this study remained to be verified
by larger clinical cohort studies.
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