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Background: With characteristic self-renewal and multipotent differentiation, cancer
stem cells (CSCs) have a crucial influence on the metastasis, relapse and drug resistance
of gastric cancer (GC). However, the genes that participates in the stemness of GC stem
cells have not been identified.

Methods: The mRNA expression-based stemness index (mRNAsi) was analyzed with
differential expressions in GC. The weighted gene co-expression network analysis
(WGCNA) was utilized to build a co-expression network targeting differentially expressed
genes (DEG) and discover mRNAsi-related modules and genes. We assessed the
association between the key genes at both the transcription and protein level. Gene
Expression Omnibus (GEO) database was used to validate the expression levels
of the key genes. The risk model was established according to the least absolute
shrinkage and selection operator (LASSO) Cox regression analysis. Furthermore, we
determined the prognostic value of the model by employing Kaplan-Meier (KM) plus
multivariate Cox analysis.

Results: GC tissues exhibited a substantially higher mRNAsi relative to the healthy
non-tumor tissues. Based on WGCNA, 17 key genes (ARHGAP11A, BUB1, BUB1B,
C1orf112, CENPF, KIF14, KIF15, KIF18B, KIF4A, NCAPH, PLK4, RACGAP1, RAD54L,
SGO2, TPX2, TTK, and XRCC2) were identified. These key genes were clearly
overexpressed in GC and validated in the GEO database. The protein-protein interaction
(PPI) network as assessed by STRING indicated that the key genes were tightly
connected. After LASSO analysis, a nine-gene risk model (BUB1B, NCAPH, KIF15,
RAD54L, KIF18B, KIF4A, TTK, SGO2, C1orf112) was constructed. The overall survival
in the high-risk group was relatively poor. The area under curve (AUC) of risk score
was higher compared to that of clinicopathological characteristics. According to
the multivariate Cox analysis, the nine-gene risk model was a predictor of disease
outcomes in GC patients (HR, 7.606; 95% CI, 3.037–19.051; P < 0.001). We
constructed a prognostic nomogram with well−fitted calibration curve based on risk
score and clinical data.
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Conclusion: The 17 mRNAsi-related key genes identified in this study could be
potential treatment targets in GC treatment, considering that they can inhibit the
stemness properties. The nine-gene risk model can be employed to predict the disease
outcomes of the patients.

Keywords: gastric cancer, cancer stem cells, mRNAsi, TCGA, WGCNA, LASSO regression, prognosis

INTRODUCTION

Gastric cancer (GC) is a leading cause of morbidity and death
globally. According to the GLOBOCAN 2018 estimation, the
disease is ranked fifth in terms of incidence and third in mortality,
with regards to the total cancer cases worldwide. Currently,
1,033,700 new cases of GC are reported globally (equivalent
to 5.7% of all cancer cases), out of which 783,000 (8.2%) die
from the condition (Bray et al., 2018). At present, strategies
being employed to treat GC includes surgery, chemotherapy, and
molecular targeted therapy. But the therapeutic efficacy is not
ideal and lead to a poor overall survival in GC patients. The use
of conventional chemotherapy has not been very successful. Also,
surgical resection has been associated with metastasis, as well as
recurrence. Cancer stem cells (CSCs) have been implicated in
poor treatment outcomes. CSCs, a subpopulation of tumors, take
the main responsibility for the maintenance and spreading of
tumor. Given that these cells have a high capacity to proliferate
and self-renew, they generate many differentiated cells and
normally are the main constituents of tumor population (Reya
et al., 2001). Accumulating evidence suggests that gastric cancer
stem cells (GCSCs) may play a crucial part in tumor recurrence,
metastasis and therapeutic resistance (Xu et al., 2013; Stojnev
et al., 2014). CSCs are resistant to traditional chemotherapy
and radiotherapy, and can even form a larger proportion of the
remaining GC cells at metastatic sites following chemotherapy
(Brungs et al., 2016). As such, by targeting the key molecules that
participates in CSC maintenance, we could eliminate CSCs and
thus improve the prognosis of GC patients (Fu et al., 2020).

Stem cell features of cancer samples are quantitatively
represented by mRNA expression-based stemness index
(mRNAsi). By applying a one-class logistic regression machine
learning algorithm (OCLR) to normal tissue-derived pluripotent
stem cells and their differentiated progeny, the transcriptomic
and epigenetic feature sets were extracted (Malta et al.,
2018). Then, a multiplatform analysis of transcriptomes and
methylomes was performed to identified stem cell signatures and
quantify stemness. Finally, mRNAsi and the epigenetic regulation
based-index (EREG-mRNAsi) were obtained and applied to the
TCGA database (the stemness index workflow were described
in https://bioinformaticsfmrp.github.io/PanCanStem_Web).
Therefore, we obtained the stemness indices of each GC tissue.

Focus has mainly shifted to screening DEGs, and not exploring
gene interactions. It is in studying how genes interact that we
can reveal the correlations between genes with semblable patterns
of expression. Weighted gene co-expression network analysis
(WGCNA) is a systematic biology method comprehensively used
to explore the connections between gene modules and cancers
(Langfelder and Horvath, 2008; Chen et al., 2018; Tang et al.,

2018). By constructing the WGCNA co-expression network,
we observed that similarly expressed genes were in the same
module. Then, we analyzed the link between each module and
corresponding clinical phenotype, and finally determined the
module with the most significant relation to clinical phenotype.

Based on the TCGA database and applying bioinformatic
method, we identified key genes correlated with GC stemness
by merging mRNAsi with WGCNA. After the least absolute
shrinkage and selection operator (LASSO) Cox regression
analysis, we chose nine genes for the construction of a
risk model. The nine-gene risk model might be used as
independent prognostic factors for predicting the disease
outcomes of GC patients.

MATERIALS AND METHODS

Data Collection and Study Design
We retrieved RNA-seq transcriptome data of GC cohort from
TCGA database1 on February 28, 2020. These data comprised
375 and 32 samples of GC tissues and marching non-cancer
tissues respectively. Also retrieved from the same database were
the clinical data of 443 cases, which included gender, age, grade,
TNM stages, pathological stage, survival time, and vital status.
Subsequently, we merged the RNA-seq data of each sample
into a matrix file with a merge script in the Perl language2.
To change the names of the genes from Ensembl IDs to
gene symbols, we utilized the Ensembl database3 in a matrix
profile. The mRNAsi and EREG-mRNAsi indices of GC cases in
TCGA were acquired from previous studies (Malta et al., 2018).
The microarray (GSE29272, GSE27342, GSE26899) results for
validation were downloaded from the Gene Expression Omnibus
(GEO) database. As the data utilized herein were freely sourced
from an open database, approval from the Ethics Committee was
not required. As shown in Figure 1, our study design was briefly
described in the flow chart.

The mRNAsi Index Expression and
Analysis of DEGs
The beeswarm package in R was employed to compare mRNAsi
index in GC tissues versus non-cancer tissues. Similarly, DEGs in
the two types of tissues were identified using the limma package
(Ritchie et al., 2015). The selection criteria: | log2 fold change|
> 1, P < 0.05 and false discovery rate (FDR) < 0.05. DEGs

1https://portal.gdc.cancer.gov
2http://www.perl.org/
3http://asia.ensembl.org/index.html
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FIGURE 1 | Flow chart of the study design. TCGA, The Cancer Genome Atlas; mRNAsi, mRNA expression-based stemness index; DEGs, differentially expressed
genes; GC, gastric cancer; WGCNA, Weighted gene co-expression network analysis; GEO, Gene Expression Omnibus; PPI, protein-protein interaction; LASSO,
least absolute shrinkage and selection operator; ROC, receiver operating characteristic.
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meeting the criterion were selected for further analysis. Heatmap
and volcano plot were drawn using the pheatmap and limma
packages, respectively.

Weighted Gene Co-expression Network
Analysis (WGCNA)
The WGCNA package was utilized to build a co-expression
network targeting DEGs (Langfelder and Horvath, 2008).
The dynamicTreeCut package, doParallel package, fastcluster
package, foreach package, GO.db package, Hmisc packages,
impute package, matrixStats package, preprocessCore package,
and survival package were also used in WGCNA analysis.

We chose mRNAsi and epigenetically regulated mRNAsi
(EREG-mRNAsi) as the representative traits to identify the CSC-
associated modules and genes. Being a stemness index, mRNAsi,
was generated from a group of stemness-associated epigenetically
regulated genes. Modules related to the mRNAsi were selected,
whose genes were considered to be co-expressed CSC-related
genes. Initially, the normal data set and the cases with incomplete
data were excluded (Supplementary Figure S1A). Subsequently,
based on the gene expression levels of remaining samples, we
clustered the data and reduced the outlier. A heatmap was
generated to show the global outline of the mRNAsi and the
EREG-mRNAsi expression in screened cases (Supplementary
Figure S1B). Next, the power-value was chosen to construct a
scale-free network based on the Pearson correlation coefficient
among genes. The appropriate power-value = 4 was selected
based on mean connectivity and scale-free correlation coefficient
(Supplementary Figure S1C). Accordingly, we constructed a
GeneTree and identified dynamic modules with a minimum
size of 60 genes. On the GeneTree, branches of the cluster
dendrogram corresponded to distinct gene modules and each
piece of the leaves on the cluster dendrogram corresponded
to a gene (Supplementary Figure S1D). Through further
analysis of modules, the module eigengene (ME) dissimilarity
was computed and visualized, then a cut-off (<0.25) was
chosen for the module dendrogram and some similar modules
were merged (Supplementary Figure S1E). Regarding principal
component analysis (PCA), we considered MEs as the principal
component of module for every gene. Particularly in some
modules, each gene expression model was summarized to have
distinct features.

To assess the significance of each module, we calculated the
gene significance (GS) and analyzed the interaction between
the levels of gene expression and sample characteristics. The
calculation of GS was the log10 conversion of the p-value in
the linear regression between gene expression and mRNAsi or
EREG-mRNAsi (GS = lgp). In addition, the mean GS within
the module was defined as Module significance (MS), which was
determined to analyze the link between each module and sample
characteristics. Among all selected modules, the module with the
largest MS was taken as the module that is strongly related to
sample characteristic.

Subsequently, GS and module membership (MM, relationship
between genes in a given module and their expression profiles)

for each gene and set their thresholds for screening key genes in
the module as cor. gene GS > 0.5 and cor. gene MM > 0.8.

Gene Correlation Analysis and
Protein-Protein Interaction (PPI) Network
Construction
The interactions between key genes at the level of transcription
was analyzed by the Pearson correlation analysis with the corrplot
package in R software. The PPI network of key genes was
constructed using the online Search Tool for the Retrieval of
Interacting Genes (STRING)4 (Szklarczyk et al., 2019). The bar-
plot showed the nodes in the network with top connectivity.
Based on this, we computed the sum of adjacent nodes of every
gene in the PPI network. Next, using a bar plot, the genes were
classified on the basis of adjacent node number. In addition, the
pheatmap package was used to draw a heatmap showing the levels
of expressions of key genes, and for plotting box-plots, the ggpubr
package was utilized.

Functional Annotation and Pathway
Enrichment Analysis
The org.Hs.eg.db package was chosen to map the key genes with
the Ensemble ID. The clusterProfiler package was performed to
carry out GO functional annotation and KEGG analyses so as to
explore and determine the potential biological functions of each
key gene (Yu et al., 2012). The enrichplot package, colorspace
package, stringi package, DOSE package and ggplot2 package
were also used and the enriched biological processes (BP), cellular
component (CC) and molecular function (MF) were obtained.
Statistical significance was set at P < 0.05 and an FDR < 0.05.
The bar-plot and the bubble-plot were drawn using R software in
order to visualize the top results.

LASSO Cox Regression Analysis and
Construction of the Risk Assessment
Model
The LASSO Cox regression analysis was conducted by the
glmnet package and survival package to choose the most suitable
genes for modeling. The LASSO regression is an approach for
variable selection in fitting high-dimension generalized linear
model. By constructing a penalty function with the LASSO
regression, we could get a more refined model to decrease the
variable numbers and successfully prevent overfitting. Herein,
glmnet package was applied to determine the penalty parameter
lambda via the cross-validation and identified the optimal
lambda value which corresponded to the minimum value of
the cross-validation error mean. Then, we chose the best
gene group to construct a risk model and categorized the
results into the high-risk or low-risk groups. We calculated the
risk score based on a linear combination of the coefficients
obtained from the LASSO Cox regression model multiplied with
the expression value of each selected gene. The independent
prognostic role of the risk model was analyzed using multivariate
Cox regression. Finally, in order to offer a quantitative tool for

4https://string-db.org
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FIGURE 2 | The mRNAsi and DEGs in GC (375 tumor tissues and 32 non-tumor tissues) based on TCGA database. (A) Differences in mRNAsi in GC tissues vs.
non-tumor tissues. (B) volcano plot showing differential expression in GC tissues vs. non-tumor tissues. The upregulated gene is displayed in red dot and the
downregulated gene is in blue. In total, 6,739 DEGs were identified, of which 5,593 were upregulated, and 1,146 were downregulated. mRNAsi, mRNA
expression-based stemness index; DEGs, differentially expressed genes; GC, gastric cancer; TCGA, The Cancer Genome Atlas.

predicting the individual probability of patient prognosis, we
used the rms package to establish a prognosis nomogram and
draw calibration curve to compare the expected and observed
survival probabilities.

Statistical Analyses
We completed the analyses using R software (R Core Team,
2013). Herein, all the cut-offs, comprising mRNAsi, expression
levels of key genes, and risk score were the median level of
each item. We applied the Wilcox test to assess the difference
in mRNAsi scores between GC samples and normal samples.
The difference in overall survival in low-versus-high risk
score patients was analyzed using Kaplan-Meier analysis
and log-rank test. The Kruskal-Wallis test was selected to
examine correlation in risk scores versus clinicopathological
characteristics. Univariate and multivariate analyses were
conducted based on a Cox proportional hazard regression
model. All data sets merging was performed with a merge
script in the Perl language. Statistical significance was set
at P < 0.05.

RESULTS

The mRNAsi and DEGs Between GC
Tissues and Non-tumor Tissues
mRNAsi has been applied effectively to evaluate the tendency of
tumor cells to dedifferentiate. As such it is used as a marker for
identifying CSCs. A remarkably higher mRNAsi was recorded in
GC tissues relative to non-cancer tissues (Figure 2A). The DEGs
modulating tumor cell stemness were recognized after examining
the RNA-seq data retrieved from the TCGA database. Out of the
6,739 DEGs screened, 5,593 were overexpressed, whereas 1,146

were under-expressed (Figure 2B, Supplementary Figure S2,
and Supplementary Table S1).

Discovering of the Most Significant
mRNAsi-Related Modules and Genes
After the screen of DEGs between GC tissues and non-tumor
tissues, we constructed a gene co-expression network for the
purpose of identifying the biologically significant gene modules
by WGCNA, and to further identify genes strongly linked to
GC stemness. In this study, a total of 12 modules were obtained
for subsequent analysis (Figure 3A). Module significance (MS)
was calculated to analyze the link between mRNAsi scores and
gene. Due to that R2-value indicates the stronger the link between
GC stemness and gene expression, the nearer the value was to
1. As shown in Figure 3B, three modules were considered the
strong correlation to GC stemness, namely brown module, blue
module and pink module. The brown module exhibited a positive
correlation with mRNAsi (R2 = 0.76, P < 0.001) (Figure 3C),
while the blue and pink modules reflected a negative correlation
with mRNAsi (R2 = −0.78, P < 0.001; R2 = −0.55, P < 0.001,
respectively) (Figures 3D,E). Thus, we chose the brow module
for further analyses. The thresholds for selecting key genes in
the module were defined as cor. gene MM > 0.8 and cor.
gene GS > 0.5. Finally, we checked 17 key genes containing
ARHGAP11A, BUB1, BUB1B, C1orf112, CENPF, KIF14, KIF15,
KIF18B, KIF4A, NCAPH, PLK4, RACGAP1, RAD54L, SGO2,
TPX2, TTK, and XRCC2. The concrete expression values of each
key gene were extracted and the corresponding heatmap and
boxplot were drawn, showing the upregulation of the key genes
in GC tissues (Figures 4A,B). To verify the expression difference
of key genes in the TCGA database, we chose the GEO dataset
and selected three data sets (GSE26899, GSE27342, GSE29272)
with large sample sizes to assess the key genes’ levels of expression
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FIGURE 3 | Weighted gene co-expression network analysis. (A) Co-expression module identification in GC. The branches of the cluster dendrogram represent the
12 different gene modules. Each module denotes a collection of co-related genes and was given a unique color. Each piece of the leaves on the cluster dendrogram
represent a gene. (B) Heatmap displaying the correlations and significant differences between the gene modules and mRNAsi scores or EREG-mRNAsi. The upper
row in each cell represent the correlation coefficient ranging from -1 to 1 of the correlation between a certain gene module and mRNAsi or EREG-mRNAsi. P-values
are shown in brackets. Scatter plot of module eigengenes in the brown (C), pink (D), blue (E) modules. Each circle denotes a gene, and the circles in the upper right
stand for the key genes in the modules. GC, gastric cancer; mRNAsi, mRNA expression-based stemness index.

in GC. Similar to the results obtained from the TCGA database,
upregulation of all the key genes in the GC tissues was observed
(Figures 5A–C).

Correlation Analysis of Key Genes and
PPI Network Analysis
The correlation analyses of the key gene expression were carried
out to confirm the relevance of the genes within the brown
module. Within the figure, the strength of correlation is displayed
on the upper part based on color, whereas the lower part
represents the equivalent correlation value (Figure 6A). We
found that strong positive correlation among the key genes
at the transcription level (Pearson correlation ≥ 0.60). The
relationship with the highest correlation was between KIF14 and
CENPF (0.88), followed by BUB1 and NCAPH (0.87). BUB1
was highly correlated with NCAPH, BUB1B, and SGO2 (Pearson
correlation > 0.80). At the protein level, the interactions between
key gene proteins were analyzed using STRING and mapped the
PPI network (Figure 6B). The PPI network consisted of 14 nodes

and 214 edges, and 6 genes (TTK, TPX2, NCAPH, KIF15, CENPF,
BUB1) have the highest node numbers (node number = 15).
Except for XRCC2, other key genes showed a closer protein
interaction (node number ≥ 7) (Figure 6C).

Functional Annotation and Pathway
Enrichment Analysis of Key Genes
Regarding gene enrichment, the clusterProfiler package was
employed to examine the functional link between the key
genes. The GO enrichment analysis included the following
three portions: biological process (BP), cell component (CC),
and molecular function (MF) (Supplementary Table S2).
The principal biological roles of the key genes were nuclear
division (GO:0000280), organelle fission (GO:0048285),
spindle (GO:0005819), and ATPase activity (GO:0016887)
(Figures 7A,B). Regarding signaling pathway enrichment,
the enriched pathways included cell cycle (hsa04110) and
homologous recombination (hsa03440) (Figures 7C,D). The
KEGG results are summarized in Supplementary Table S3.
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FIGURE 4 | The differential expression of the key genes in GC (375 tumor tissues and 32 non-tumor tissues) based on TCGA database. (A) Heatmap of the key
genes in the two groups. Red indicates upregulation, and green indicates downregulation. (B) Box-plot of the key genes in the two groups. ***P < 0.001; GC, gastric
cancer.

Construction of the Risk Assessment
Model
To investigate the effect of key genes on GC prognosis, 17
key genes were input in LASSO regression to identify robust
markers. Then, a prognostic model containing nine genes
(BUB1B, NCAPH, KIF15, RAD54L, KIF18B, KIF4A, TTK, SGO2,
C1orf112) constructed to evaluate the disease outcome of each
patient (Figures 8A,B). We calculated the risk scores of GC
patients with the LASSO Cox regression model according to the
coefficients of nine genes.

Risk score = (BUB1B× 0.021265698)+(NCAPH× 0.00722087
6)+(KIF15×−0.100943988)+(RAD54L×−0.133097331)+ (KIF
18B× –0.048222701)+(KIF4A×−0.002827726)+(TTK× 0.03503
4586)+(SGO2× 0.074640650)+(C1orf112× 0.157469647).

The Role of the Risk Model in GC
Patient’s Prognosis
We grouped the patients into two classes (low- and high-
risk groups) based on the median risk score. The two
groups exhibited substantial difference regarding the survival
rate. Specifically, high-risk group had markedly lower 5-year
survival rate (23.3%) in comparison to the low-risk group
(43.1%) (P < 0.001) (Figure 8C). Notably, the low and
high curves exhibited a remarkable intersection at the sixth
year. In the first 6 years, the survival probability of high-
risk patients was lower in comparison to low-risk patients
and in the following 4 years, the survival probability curve
was basically flat. The patients who exhibited high risk scores
lived beyond 6 years, and, in exceptional cases, they even
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FIGURE 5 | Validation of the key genes in the GEO microarray database. (A) GSE29272, 268 samples. (B) GSE27342, 160 samples. (C) GSE26899, 108 samples.
*P < 0.05, **P < 0.01, *** P < 0.001. GEO, Gene Expression Omnibus.

showed a higher probability of survival. The area under curve
(AUC) of risk score was higher than that of clinicopathological
characteristics (Figure 8D). The heatmap revealed substantial

differences in high-risk versus the low-risk groups in fustat
(P < 0.05) (Figure 8E). Also, the risk model performance
in GC patients were further assessed by univariate and
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FIGURE 6 | Correlation analysis of the key genes. (A) Correlation among the key genes at transcriptional level. Within the figure, the upper part shows the correlation
strength based on the color, whereas, the lower part represents the matching correlation value. (B) Protein-protein interactions of the key genes. Circles denotes
genes, lines indicate interactions between gene-encoded proteins, and line colors denote proof of associations between proteins. (C) Edge number of each key
gene.

multivariate Cox regression analysis, which indicated that age,
TNM stages, and risk score had a significant association with
OS (P < 0.005) (Table 1). Multivariate analyses indicated
that the nine-gene risk model is an independent predictor
for predicting the disease outcomes GC patients (Table 1
and Figure 8F). A prognostic nomogram was established
by incorporating data on risk score and clinical records to
offer a quantitative tool that can be applied to predict the
probability of relapse for each patient (Figure 9A). Age, gender,
grade, TNM stages, and risk score were parameters included
in the nomogram. The calibration curve of the prognostic
nomogram showed good agreement between prediction and
observation (Figure 9B).

DISCUSSION

Although the classical cancer therapies, including chemotherapy
and radiation therapy, have contributed to the improvement
of cancer treatments. However, for most cancer patient’s
disease recurrence is a common event. To achieve a better
therapeutic effect, the research of CSCs is springing up vigorously
recent years. Obtained findings showed that CSCs, similar to
other stem cells being capable of self-renewal and multipotent
differentiation (Han and Oh, 2013), are considered as the
reason behind the continuous proliferation, as well as recurrence
of cancers. With the potential to initiate and sustain tumor

progression, CSCs are involved in tumor progression, metastasis
and therapeutic resistance in GC (Kreso and Dick, 2014;
Brungs et al., 2016; Chang, 2016; Çoban and Şahin, 2018).
However, no relevant therapeutic modalities targeting CSCs
have been developed yet. Therefore, it is reasonably urgent
and important to recognize the key genes that can be used as
the therapeutic targeting of GCSCs. Herein, our focus was on
the key genes related to GCSCs using WGCNA based on an
mRNAsi index, as calculated by Tathiane et al. via the OCLR
algorithm. Firstly, we analyzed the difference in mRNAsi scores
in GC tissues versus non-tumor tissues. GC tissues exhibited
a higher stemness in comparison to non-tumor tissues, and
this was in accordance with other recently published reports in
bladder cancer stem cell (Pan et al., 2019), lung adenocarcinoma
stem cell (Zhang et al., 2020), and breast cancer stem cell
(Pei et al., 2020).

WGCNA is a tool to analyze the complex correlations between
genes and phenotypes by transforming gene expression data into
co-expression module. By virtue of WGCNA, we can group the
genes based on their patterns of expression and then analyze
the link between various gene clusters and clinical phenotypes
(Langfelder and Horvath, 2008). In this study, we used WGCNA
to make weighted connection analysis of DEG expression profiles
in GC tissues and non-tumor tissues, and preliminarily divided
DEG into different gene clusters. Therefore, the genes which
were highly co-expressed produced a gene module that might
be applied to assess the depth of the correlation between the
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FIGURE 7 | Functional annotation and pathway enrichment analysis. (A,B) The GO enrichment analysis of the key genes. Bubble-plots and Bar-plots showing the
top terms in groups of BP, CC, and MF. (C,D) The top terms of the KEGG pathway analysis for the key genes are also shown by bar-plot and bubble-plot. Count:
Number of genes linked to the enriched GO or KEGG pathway. BP, biological process; CC, cell component; MF, molecular function.

gene modules and selected clinical characteristics. We selected
the brown modules with the strongest correlations with mRNAsi,
where 17 Key genes were vetted on the basis of the GS and
MM scores. Being upregulated in GC tissues, all these key genes
displayed not only a strong association between their proteins
but also a strong association with regards to co-expression at
the level of transcription. This suggests that the key genes may
have strong biological links and are synergistic in their functions.
We conducted GO functional and KEGG pathway enrichment
analyses for key genes. According to functional enrichment, the
genes were clustered mostly in the functional set associated with
cell mitosis, suggesting that these genes could have a role in
enhancing the self-renewal and proliferative characteristics of
stem cells. As such, by targeting these genes, we could suppress
these characteristics of GCSCs. Regarding pathway enrichment,
cell cycle pathway was the main point of concentration,
indicating that the key genes could influence the tumor stemness
through cell cycle modulation. Many studies have implicated
these key genes in GC pathogenesis, with suggestions that they
may be directly linked to the CSCs features. Cell cycle is a tightly
regulated process involving the participation of several genes, for

example, a spindle damage during the cell cycle progression leads
to abortion of the process as mediated by BUB1, which function
at spindle assembly checkpoint to suppress cell cycle progression
(Shigeishi et al., 2001). As such, BUBI downregulation is an
independent prognostic marker in GC (Stahl et al., 2017).
However, BUB1 is not the specific biomarker for GC. In fact, it
is also closely associated with tumorigenic phenomena in many
other cancers. As Piao et al. (2019) demonstrated, BUB1 may play
a role in the progression of pancreatic ductal adenocarcinoma
and could serve as a prognostic biomarker for patients with
pancreatic ductal adenocarcinoma. Han et al. (2015) linked
BUB1 to the features breast cancer stem cells. BUB1B and
TTK may contribute to gastric tumorigenesis and risk of tumor
development (Hudler et al., 2016). Yet BUB1B is also correlated
with the progression and prognosis in patients with other cancers
(Fu et al., 2016; Yang et al., 2015), and has been linked to
CSC progression, radiation resistance (Ma et al., 2017). TTK
gene is upregulated in a population of CSC-like cells extracted
from human esophageal carcinoma. The same phenomenon
occurs in the stem cells of human multiple myeloma (Huang
et al., 2009; Zhou et al., 2014). CENPF is associated with GC
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FIGURE 8 | Construction of a nine-gene risk model and its prognostic value for GC patients based on TCGA database. (A) Selection of the optimal genes used to
construct the final prediction model by LASSO regression analysis. Ten-fold cross-validation for tuning parameter selection. The number on top of the plot represents
the total number of genes. Partial likelihood deviance is plotted against log lambda. Dotted vertical lines were drawn at the optimal values. The optimal gene group
was chosen by 10-fold cross-validation and the minimal value of lambda. (B) LASSO coefficient profiles of the key genes. The number on top of the plot represents
the total number of genes. Each curve represents corresponding key gene and the number next to it is the serial number of each gene. (C) Kaplan-Meier curve of
the relationship between risk score and OS of GC patients. (D) The receiver operating characteristic (ROC) curve of the risk model for survival prediction. (E) The
heatmap displays the expression of the nine genes and the correlation of clinicopathological parameters with different risk groups. Red indicates upregulation, and
green indicates downregulation. (F) Forest plot for the multivariate Cox proportional hazard regression model of the risk score and clinicopathological parameters.
GC, gastric cancer; OS, overall survival. *P < 0.05, ***P < 0.001.

TABLE 1 | Univariate and multivariate Cox regression analyses of the association between clinicopathological parameters and overall survival in GC patients.

Parameter Univariate analysis Multivariate analysis

HR 95%CI P HR 95%CI P

Age 1.027 1.008–1.046 0.006 1.043 1.022–1.064 0.000

Gender 1.484 0.980–2.247 0.062 1.606 1.042–2.476 0.032

Grade 1.368 0.947–1.977 0.095 1.394 0.947–2.054 0.092

Pathological stage 1.535 1.221–1.931 0.000 1.182 0.768–1.818 0.448

T 1.298 1.023–1.645 0.032 1.183 0.853–1.640 0.314

N 1.267 1.069–1.502 0.006 1.107 0.860–1.424 0.432

M 2.048 1.096–3.827 0.025 1.839 0.816–4.143 0.141

Risk score 7.226 2.949–17.707 0.000 7.606 3.037–19.051 0.000

Bold values indicate P < 0.05. HR, hazard ratio; CI, confidence interval; GC, gastric cancer.

proliferation and tumor metastasis (Chen et al., 2019) and may
be an important regulator of prostate cancer (Shahid et al.,
2018). Yang et al. linked the upregulation of KIF14 in GC to
poor prognosis, suggesting that it could play a critical function
in GC pathogenesis (Yang et al., 2019). In addition, KIF14
has been reported to serve oncogenic roles in a variety of
malignancies such as colorectal cancer (Wang et al., 2018),
medulloblastoma (Li et al., 2017), cervical cancer (Wang et al.,

2016). Moreover, KIF15 played a critical role in inhibiting GC
cell apoptosis and promoting cell proliferation, and the high
expression of KIF15 predicts a poor prognosis in GC patients
(Ding et al., 2020). Biljana et al. demonstrated that KIF15
upregulation in stem cells of glioblastoma is related to poor
disease outcomes (Stangeland et al., 2015). PLK4 expression
was upregulation in human primary gastric cancer, and it
associated with the regulation of centrosome and stability of
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FIGURE 9 | (A) Prognostic nomogram on the basis of risk score and clinical information. (B) The calibration curve of the prognostic nomogram. Dashed line at 45◦

represents perfect prediction.

chromosome in GC (Shinmura et al., 2014). Additionally, PLK4
could be a therapeutic target for colorectal cancer (Liao et al.,
2019) and a potential prognostic factor in breast cancer (Li
et al., 2016). RACGAP1 is a modulator of the canonical Wnt
signaling pathway, which participates in the pathogenesis of CG
(Bornschein et al., 2016). Upregulation of RACGAP1, especially
at the invasive front in GC has a strong link to factors that are
related to cancer progression, as well as poor disease outcomes
(Saigusa et al., 2015). TPX2 expression has been linked to
cancer progression and poor survival in GC (Tomii et al.,
2017), and closely related to the proliferation of breast cancer
stem cells (Huang et al., 2017). In summary, these genes have
been shown to correlate with the biological behaviors and
poor prognosis of numerous cancers including GC, but they
have been previously ignored in GCSCs, and may be targeted
to suppress GC stemness features. However, given that these
findings are based on bioinformatics involving retrospective
data, there is a need to conduct further studies to confirm
our conclusions.

Finally, we used the key genes to predict the disease
outcomes of GC patients. LASSO is commonly applied
algorithm which allows one to select and shrink variables
simultaneously, thus enabling the identification of prognostic
signatures (Bøvelstad et al., 2007). Simultaneous variable
estimation as well as selection is achieved in LASSO through
selecting compression coefficient absolute value then adjusting
the lambda parameter. In LASSO, we can remove unnecessary
variable coefficients by incorporating a constraint condition
to the coefficients’ absolute value. Through that, we can
establish a more refined model (Geng et al., 2020). After
LASSO analysis, nine dysregulated and prognostic genes were
identified. We constructed a nine-gene risk model that put
GC patients into low-risk and high-risk groups. The high-
risk group exhibited poorer overall survival. Univariate and
multivariate Cox analysis verified that the nine-gene risk
model is an independent predictor for predicting the disease
outcomes of GC patients.

CONCLUSION

In conclusion, we have discovered 17 key genes related to
GCSCs using WGCNA based on an mRNAsi index. These
genes were of pivotal importance in GC stem cell maintenance
and could be potential therapeutic targets for inhibiting GC
stemness characteristics in clinical application. Furthermore,
we constructed a nine-gene-based prognostic model by LASSO
regression, which can be applied to predict the disease outcomes
of patients. The prognostic nomogram combined with nine-gene
model and clinicopathological parameters could be expected to
serve as an accurate and efficient tool to assess the prognosis
of GC patients for clinicians, which might be beneficial for
individualized treatment and medical decision making. Based
on our literature such, we believe that the study herein is the
first to report a novel GCSC biomarker (mRNAsi), which can
be used to determine GC progression. However, conclusions
were derived from bioinformatic analysis of retrospective data,
and therefore, is a need to conduct further studies to confirm
our conclusions.
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FIGURE S1 | (A) The data over the red line were the normal data and the missing
data, and they were deleted for the outlier elimination. (B) The heatmap shows the
global overview of the mRNAsi values and the EREG-mRNAsi values. (C)
Considering the scale-free correlation coefficient and mean connectivity, the
appropriate power value = 4 was selected. (D) A GeneTree was constructed
according to the power value. The branches of the cluster dendrogram
correspond to the 12 different gene modules. Each piece of the leaves on the
cluster dendrogram represent a gene. (E) Calculating the module similarity to join
the modules with high similarity.

FIGURE S2 | Heatmap of differentially expressed genes. Red indicates
upregulation, and green indicates downregulation.
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