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Sequence alignment is a critical step in many critical genomic studies, such as variant

calling, quantitative transcriptome analysis (RNA-seq), and metagenomic sequence

classification. However, the alignment performance is largely affected by repetitive

sequences in the reference genome, which extensively exist in species from bacteria to

mammals. Aligning repeating sequences might lead to tremendous candidate locations,

bringing about a challenging computational burden. Thus, most alignment tools prefer

to simply discard highly repetitive seeds, but this may cause the true alignment to be

missed. Using maximal approximate matches (MAMs) as seeds is an option, but MEMs

seeds may fail due to sequencing errors or genomic variations in MEMs seeds. Here, we

propose a novel sequence alignment algorithm, named MAM, which can efficiently align

short DNA sequences. MAM first builds a modified Burrows-Wheeler transform (BWT)

structure of a reference genome to accelerate approximate seed matching. Then, MAM

uses maximal approximate matches (MAMs) seeds to reduce the candidate locations.

Finally, MAM applies an affine-gap-penalty dynamic programming to extend MAMs

seeds. Experimental results on simulated and real sequencing datasets show that MAM

achieves better performance in speed than other state-of-the-art alignment tools. The

source code is available at https://github.com/weiquan/mam.
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1. INTRODUCTION

The development of next-generation sequencing (NGS) technologies has led to a rapid decline in
the sequencing cost and had a tremendous impact on genomic research (Morozova and Marra,
2008; Reinert et al., 2015). There has been an intense effort in recent years to develop computational
methods and applications to meet the increasing demands for sequencing data analysis (Flicek
and Birney, 2009). One of these fundamental tasks is sequence alignment. Sequence alignment
is one of the most critical steps necessary to process NGS data, and the alignment accuracy has a
very large impact on downstream applications, such as variant calling (Dalca and Brudno, 2010),
quantitative measurement of RNA-seq (Pepke et al., 2009), eQTL analysis (Wang et al., 2019),
and metagenomic analysis (Breitwieser et al., 2019; Cheng et al., 2020). During the past decades,
many alignment methods have been proposed to improve the efficiency and accuracy of sequence
alignment, including but not limited to Maq (Li et al., 2008a), SOAP (Li et al., 2008b), Bowtie
(Langmead et al., 2009), BWA (Li and Durbin, 2009), and mrsFAST (Hach et al., 2010). With these
developments, the performance of alignment tools has been greatly improved with respect to speed,
sensitivity and accuracy (Li et al., 2009; Schadt et al., 2010; Langmead and Salzberg, 2012; Xiao et al.,
2017). However, aligning repetitive DNA sequences accurately to the reference genome remains a
major issue.
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Repetitive DNA sequences are multiple copies of sequences
with high similarity that occur throughout the genome.
Repetitive DNA sequences are highly abundant in a broad range
of species, from bacteria to mammals. For example, nearly
40% of bacterial genomes and 50% of human genomes are
composed of repetitive sequences (Treangen and Salzberg, 2012).
These repetitive patterns could cause several computational
challenges for sequence alignment, which would result in loss
of information related to essential biological phenomena. From
a computational perspective, repeats may bring out ambiguous
candidate positions, which will decrease alignment speed. In
recent years, several alignment tools use maximal exact matches
(MEMs) or super maximal exact matches (SMEMs) to reduce the
number of candidate positions (Liu and Schmidt, 2012; Li, 2013).
However, these approaches may reduce the sensitivity in complex
genomic regions.

In this article, we build a novel index, named MAM-
index, for a reference genome based on a modified Burrows-
Wheeler transform (BWT) structure. MAM-index combines the
conventional FM-index and an auxiliary data structure, which
accelerates approximate string matching. We propose a MAMs
based seeding algorithm to calculate the candidate locations. We
present a novel sequence alignment tool, named MAM, that
can efficiently align highly repetitive DNA sequences by using
maximal approximate matches (MAMs) as seeds. To evaluate
the performance of MAM, we performed alignment experiments
on both simulated and real datasets, and compared our results
with those of Bowtie and BWA-MEM. Experiments on simulated
and real sequencing datasets show that MAM achieves better
performance in speed than the other alignment programs.

2. MATERIALS AND METHODS

2.1. Overview of MAM
MAM uses a hierarchical index (MAM-index), which consists
of two types of indexes: a global index (global FM-index)
and numerous local indexes (local FM-indexes). MAM follows
the canonical seed-and-extend paradigm. In the seeding stage,
it initially seeds an alignment with exact matches of length
linit via the global FM-index. To reduce ambiguous candidate
locations caused by highly repetitive seeds, we introducemaximal
approximate matches as seeds to re-seed all initial seeds with
more than m occurrences. The overview of MAM seeding is
shown in Figure 1: (1) Search a linit = 20 bp initial seed based
on the global FM-index, and obtain global suffix array interval
[bg, ed). (2) Find the local FM-index that corresponds to suffix
array interval [bg, ed). (3) Use local FM-index to obtain the
lext = 16 bp extended seed. (4) Repeat 3 until the seed is
not extensible. After the seeding stage, we use affine-gap-penalty
dynamic programming (DP) to extend all MAMs seeds with no
more thanm occurrences, and perform the best alignment.

2.2. Construction of the MAM-Index
The structure of the MAM-index consists of two parts: a global
index (global FM-index) and numerous local indexes (local FM-
indexes). A conventional FM-index is employed as the global
index part of the MAM-index. The FM-index was proposed by

Algorithm 1: genPred

Input: A reference genome sequence ref, conventional
FM-index bwt, i-th iteration seed seedi, and min
repeat numbermin_rep

Output: Predecessor sequence set S
1 S← ∅
2 [bgn, end]← backwardSearch (bwt, seedi)
3 // the number of repetitions in the reference genome is

greater thanmin_rep
4 if end − bgn+ 1 ≤ min_rep then
5 for i← bgn to end do
6 p← bwtToSa (bwt, i) // convert i to the reference

position
7 S← S ∪ {ref [p : p− lext]}

8 end

9 end

10 return S

Paolo Ferragina and Giovanni Manzini in 2000 (Ferragina and
Manzini, 2000). The FM-index is a self-indexing index based
on the Burrows-Wheeler transform (BWT), and it can be used
to efficiently find the occurrences of a pattern in the case of
low RAM. Below, we will focus on the construction of the
local index.

The local index consists of a BWT-like data structure
(sBWT) and a relation array (RA). The sBWT is a variation
of the BWT, which is used to index multiple strings of
equal length. Given a seed, we employ an sBWT to
index predecessor sequences and successor sequences
of the seed and a RA to store the relation information
between successor sequences and predecessor sequences of
the seed.

2.2.1. Construction of the sBWT

2.2.1.1. Building predecessor and successor sets
Given the i-th iteration seed si, which occurs more than k times
in the reference genome sequence, the lext length predecessor
sequences of si are the lext length predecessors of seedi at all
occurrences of si, denoted pred(si, lext). Similarly, the lext length
successor sequences of si are the lext length successors of si at all
occurrences of si, denoted succ(si, lext).
The predecessor sequence set construction algorithm is shown in
Algorithm 1. Similarly, the successor sequence set construction
algorithm can be implemented by modifying the code for
fetching local sequences from the reference genome sequence. To
better illustrate the algorithm, we use a 140 bp reference genome
sequence as an example; see Figure 2.

In Figure 2, sequence CGACTA marked in red is an initial
iteration seed with 7 occurrences in the 140 bp reference
genome. The predecessor sequences and successor sequences
of CGACTA are shown in Figure 3A. The L-Ext column
lists the predecessor sequences of CGACTA, and the R-Ext
column lists the successor sequences of CGACTA. The Pos
sub-column lists the position of the sequence in the reference
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FIGURE 1 | Overview of maximal approximate match seeding.

genome sequence. For duplicate sequences, only one copy of
the duplicate sequences is stored in the predecessor sequence
set; see Figure 3B. In Figure 3B, the local sequence TCAT
in L-Ext

2.2.1.2. Building sBWT for predecessor and successor sets
The sBWT of predecessor and successor sequences is shown in
Figures 4A,B, respectively. The construction process of sBWT
is similar to that of the Burrows-Wheeler matrix. The i-th
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FIGURE 2 | Example 140 bp length reference sequence.

Algorithm 2: buildSbwt

Input: A sorted set S of n sequences of equal length l
Output: sBWT

1 n_rot← l
2 // S is sorted in dictionary order, and indexes of sequences

in S are stored in SA 0

3 SA 0← sort (S)
4 for i← 0 to n do

5 sBWT 0[i]← S[SA 0[i]]
6 end

7 for rot← 1 to n_rot do
8 SA rot← radixSort (SA rot−1, S)
9 for i← 0 to n do

10 sBWT rot[i]← S[SA rot[i]]
11 end

12 end

13 return sBWT

iteration transform is performed by sorting local sequences of i
rotations in lexicographic order. The L-Seq column in Figure 4A

is the predecessor sequences set, and Rot0 is the 0-th iteration
transform of L-Seq. The construction algorithm of the sBWT is
shown in Algorithm 2.

2.2.2. Construction of the Relation Array
sBWT can be used to find the occurrences of predecessor and
successor sequences. However, the searched predecessor and
successor sequences may not be proper paired, which may lead
to ambiguous seed extension. For this reason, we use a relation
data structure (RA) to store relation information between the
predecessor and successor sequences.

The RA consists of LtoRel and Rel. LtoRel[i] stores the initial
index of the predecessor sequence in Rel. Given an i-th iteration
seed si and a next iteration seed si+1 = pred(si) + si + succ(si),

if si+1 occurs in the reference genome sequence, then pred(si)
and succ(si) can be searched via sBWT. Supposing that pred(si)
is rankpred ranked in all predecessor sequences and succ(si) is
ranksucc ranked in all successor sequences, ranksucc should be a
value of LtoRel[j] for j in the range [rankpred, rankpred + 1). Rel[i]
stores the pointer to si+1 in theMAM-index.With Rel[i], the seed
jumps to the next iteration. The RA of seed CGACTA is shown
in Figure 5.

2.3. Alignment With MAM
MAM follows the canonical seed-and-extend paradigm. MAM
generates every x nt exact match seeds in reads. If seeds occur
more than k times, MAM iteratively extends seeds by finding
approximate matches in both directions until the occurrences of
seeds are less than k or seeds are not extensible. After seeding,
MAM generates locations of seeds. All locations are sorted in
ascending order, and all locations whose distances are less than
d are placed within the same chain. Then, all chains are sorted
by seeds number in descending order. After chains are sorted,
MAM performs a striped Smith-Waterman algorithm for the top
k chains. We choose the best score location as the best alignment.

The algorithm of alignment with MAM is shown
in Algorithm 3. In Algorithm 3, the function
backwardSearchGlobal is a conventional backward search
algorithm, and the function backwardSearchLocal is shown
in Algorithm 4. C (sbwti, c) is a function that contains the
number of occurrences of lexically smaller characters in the i-th
rotation sBWT. The function Occ (sbwti, k, c) is the number of
occurrences of character c in the sbwti[1 : k].

3. RESULTS

We have implemented MAM to align short reads to a reference
genome. The default output format is SAM format. MAM is
distributed under the GNU General Public License (GPL). The
source code is available at https://github.com/weiquan/mam.
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FIGURE 3 | (A) Predecessor sequences and successor sequences of CGACTA. (B) Filter duplicated sequences in predecessor sequences and successor sequences.

The performance of MAM has been compared with those
of the he most widely used alignment alignment tools BWA-
MEM (version 0.7.17) and BOWTIE2 (version 2.3.5). All aligners
were tested on two simulated datasets and two high-throughput
sequencing (HTS) datasets to assess their speed, sensitivity,
and accuracy. All benchmarks were conducted on a desktop
computer with 32 GB of RAM and a 3.30 GHz Intel i9-
7900X processor with a total of 10 CPU cores running Linux
Ubuntu 18.04.

3.1. Evaluation on Simulated Datasets
We simulated 4 million 100 and 150 bp Illumina-like reads from
the human genome GRCh38 using Mason2 (Holtgrewe, 2010)

with a 0.1% SNP mutation rate, a 0.02% indel mutation rate and
a 2% sequencing base error rate. We ran MAM, BWA-MEM
and BOWTIE2 with the default settings. A read is defined as a
mapped read if the read is mapped with at least one alignment.
An alignment is defined as a good alignment if the alignment
position is the true position. The sensitivity and accuracy are
defined as the following percentages:

sensitivity = #mapped/#reads× 100%

accuracy = #good/#mapped× 100%

Table 1 shows that BWA-MEM (100.00%) is more
sensitive than MAM (99.90–99.97%) and BOWTIE2
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FIGURE 4 | (A) sBWT of predecessor sequences. (B) sBWT of successor sequences.

FIGURE 5 | Relation array of seed CGACTA.

(99.01–99.39%) on both the sim-100 and sim-150 dataset.
BWA-MEM(95.06–96.24%) is the most accurate on both
the sim-100 dataset and the sim-150 dataset. With respect
to speed, MAM is the fastest on both the sim-100 dataset
and sim-150 dataset. On memory, BOWTIE2 uses (3.22–
3.23 GB), smaller than BWA-MEM (5.26–5.39 GB), and
MAM (16.54–16.59 GB).

3.2. Evaluation on HTS Datasets
We benchmarked all aligners on two HTS datasets to assess
the performance on real datasets. We mapped 4 million 100
bp reads sequenced with the Illumina HiSeq 2000 (SRA ID:
ERR037900) and 4 million 148 bp reads sequenced with the
Illumina HiSeq 2000 (SRA ID: SRR1766443) to the human
reference genome (GRCh38). All aligners were run with the
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Algorithm 3: Alignment with MAM

Input: AMAM-index Index, read sequence Read, and
parametermax_loc, the max locate number

Output: Suffix array interval
1 // Initialization
2 l0 ← initial seed length
3 l1 ← extend length
4 n← len(Read)
5 gBWT ← getGlobal(Index)
6 for i← 0 to n do

7 x← i
8 y← i+ l0
9 s← Read[x : y]
10 [bg, ed]← backwardSearchGlobal (gBWT, s)
11 while ed − bg > max_loc and x− l1 > 0 and

y+ l1 < n do

12 sBWTpred, sBWTsucc ← getLocal(Index, s)

13 [bg0, ed0]← backwardSearchLocal
(sBWTpred,Read[x− l1 : x])

14 [bg1, ed1]← backwardSearchLocal
(sBWTsucc,Read[y : y+ l1])

15 // check whether seed could be extensible in both
directions if checkPairing
(Index, bg0, ed0, bg1, ed1) then

16 x← x− l1
17 y← y+ l1
18 s← Read[x, y]
19 // convert local index interval to global index

interval
20 [bg, ed]← localToGlobal (Index,

s, bg0, ed0, bg1, ed1)
21 end

22 end

23 aln_len← aln_len+ 1

24 end

25 return [bg, ed]

default settings. As the true alignment locations of reads are
not known in real datasets, we define that an alignment is a
good alignment if the alignment score between the read and the
reference is higher than 85% of the highest score (e.g., if the
alignment score of a 100 bp read is higher than 85, it is regarded
as a perfect alignment).

The results are shown in Table 2. Table 2 shows that
MAM (95.89%) is the most accurate on the real-100 datasets,
and BOWTIE2 (97.32%) is the most accurate on the real-
148 datasets. BWA-MEM (99.51–99.99%) is the most
sensitive on both the real-100 and real-148 datasets. With
respect to speed, MAM (8m59s) is the fastest on the real-
100bp dataset, and BWA-MEM (21m57s) is the fastest on
the real-148 dataset. On memory, BOWTIE2 uses (3.22–
3.23 GB), smaller than BWA-MEM (5.24–5.39 GB), and
MAM (16.52–16.59 GB).

Algorithm 4: backwardSearchLocal

Input: A sBWT sbwt of multiple sequences of equal
length l and sequence seq of length l

Output: Interval of sBWT
1 for i← 0 to l do
2 rot = i
3 aln_len = 0
4 while bg < ed and aln_len < l do
5 c← seq[l− 1− rot]

6 bg ←C (sbwtrot , c) + Occ (sbwtrot , bg, c)

7 ed←C (sbwtrot , c) + Occ (sbwtrot , ed, c)
8 rot← (rot + 1) (mod l)
9 aln_len← aln_len+ 1

10 end

11 end

12 return [bg, ed]

TABLE 1 | Evaluation on simulated data.

Program
sim-100 sim-150

Sen (%) Acc (%) Time Mem Sen (%) Acc (%) Time Mem

MAM 99.90 94.65 12m28s 16.54GB 99.97 95.96 23m13s 16.59GB

BWA-MEM 100.00 95.06 16m20s 5.39GB 100.00 96.24 39m43s 5.26GB

BOWTIE2 99.01 93.88 22m56s 3.22GB 99.39 95.28 25m46s 3.23GB

Sen, alignment sensitivity; Acc, alignment accuracy; Mem, the peak memory usage of

the tool.

TABLE 2 | Evaluation on real data.

Program
real-100 real-148

Sen (%) Acc (%) Time Mem Sen (%) Acc (%) Time Mem

MAM 99.83 95.89 8m59s 16.52GB 98.85 96.21 24m37s 16.59GB

BWA-MEM 99.99 95.87 18m18s 5.39GB 99.51 96.27 21m57s 5.24GB

BOWTIE2 99.62 94.54 13m37s 3.22GB 98.11 97.32 24m29s 3.23GB

Sen, alignment sensitivity; Acc, alignment accuracy; Mem, the peak memory usage of

the tool.

4. DISCUSSION

Enormous amounts of short read aligners have been developed
for fast and accurate alignment of reads to a reference genome.
However, aligning repetitive DNA sequences to the reference
genome is still a concern. Some of the aligners employ
MEMs seeds to reduce candidate locations in repetitive regions.
However, MEMs seeds may fail due to genomic variations and
sequencing errors. To this purpose, we use MAMs seeds to
filter candidate locations in the seeding stage. Although MAMs
seeds could be searched via the conventional FM-index, it
is ineffective.

Herein, we propose a variation FM-index (MAM-index) to
search MAMs seeds quickly and present a short read alignment
tool (MAM). We have demonstrated the performance of MAM
on aligning sequences to the human genome, and compared
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it with the most widely used alignment tools, BWA-MEM and
BOWTIE2. The result shows MAM is more efficient than BWA-
MEM and BOWTIE2 with similar accuracy and sensitivity. In
addition, accuracy and sensitivity of MAM could be improved
by using shorter initial seed length, which means MAM has
the potential to align sequences to complex genomic regions.
Although MAM requires more memory than BWA-MEM and
BOWTIE2, memory is not a practical concern on modern
computer servers.
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