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Background: Lung cancer has become the most common cancer type and caused
the most cancer deaths. Lung adenocarcinoma (LUAD) is one of the major types of
lung cancer. Accumulating evidence suggests the tumor microenvironment is correlated
with the tumor progress and the patient’s outcome. This study aimed to establish a
gene signature based on tumor microenvironment that can predict patients’ outcomes
for LUAD.

Methods: Dataset TCGA-LUAD, downloaded from the TCGA portal, were taken as
training cohort, and dataset GSE72094, obtained from the GEO database, was set
as validation cohort. In the training cohort, ESTIMATE algorithm was applied to find
intersection differentially expressed genes (DEGs) among tumor microenvironment.
Kaplan–Meier analysis and univariate Cox regression model were performed on
intersection DEGs to preliminarily screen prognostic genes. Besides, the LASSO
Cox regression model was implemented to build a multi-gene signature, which was
then validated in the validation cohorts through Kaplan–Meier, Cox, and receiver
operating characteristic curve (ROC) analyses. In addition, the correlation between
tumor mutational burden (TMB) and risk score was evaluated by Spearman test. GSEA
and immune infiltrating analyses were conducted for understanding function annotation
and the role of the signature in the tumor microenvironment.

Results: An eight-gene signature was built, and it was examined by Kaplan–Meier
analysis, revealing that a significant overall survival difference was seen. The eight-gene
signature was further proven to be independent of other clinico-pathologic parameters
via the Cox regression analyses. Moreover, the ROC analysis demonstrated that this
signature owned a better predictive power of LUAD prognosis. The eight-gene signature
was correlated with TMB. Furthermore, GSEA and immune infiltrating analyses showed
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that the exact pathways related to the characteristics of eight-genes signature, and
identified the vital roles of Mast cells resting and B cells naive in the prognosis of the
eight-gene signature.

Conclusion: Identifying the eight-gene signature (INSL4, SCN7A, STAP1, P2RX1,
IKZF3, MS4A1, KLRB1, and ACSM5) could accurately identify patients’ prognosis and
had close interactions with Mast cells resting and B cells naive, which may provide
insight into personalized prognosis prediction and new therapies for LUAD patients.

Keywords: lung adenocarcinoma, tumor microenvironment, tumor immunity, gene signature, risk score,
prognosis, biomarkers

INTRODUCTION

Lung cancer ranks among the top cancer-related deaths
worldwide (Bray et al., 2018). Histologically, 15% of patients are
classified as small cell lung cancer (SCLC), whereas the other 85%
of patients are classified as non-small-cell lung cancer (NSCLC)
(Gridelli et al., 2015). In NSCLC, lung adenocarcinoma (LUAD)
is the most common subtype (Cancer Genome Atlas Research
and Network, 2014). Over the past few decades, extensive
genomic studies have identified several high-frequency genetic
changes in LUAD, such as EGFR, KRAS mutations, and ALK
rearrangements, which may be related to the occurrence and
development of LUAD and have contributed to EGFR targeting
drug development (Herbst et al., 2018). However, a large number
of patients with advanced LUAD have no targeted mutations. For
these patients, studies on immune checkpoints like programmed
death 1 (PD-1) and cytotoxic T lymphocyte–associated antigen-
4 (CTLA-4) have demonstrated the effectiveness and safety of
established treatments (Hellmann et al., 2017; Xu et al., 2018),
which highlights the importance of tumor microenvironment on
the clinical outcomes of LUAD patients.

More and more studies have shown that the occurrence and
development of tumors are the results of the dynamic interaction
between tumor cells and various components (including immune
cells and stromal cells) within the tumor microenvironment
(Hui and Chen, 2015; Verrecchia and Redini, 2018; Shi et al.,
2020). Therefore, the tumor microenvironment may become a
promising target for cancer treatment (Alsaab et al., 2017). In
Yoshihara et al. (2013) designed an algorithm called ESTIMATE
(Estimation of STromal and Immune cells in MAlignant Tumor
tissues using Expression data). The algorithm analyses specific
gene expression characteristics of immune and stromal cells and
calculates immune and stromal scores to predict non-tumor cell
infiltration (Yoshihara et al., 2013). Considering that previous
research has mainly focused on one or two types of immune
cells and key genes, it may create a bias against the LUAD
microenvironment. Finding multiple genes from the tumor
microenvironment to build a gene signature can obtain a better
accuracy of the prognostic potential (Liu et al., 2019a,b; Zhou
et al., 2019; Bi et al., 2020; Guo et al., 2020).

Here, we conduct comprehensive mining of The Cancer
Genome Atlas (TCGA) and Gene Expression Omnibus (GEO)
databases to determine the minimum number of potentially
robust genes from tumor microenvironment that can be used

to predict the prognosis of LUAD patients. Importantly, we
used the LASSO algorithm, which can effectively analyze high-
dimensional sequencing data (Tibshirani, 1997). Besides, we
assessed the accuracy of this eight-gene signature and validated it
by comparing with tumor mutational burden (TMB) and testing
in a validation cohort. Moreover, GSEA and immune infiltrating
analyses were conducted to explore the role of the signature in the
tumor microenvironment.

MATERIALS AND METHODS

Data Mining From TCGA and GEO
The gene expression profiles of LUAD from 515 patients, along
with their clinical and survival data, were downloaded from
TCGA Xena Hub1 with cohort name: TCGA-LUAD. Besides,
we selected dataset GSE72094 from the GEO database2, which
contains 442 LUAD cases, for the study. In our research, TCGA-
LUAD was used as the training cohort, whereas GSE72094 was
taken as the validation cohort.

Immune and Stromal Scores
Immune scores and stromal scores of each case of the training
cohort calculated by the ESTIMATE algorithm were downloaded
from the MD Anderson Cancer Center ESTIMATE Results
download page3 (Supplementary Table S1; Yoshihara et al.,
2013).

Identification of the Intersection
Differentially Expressed Genes (DEGs)
Among Immune and Stromal Scores
All cases in the training cohort were divided into groups of
high and low scores according to the median. DEGs were
identified between high and low immune/stromal score groups
using “limma” R package (Ritchie et al., 2015), with a cutoff of |
log2(fold-change)| > 1 and false discovery rate (FDR) < 0.05.
“pheatmap” R package was applied to produce heatmaps and
clustering of DEGs. Genes that were upregulated in both high
immune and stromal scores groups were defined as intersection-
upregulated DEGs. Genes that were downregulated in both high

1https://tcga.xenahubs.net
2https://www.ncbi.nlm.nih.gov/geo/
3https://bioinformatics.mdanderson.org/estimate/index.html
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immune and stromal scores groups were taken as intersection-
downregulated DEGs. A combination of these two intersection
DEGs was the intersection DEGs.

Identification and Validation of the
Prognostic Gene Signature
To continue, Kaplan–Meier analysis was performed in the
training cohort, to screen for potential prognostic genes from
the intersection DEGs identified in the previous step based on
overall survival. Only genes with p values < 0.05 in the log-
rank test were considered as significant to pass Kaplan–Meier
analysis screening. Also, univariate Cox regression analysis was
performed on the training cohort to look for prognostic genes
from the intersection DEGs with p values < 0.05. Same as
before, only genes that showed significance in the overall survival
analysis were considered to pass univariate Cox regression
analysis screening.

The genes that passed both Kaplan–Meier and univariate
Cox analyses were then entered into the LASSO Cox regression
model analysis, which was implemented in the training cohort
utilizing R software and the “glmnet” package. Ten-times cross-
validations were applied to detect the best penalty parameter
lambda (Tibshirani, 1997; Sauerbrei et al., 2007; Friedman et al.,
2010; Goeman, 2010). According to the best lambda value, a list
of prognostic genes with coefficients was obtained from the gene
expression and patients’ survival data. Moreover, the risk score of
each patient could be calculated based on the expression level of
each prognostic gene and its corresponding coefficient.

Using the median risk score as the cutoff point, the patients
in the training cohort were distributed to high-risk or low-risk
groups, and Kaplan–Meier analysis was applied to evaluate the
survival difference between the two groups. Besides, Cox and
ROC analyses were conducted to further assess the prognostic
value of the gene signature in the training cohort. Furthermore,
the prognostic gene signature was validated in the validation
cohort. The same formula was conducted to compute risk scores
like that in the training cohort. Kaplan–Meier, Cox, and ROC
analyses were implemented as described earlier.

TMB Correlation With the Gene
Signature Risk Score
Tumor mutational burden is defined as the total number
of non-synonymous mutations per coding area of a tumor
genome. Recently, a high TMB has been identified as a genetic
signature that is associated with a favorable outcome for immune
checkpoint inhibitor therapy (Alexandrov et al., 2013; Gibney
et al., 2016; Yuan et al., 2016). The mutation data of LUAD
patients were obtained from the TCGA Xena Hub mentioned
earlier. The TMB score for each LUAD patient was calculated
by the formula as follows (Robinson et al., 2017; Liu J. et al.,
2020): TMB = (total mutation/total covered bases) × 106. The
Spearman rank correlation coefficient was applied to assess the
correlation between TMB and risk score, further evaluating the
prognostic value of the gene signature identified in this study and
the possibility of immune checkpoint inhibitor therapy targeting
risk score. P value < 0.05 was considered statistically significant.

Gene Set Enrichment Analysis
The Hallmark (v7.1) and C7 (v7.1) gene set collections were
downloaded from the Molecular Signatures Database v7.1
download page4. GSEA was performed based on the downloaded
gene set collections using GSEA software (v4.0.3)5. The training
cohort was taken for GSEA to reveal the functions and pathways
in the DEGs between high-risk and low-risk groups. Only gene
sets with |NES| > 1, NOM p-val < 0.05, and FDR q-val < 0.25
were considered significant.

Correlation of Risk Score With the
Proportion of 22 Kinds of
Tumor-Infiltrating Immune Cells (TICs)
The CIBERSORT calculation method was used to estimate the
22 kinds of TICs abundance distribution of all tumor samples
in the training cohort, and then quality filtering was performed.
In total, 515 LUAD samples with p value < 0.05 were selected
for the following analysis. The correlations between 22 kinds
of TICs were examined by Pearson coefficient test. Spearman
coefficient test was used for the correlation test between the TICs’
proportion and risk score. The Wilcoxon rank-sum test verified
the differentiation of 22 kinds of immune cells between low-
and high-risk groups. Besides, based on the 22 TICs’ infiltration
volume and survival data of each of the 515 patients, we used the
univariate Cox and Kaplan–Meier methods to screen TICs with
prognostic significance. Together with the result of correlations
between risk score and 22 TICs, we further assessed which kind
of immune cells play a role in the prognostic zone of the gene
signature identified in this study. P value < 0.05 was a statistically
significant threshold.

Statistical Analysis
All statistical calculations were performed in R software.
Kaplan–Meier analysis was conducted to check the prognosis
difference between groups, along with the p value, which was
examined in the log-rank test. Univariate and multivariate Cox
proportional hazard regression analyses were conducted to assess
the association between risk score and prognosis. The ROC
analysis was applied to examine the sensitivity and specificity of
survival prediction using the gene signature risk score. An area
under the ROC curve (AUC) served as a pointer of prognostic
accuracy. The R package “pROC” was used for ROC analysis, and
the “delong” method is used to study the significant differences
among ROC curves. In addition to noted before, all analyses p
value < 0.05 was a statistically significant threshold.

RESULTS

Clinical Characteristics
The flowchart of the present research is shown in Figure 1.
515 LUAD cases that came from TCGA-LUAD were taken as
the training cohort. The dataset GSE72094 with 442 LUAD

4https://www.gsea-msigdb.org/gsea/downloads.jsp
5https://www.gsea-msigdb.org/
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FIGURE 1 | Flow chart of the study. The study was carried out in TCGA-LUAD and GSE72094 cohorts. The training cohort was used to identify prognostic genes.
The prognosis analysis was validated in the validation cohort. DEGs, differentially expressed genes; LASSO, the least absolute shrinkage and selection operator Cox
regression model; ROC, receiver operating characteristic; TMB, tumor mutational burden; LUAD, lung adenocarcinoma; TICs, tumor-infiltrating immune cells.
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patients was used as the validation cohort. The detailed clinical
characteristics of both cohorts are summarized in Table 1.

Intersection DEGs Based on Immune
and Stromal Scores
For identifying the DEGs among immune and stromal scores,
cases in the training cohort were divided into groups of
high and low scores according to their scores based on
the median, and the DEG analysis was performed using the
“limma” R package. Figure 2A shows a heatmap of 953
DEGs between immune score groups. Figure 2B displays
a heatmap consisting of 1037 DEGs between stromal score
groups. Via integrated bioinformatics analysis, we identified 519
intersection-upregulated DEGs (Figure 2C) and 20 intersection-
downregulated DEGs (Figure 2D). Our subsequent analysis
focused on these 539 intersection DEGs.

Construction of Prognostic Signature
From the Training Cohort
Kaplan–Meier and univariate Cox regression analyses were
performed on 515 LUAD patients in the training cohort to assess
the prognostic relationship between the intersection DEGs and
overall survival. A total of 244 genes were extracted from the
Kaplan–Meier analysis (Supplementary Table S2), while 294
genes were identified as significant in the Cox regression analysis
(Supplementary Table S3). In summary, the 214 genes at the
intersection of the two results are defined as potential prognostic
genes for the next analysis (Supplementary Table S4).

These genes were then subjected to LASSO Cox regression
analysis, and regression coefficients were calculated. The
coefficient of each gene is illustrated in Figure 3A. When eight
genes were included, the model achieved the best performance
(Figure 3B). These genes and corresponding coefficients are
shown in Table 2.

Prognostic Value of the Eight-Gene
Signature in the Training and Validation
Cohorts
According to the gene expression level, and the risk coefficient of
each gene, the risk score of each patient was calculated, which is a
linear combination of the expression level of each gene weighted
by its multivariate LASSO regression coefficient. The median
risk score was the cutoff value for assigning patients to high-
risk or low-risk groups. The prognostic value of the risk score
was evaluated by comparing the survival differences between the
high-risk group and the low-risk group.

The distribution of risk scores and overall survival status
and the expression profiles of the eight-gene signature of the
patients in the training cohort are plotted in Supplementary
Figure S1A. As shown in the figure, there are more deceased
in high-risk patients, and the survival time is shorter than
that of low-risk patients. The heat map shows that INSL4 was
highly expressed in high-risk patients, whereas KLRB1, INSL4,
ACSM5, SCN7A, P2RX1, MS4A1, STAP1, and IKZF3 were
under-expressed in high-risk patients. Also, we examined the
performance of this eight-gene signature in predicting overall

TABLE 1 | Clinical characteristics of patients involved in the study.

Characteristics Training cohort
(TCGA-LUAD, n = 515)

Validation cohort
(GSE72094, n = 442)

Age at diagnosis, years

<60 138 (26.80%) 60 (13.57%)

≥60 363 (70.49%) 361 (81.67%)

Unknown 14 (2.72%) 21 (4.75%)

Gender

Female 269 (52.23%) 240 (54.30%)

Male 232 (45.05%) 202 (45.70%)

Unknown 14 (2.72%) 0 (0.00%)

Stage

I 268 (52.04%) 265 (59.95%)

II 119 (23.11%) 69 (15.61%)

III 80 (15.53%) 63 (14.25%)

IV 26 (5.05%) 17 (3.85%)

Unknown 22 (4.27%) 28 (6.33%)

T classification

T1 171 (33.20%) NA

T2 263 (51.07%) NA

T3 45 (8.74%) NA

T4 19 (3.69%) NA

Unknown 17 (3.30%) NA

N classification

N0 323 (62.72%) NA

N1 94 (18.25%) NA

N2 70 (13.59%) NA

N3 2 (0.39%) NA

Unknown 26 (5.05%) NA

M classification

M0 332 (64.47%) NA

M1 25 (4.85%) NA

Unknown 158 (30.68%) NA

Tumor location

Right 295 (57.28%) NA

Left 194 (37.67%) NA

Unknown 26 (5.05%) NA

Race

White NA 399 (90.27%)

Other NA 18 (4.07%)

Unknown NA 25 (5.66%)

Kras_status

Wild type NA 288 (65.16%)

Mutant NA 154 (34.84%)

Unknown NA 0 (0.00%)

Egfr_status

Wild type NA 395 (89.37%)

Mutant NA 47 (10.63%)

Unknown NA 0 (0.00%)

Stk11_status

Wild type NA 374 (84.62%)

Mutant NA 68 (15.38%)

Unknown NA 0 (0.00%)

Tp53_status

Wild type NA 331 (74.89%)

Mutant NA 111 (25.11%)

Unknown NA 0 (0.00%)
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FIGURE 2 | Identification of the intersection DEGs among immune and stromal scores in LUAD. (A) Heatmap of the DEGs of immune scores of top half (high score)
vs. bottom half (low score). Cutoff: | log2(fold-change)| > 1, FDR < 0.05. (B) Heatmap of the DEGs of stromal scores of top half (high score) vs. bottom half (low
score). Cutoff: | log2(fold-change)| > 1, FDR < 0.05. (C,D) Venn diagrams showing the number of intersection-upregulated DEGs (C) or intersection-downregulated
DEGs (D) in stromal and immune score groups. Heatmaps were drawn based on the average method and correlation distance measurement method. Genes with
higher expression are shown in red, lower expression are shown in blue, genes with the same expression level are in white. DEGs, differentially expressed genes;
LUAD, lung adenocarcinoma; FDR, false discovery rate.

survival in the validation cohort. As shown in Supplementary
Figure S1B, in the high-risk group, more death happened, and
shorter survival time gained. The pattern is consistent with that
in the training cohort.

Kaplan–Meier survival analysis showed that patients in the
high-risk group were associated with a weak overall survival trend
(p = 0.00014, Figure 4A) and an unfavorable 5-year prognosis

(p < 0.0001, Figure 4B) in the training cohort. To confirm the
efficacy of the eight-gene signature in predicting prognosis in
LUAD patients, we examined the eight-gene signature in the
validation cohort. Using the same classification method as before,
the patients were divided into high-risk and low-risk groups
according to the median risk score. Consistent with previous
results, patients in the high-risk groups showed significantly
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FIGURE 3 | Establishment of prognostic gene signature by LASSO regression analysis. (A) LASSO coefficient profiles of the 214 genes in the training cohort. (B) A
coefficient profile plot was generated against the log (lambda) sequence. Selection of the optimal parameter (lambda) in the LASSO model for the training cohort.
LASSO: the least absolute shrinkage and selection operator Cox regression model.

TABLE 2 | Genes in the prognostic gene signatures.

Gene symbol Description Risk coefficient

KLRB1 Killer Cell Lectin Like Receptor B1 −0.028631486

INSL4 Insulin Like 4 0.034674929

ACSM5 Acyl-CoA Synthetase Medium Chain
Family Member 5

−0.056685884

SCN7A Sodium Voltage-Gated Channel Alpha
Subunit 7

−0.007784834

P2RX1 Purinergic Receptor P2X 1 −0.018937089

MS4A1 Membrane Spanning 4-Domains A1 −0.025293606

STAP1 Signal Transducing Adaptor Family
Member 1

−0.012745735

IKZF3 IKAROS Family Zinc Finger 3 −0.020045496

worse prognosis (p < 0.0001, Figure 4C) and 5-year outcome
(p < 0.0001, Figure 4D) than patients in the low-risk groups.

Univariate and multivariate Cox analyses were performed
in the training and validation cohorts based overall survival,
using the available co-variables including risk score, age, gender,
T classification, N classification, tumor stage, tumor location,
race, KRAS status, EGFR status, STK11 status, or TP53 status
to confirm whether the prognostic capacity of our eight-
gene signature was independent from the clinico-pathologic
characteristics. In the training cohort, both univariate and
multivariate Cox regression analyses indicated that the eight-gene
signature was a powerful variable associated with overall survival
(HR 5.002, 95% CI 2.836–8.823, p < 0.001, and HR 4.897, 95% CI
2.626–9.133, p < 0.001, respectively; Figure 5A). Consistent with
that in the training cohort, the eight-gene signature also displayed
pronounced capability in the validation cohort in predicting

overall survival (Figure 5B). These results proved that the eight-
gene signature was to be a strong and independent variable.

Subsequently, we conducted ROC analyses to assess how the
eight-gene signature could behave in predicting prognosis. As
shown in Figure 6A, the AUC of the eight-gene risk score
model performed on overall survival in the training cohort
was 0.648, which was equal to tumor stage, but superior to
those of age, gender, T classification, N classification, and tumor
location (0.529, 0.513, 0.595, 0.634, and 0.489, respectively).
When combined risk score and tumor stage, the AUC could reach
0.692. Consistently, in the prediction model of overall survival
predicted in the validation cohort, the eight-gene signature risk
score also showed the best ability with AUC = 0.647, among other
factors (Figure 6B). When putting risk score and tumor stage
together for a diagnosis, the AUC was 0.680.

TMB Correlation With the Gene
Signature Risk Score
Furthermore, we performed correlation analyses to assess the
relationship between the eight-gene signature and LUAD TMB.
Spearman test was used to assess the correlation between the
TMB score and the risk score. The results showed that the
eight-gene signature was significantly positively correlated with
TMB (R = 0.26, p = 4.8e−09, Supplementary Figure S2),
further, revealing that the risk score could potentially reflect the
characteristics and performance of TMB in tumors.

Gene Set Enrichment Analysis With the
Eight-Gene Signature
Given the negative correlation between the level of the eight-
gene signature risk score and the prognosis of LUAD patients,
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FIGURE 4 | Kaplan–Meier survival analyses based on the eight-gene signature. (A) Training cohort based on overall survival. (B) training cohort based on 5-year
overall survival. (C) Validation cohort based on overall survival. (D) Validation cohort based on 5-year overall survival. The differences between the two curves were
determined by the two-side log-rank test with a p value < 0.05. The odds ratio (OR) and its 95% confidence interval (95% CI) were calculated accordingly. The
number of patients at risk is listed in the middle of each plot.

the GSEA was conducted between the high and the low-
risk groups. As displayed in Figure 7A and Supplementary
Tables S5, S6, gene sets of HALLMARK collection were
mainly enriched in pathways related to MYC, E2F, G2M, and
oxidative phosphorylation in the high-risk group, and KRAS and
inflammatory response in the low-risk group. For C7 collection
defined by the Molecular Signatures Database, gene sets related to
TNF, CD8, IL6, and CD4 were significantly enriched in the high-
risk score group, whereas enrichments regarding mononuclear,
CD4, CD8, macrophage, and FOXP3 were mainly seen in the low-
risk score group (Figure 7B and Supplementary Tables S7, S8).

Correlation of Risk Score With the
Proportion of Tumor-Infiltrating Immune
Cells (TICs)
To further check the correlation between the risk score and
the immune microenvironment, as shown in Supplementary
Figure S3, we used the CIBERSORT algorithm to analyze
the proportion of tumor-infiltrating immune subpopulations
and constructed 22 immune cell profiles in LUAD samples.
Combining the results of correlation analysis (Figure 8A and
Supplementary Table S9) and difference analysis (Figure 8B),
a total of 13 TICs were associated with the eight-gene signature
risk score (Figure 8C). Among them, NK cells resting, plasma
cells, B cells naive, neutrophils, dendritic cells activated, NK
cells activated, and macrophages M0 were positively correlated
with risk score, whereas B cells memory, Mast cells resting,
macrophages M1, dendritic cells resting, T cells gamma delta, and
T cells CD8 were negatively correlated with risk score.

Moreover, to assess the prognostic value of each TIC, we
performed univariate Cox and Kaplan–Meier analyses based

on the 22 TICs’ infiltration volume and survival data, finding
Mast cells resting, neutrophils, B cells naive, and macrophages
M0 pronounced predicting the overall survival in Kaplan–Meier
analyses (Figure 9A), whereas Mast cells activated, Mast cells
resting, B cells naive, dendritic cells activated, and T cells
regulatory (Tregs) have a significant prognosis value in the
univariate Cox regression (Figure 9B). From these survival
analyses results, Mast cells resting and B cells naive had potential
prognostic value for LUAD patients.

The aforementioned results revealed that Mast cells resting
and B cells naive show not only prognostic value in LUAD but
also have significant correlations with the risk score. Thus, the
significant infiltration with Mast cells resting and B cells naive
potentially acted as one of the critical factors that the eight-gene
signature holds to influence the outcome of LUAD pronounced.

DISCUSSION

In the present study, we built a LUAD prognostic signature by
comprehensively analyzing the TCGA and GEO. By discovering
the DEGs among tumor microenvironment and investigating
the potential prognosis of DEGs using Kaplan–Meier, univariate
Cox analyses, and the LASSO Cox regression model in the
training cohort, we obtained an eight-gene signature that was
pronounced related to outcome. By applying this signature
in the training cohort, statistical significance was observed in
univariate and multivariate Cox analysis, ROC analysis, and
Kaplan–Meier curve between high-risk and low-risk groups. The
prognostic ability of the eight-gene signature was also validated
in the validation cohort, showing the broadness and effectiveness
of the eight-gene signature in predicting LUAD prognosis.
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FIGURE 5 | Forest plot summary of Cox analyses of prognosis. Univariate (upper) and multivariate (bottom) analyses based on the eight-gene signature and
clinical covariates in training cohort based on overall survival (A) and validation cohort based on overall survival (B). The colored solid squares represent the hazard
ratio (HR), and the transverse lines through HR represent 95% confidence intervals (CI). All p values were calculated using the Cox regression hazards analysis.

Then the GSEA and immune infiltration analyses revealed the
significant pathways that linked to the eight-gene signature
and the critical role that Mast cells resting and B cells naive
potentially played supporting the eight-gene signature holds to
influence the outcome of LUAD significantly. For research in
the gene signature of LUAD, we are the first to combine tumor
microenvironment scores, double screening (Kaplan–Meier and
univariate Cox methods), and LASSO for training and introduce
TMB for gene signature examination. What is more, we found
vital immune cells that regulate the LUAD outcome among our
eight-gene signature, 22 TICs, and the prognosis of 22 TICs. Such
work we have done aimed to guide future research in LUAD.

After we constructed the eight-gene signature, we first
confirmed its capacity to distinguish the prognosis of patients
effectively. As shown in Supplementary Figure S1A, the high-
risk zone not only counted more deaths but also the patients in it
presented a shorter survival time than that in the low-risk zone.
Moreover, the heatmap indicated that each of these eight genes
had a differential expression pattern between the low- and high-
risk groups. Importantly, this eight-gene signature also owned

pronounced performance in the validation cohort for predicting
overall survival (Supplementary Figure S1B).

In addition, we examined the prognostic value of the eight-
gene signature by Kaplan–Meier analysis in the training cohort
and the validation cohort based on overall survival and 5-year
outcome, finding all of its predicting ability to be significant
in LUAD patients (Figure 4). Furthermore, univariate and
multivariate Cox analyses were performed in the two cohorts to
confirm whether our eight-gene signature can be independent
from other variables in predicting LUAD outcome. As plotted in
Figure 5, regardless of the training cohort or validation cohort,
and whether it is univariate or multivariate Cox regression
analysis, the variable of risk score was always statistically
significant. The results verified the predictive ability of the risk
score and its independence.

To further assess the predictive power of this eight-gene
signature, ROC analysis was conducted. In diagnostic tests,
we can use AUC to check the accuracy and determine the
predictive capacity of biomarkers (Hanley and McNeil, 1982).
ROC analysis indicated that the AUC of the eight-gene signature
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FIGURE 6 | Receiver operating characteristic (ROC) analysis of the eight-gene signature risk score. ROC analysis of the sensitivity and specificity of the prognosis
prediction by the eight-gene risk score, age, gender, race, T classification, N classification, tumor stage, tumor location, KRAS status, EGFR status, STK11 status,
TP53 status, or risk score + tumor stage in training cohort (A) and validation cohort (B) based on overall survival. AUC, area under the ROC curve.

stayed superior to other factors and could enhance the diagnostic
ability when combined with the tumor stage (Figure 6). These
ROC results again suggested that our signature might strengthen
the predictive accuracy of prognosis in LUAD.

Our signature was composed of eight genes, which were
INSL4, SCN7A, STAP1, P2RX1, IKZF3, MS4A1, KLRB1, and
ACSM5, respectively. In the signature model, INSL4 was
the unfavorable genes for the outcome, whereas other genes
presented protective function on the prognosis of LUAD patients.
INSL4 is a member of the insulin/IGF/relaxin superfamily
that is restrictively expressed in the placenta (Laurent et al.,
1998; Lu et al., 2005; Pollak, 2012). INSL4 upregulation was
previously identified in a breast cancer cell subclone with
increased invasiveness through in vitro selection (Brandt et al.,
2002, 2005). INSL4 was also discovered as a novel target
downstream of LKB1 deficiency (Yang et al., 2018). INSL4
signaling is a potential vital for LKB1-inactivated non-small-
cell lung carcinoma, and its introduction helps to develop
novel and effective anti-tumor strategies (Yang et al., 2018).
SCN7A encodes a voltage-dependent sodium channel of the
excitable membrane, and it is reported to be downregulated in
colorectal carcinoma at the mRNA level (Ostasiewicz et al., 2016).
Recently, a new comprehensive bioinformatics study showed
that low expression of SCN7A in non-small-cell lung cancer
patients was associated with poor survival (Liu Y. et al., 2020).
STAP1 is a relatively unknown protein and recruits signaling
proteins to receptor tyrosine kinases (Steeghs et al., 2018).
STAP1 is reported to be a docking protein downstream of Tec
protein tyrosine kinase, which is involved in the B-cell receptor

signaling (Steeghs et al., 2018). However, the involvement of
the STAP1 protein in cancer thus far remains elusive. The
P7 receptor family consists of seven ionotropic P2X receptors
(Adriaensen and Timmermans, 2004). P2X receptors have
been specifically described in many immune cells (including
platelets, lymphocytes, and macrophages), where P2X receptors
are involved in the regulation of multiple functions, including
platelet aggregation, apoptosis, migration, and cytokine release
(Wareham et al., 2009). Wareham et al. (2009) confirmed the
presence of functional P2RX1 in LAD2 cells and human lung
mast cells. With the development of leukemia, the expression of
P2RX1 in splenic macrophages increases. However, how P2RX1
affects lung cancer remains unclear (Chen et al., 2014). IKZF3
is a member of the Ikaros family of transcription factors, which
are the crucial regulators of lymphoid differentiation (Menezes
et al., 2013). IKZF3 expressions were associated with longer
median progression-free survival and overall survival in multiple
myeloma patients (Pourabdollah et al., 2016). IKZF3 expression
also was a favorable indicator of multiple myeloma patients
who received lenalidomide-based therapy (Pourabdollah et al.,
2016). The IKZF3 mutation has been shown to exist in the
chronic phase and blast crisis of chronic myeloid leukemia,
indicating the potential role of this gene in myeloid leukemia
(Menezes et al., 2013). Early lung cancer was found to have
high IKZF3 expression, which indicates that IKZF3 induction
often occurs before the clinical detection of lung cancer (Li
et al., 2014; Terada and Liu, 2014). The MS4A1 gene located on
11q12 encodes a member of the membrane-spanning 4 domains,
subfamily A, B lymphocyte antigen CD20, which plays a role
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FIGURE 7 | Gene set enrichment analysis. (A) Top enriched gene sets annotated by the HALLMARK collection between the high- and low-risk groups in the training
cohort. (B) Top enriched gene sets annotated by the C7 collection between the high- and low-risk groups in the training cohort. Only gene sets with | NES| > 1,
NOM p-val < 0.05, and FDR q-val < 0.25 were considered significant.

in the differentiation of B lymphocytes into plasma cells (Tam
et al., 2008). Also, it has been reported that MS4A1 plays a vital
role in the apoptosis of B-cell lymphoma Ramos cells (Kawabata
et al., 2013). In one recent comprehensive bioinformatics
research, MS4A1 was confirmed to be involved in the tumor
microenvironment and TMB, and low expression of MS4A1
was related to the poor prognosis of ovarian cancer (Fan et al.,
2020). A study confirmed that the expression of CD20 stromal
lymphocytes led to the occurrence of MS4A1 dysregulation in

asbestos-related lung squamous cell carcinoma (Wright et al.,
2012). The KLRB1 gene encodes the CD161 receptor in natural
killer cells. The gene is also expressed in the NKT cells (Pleshkan
et al., 2007). The expression of KLRB1 was most frequently
associated with favorable outcomes (Gentles et al., 2015). KLRB1
has been shown to play an essential prognostic role in pan-
cancer research (Gentles et al., 2015). Gentles et al. (2015)
found that expression of favorably prognostic gene KLRB1 largely
reflects tumor-associated leukocytes. Also, Pleshkan reported
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FIGURE 8 | Correlation of TICs proportion with eight-gene signature risk score in the training cohort. (A) Only significantly correlated TICs were plotted. The blue line
in each plot was fitted linear model indicating the proportion tropism of the immune cell along with risk score. The shade around the blue line represents the 95%
confidence interval. The Spearman coefficient was used for the correlation test. (B) The violin plot shows the ratio differentiation of 22 kinds of immune cells between
LUAD tumor samples with the low- or high-risk group to the median of risk score, and the Wilcoxon rank sum was used for the significance test. (C) Venn plot
displaying 13 kinds of TICs correlated with risk score co-determined by difference and correlation tests shown in violin and scatter plots, respectively. P value < 0.05
is the cutoff. TIC, tumor-infiltrating immune cell; LUAD, lung adenocarcinoma.

that KLRB1 gene expression was suppressed in tumor tissues
in 68% of patients with non-small-cell lung cancer in his study
(Pleshkan et al., 2007). ACSM5 is a protein-coding gene. Among

its related pathways are Cytochrome P450 – arranged by substrate
type and metabolism. Gene Ontology annotations related to this
gene include GTP binding and butyrate-CoA ligase activity. An
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FIGURE 9 | Identification of the prognostic value of each TIC based on the 22 TICs’ infiltration volume and survival data. (A) Kaplan–Meier survival curves. Only
curves with p value < 0.05 in the log-rank test were plotted. The odds ratio (OR) and its 95% confidence interval (95% CI) were calculated accordingly. (B) Univariate
Cox analysis based on each of the 22 TICs’ infiltration volume and overall survival. All p values were calculated using the Cox regression hazards analysis. *P value is
statistically significant.

important paralog of ACSM5 is ACSM4 (Stelzer et al., 2016). The
role of ACSM5 in tumor progression is still in the initial stage of
research and is worthy of further exploration. In the field of lung
cancer or oncology, the genes in our eight-gene signature have
not been extensively studied. However, the eight-gene signature
has a significant role in predicting and diagnosing LUAD in our
research, indicating it or each gene in it may be the potential
specific directions for future research on LUAD.

Tumor mutational burden is defined as the total number of
non-synonymous mutations in tumors, and it is an emerging
independent indicator of the outcome of immunotherapy
treatment of multiple tumor types (including lung cancer)
(Carbone et al., 2017; Chalmers et al., 2017; Le et al., 2017;
Yarchoan et al., 2017; Rizvi et al., 2018). A high mutation
load correlates with an immunogenic tumor microenvironment
with increased expression of tumor-specific neo-antigens that
can be targeted by activated immune cells (Schumacher and
Schreiber, 2015; Kim and Chen, 2016). According to reports, the
relationship between TMB and prognosis of many cancers is not
clear, and there are still many unknowns (Owada-Ozaki et al.,
2018; Wu et al., 2019). For most cancer histologies, a higher
TMB is pertinent to improved survival in patients receiving
immune checkpoint inhibitors, although the definition of high
TMB, or the cutpoints, varies markedly between diverse tumors
(Goodman et al., 2017; Lin et al., 2020). Returning to our research,
we found that the risk score had a weak relationship with TMB
(p = 4.8e−09, R = 0.26, Supplementary Figure S2), which further
measured the connection between our eight-gene signature and
LUAD, and also provided more potential breakthroughs and
inspiration for tumors TMB targeted therapies.

The GSEA found that gene sets enriched in HALLMARK
collection in the high-risk group mainly related to MYC, E2F,
and G2M checkpoint. For the C7 collection, we found that
CD4, CD8, TNF, and IL 6 were mostly seen in the enriched
gene sets. MYC is a family of regulatory genes and proto-
oncogenes that encode transcription factors. It is often amplified
in cells grown from lung tumors, and its transfection can
enhance the in vitro proliferation and agar cloning of human
small cell lung cancer cells (Barr et al., 2000). E2F is a group
of genes that encodes a family of transcription factors (TF)
in higher eukaryotes (Sun et al., 2018). Evidence from cell
lines, mouse models, and human tissues indicates that TFs
are implicated in lung cancer tumorigenesis (Sun et al., 2018).
The G2M DNA damage checkpoint is an important cell cycle
checkpoint in eukaryotes, ensuring that cells will not trigger
mitosis until damaged or incompletely copied DNA is fully
repaired (Lobrich and Jeggo, 2007). Deficient G2M checkpoints
are associated with increased lung cancer risk (Xing et al., 2007).
These results elaborated on the ways and means of eight-gene
signature to participate in LUAD, which can help future targeted
therapy research.

In addition, the TICs’ analysis based on the CIBERSORT
algorithm found that Mast cells resting and B cells naive have
prognostic value in LUAD, and a significant correlation with the
risk score, indicating that the infiltration of Mast cells resting
and B cells naive play potential roles influencing the prognostic
capacity of the eight-gene signature. Mast cells are immune
cells that accumulate in the tumors and their microenvironment
during disease progression (Maciel et al., 2015). Mast cells play an
essential role in type I hypersensitivity and also during the early
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stages of the innate immune response to pathogens (Campillo-
Navarro et al., 2014). Mast cells can trigger different mechanisms
that contribute to the homeostasis and adequate function of the
lungs (Campillo-Navarro et al., 2014). In 2000, Imada reported
that stage I LUAD patients had an increased number of mast
cells in tumor areas around blood vessels, and those patients
with higher mast cell counts had a worse prognosis (Imada et al.,
2000). B cells infiltrating lung cancer have a unique role in anti-
tumor immunity. Recent studies have shown that proliferating
B cells can be observed in approximately 35% of lung cancers
(Gottlin et al., 2011). Besides, B lymphocytes that infiltrate the
tumor can be observed at all stages of human lung cancer
development (Dieu-Nosjean et al., 2014), and their performance
differs between stage and histological subtype (Banat et al., 2015;
Kurebayashi et al., 2016), indicating that B cells play a crucial
role in the development of lung cancer (Wang et al., 2019).
From our results, Mast cells resting and B cells naive have the
potential to target the eight-gene signature for the treatment of
LUAD, and more efforts need to be implemented to validate our
results further.

Our research also has some limitations. The eight-gene
signature came from retrospective data, and more prospective
data are needed for proving the clinical utility of it. Also, because
of the limited clinical characteristics of patients included in the
TCGA cohort, we could not perform specific clinical subgroup
analyses. Besides, there is currently no wet experimental data
explaining the relationship between these eight genes and their
mechanism in LUAD samples. Therefore, between the eight-gene
signature and the prognosis of LUAD, more effort is needed to
clarify the potential relationship.

CONCLUSION

In conclusion, our research defined a robust eight-gene signature
in LUAD. This signature was related to the prognosis of LUAD
and can accurately identify the prognostic risk of patients.
Notably, we evaluated the reliability and accuracy of the signature
by examining in a validation cohort and determined the crucial
roles of Mast cells resting and B cells naive in the prognosis of the
gene signature, which could potentially promote the development
of new therapies for LUAD treatment.
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Supplementary Figure 1 | Characteristics of the eight-gene signature. (Upper
and middle) The distribution of risk score and patient’s survival time, as well as
status for training cohort based on overall survival (A) and validation cohort based
on overall survival (B). The black dotted line is the median cutoff dividing patients
into low-risk and high-risk groups. (Bottom) Heatmap of the eight-gene
expression profiles in prognostic signature for training cohort based on overall
survival (A) and validation cohort based on overall survival (B).

Supplementary Figure 2 | The correlation between the eight-gene signature and
tumor mutational burden in LUAD. The blue line in each plot was fitted linear model
indicating the proportion tropism of the copy number along with risk score. The
shade around the blue line represents the 95% confidence interval. The Spearman
coefficient was used for the correlation test. LUAD, lung adenocarcinoma.

Supplementary Figure 3 | TIC profile in tumor samples in the training cohort and
correlation analysis. (A) Bar plot showing the proportion of 22 kinds of TICs in
LUAD tumor samples in the training cohort. The column names of the plot were
sample ID. (B) Heatmap showing the correlation between 22 kinds of TICs. The
numeric and shade of each small color box indicate the coefficient between two
kinds of cells. X shape covered coefficient is not statistically significant. The
Pearson coefficient was used for the significance tests. P value < 0.05 is the
cutoff. TIC, tumor-infiltrating immune cell; LUAD, lung adenocarcinoma.

Supplementary Table 1 | Immune and stromal scores of each sample of the
TCGA-LUAD cohort.

Supplementary Table 2 | Two hundred and forty-four genes were significantly
predicting prognosis of LUAD patients by Kaplan–Meier analysis (p < 0.05).

Supplementary Table 3 | Two hundred and ninety-four genes were significantly
predicting the prognosis of LUAD patients by univariate Cox regression analysis
(p < 0.05).

Supplementary Table 4 | Two hundred and fourteen genes were significantly
predicting the prognosis of LUAD patients by both Kaplan–Meier and univariate
Cox regression analyses (p < 0.05).

Supplementary Table 5 | Enriched gene sets in HALLMARK collection in
high-risk group (|NES| > 1, NOM p-val < 0.05, and FDR q-val < 0.25).

Supplementary Table 6 | Enriched gene sets in HALLMARK collection in low-risk
group (|NES| > 1, NOM p-val < 0.05, and FDR q-val < 0.25).

Supplementary Table 7 | Enriched gene sets in C7 collection in high-risk group
(|NES| > 1, NOM p-val < 0.05, and FDR q-val < 0.25).

Supplementary Table 8 | Enriched gene sets in C7 collection in low-risk group
(|NES| > 1, NOM p-val < 0.05, and FDR q-val < 0.25).

Supplementary Table 9 | Correlations of risk score with 22 kinds of TICs.
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