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Pseudomonas aeruginosa is an opportunistic gram-negative bacterium implicated in
acute and chronic nosocomial infections and a leading cause of patient mortality.
Such infections occur owing to biofilm formation that confers multidrug resistance and
enhanced pathogenesis to the bacterium. In this study, we used a rational drug design
strategy to inhibit the quorum signaling system of P. aeruginosa by designing potent
inhibitory lead molecules against anthranilate-CoA ligase enzyme encoded by the pqsA
gene. This enzyme produces autoinducers for cell-to-cell communication, which result in
biofilm formation, and thus plays a pivotal role in the virulence of P. aeruginosa. A library
of potential drug molecules was prepared by performing ligand-based screening using
an available set of enzyme inhibitors. Subsequently, structure-based virtual screening
was performed to identify compounds showing the best binding conformation with the
target enzyme and forming a stable complex. The two hit compounds interact with the
binding site of the enzyme through multiple short-range hydrophilic and hydrophobic
interactions. Molecular dynamic simulation and MM-PBSA/GBSA results to calculate
the affinity and stability of the hit compounds with the PqsA enzyme further confirmed
their strong interactions. The hit compounds might be useful in tackling the resistant
phenotypes of this pathogen.

Keywords: multidrug resistance, biofilm, quorum sensing, drug discovery, structure-based virtual screening

INTRODUCTION

Pseudomonas aeruginosa is a gram-negative opportunistic bacterial pathogen that poses a
significant threat to patients in hospital environments (Page and Heim, 2009). The World Health
Organization (WHO) classified P. aeruginosa as the highest priority pathogen and declared an
urgent demand for new antibiotics (Shrivastava et al., 2018). P. aeruginosa is extremely resistant to
antibiotics due to intrinsic, evolved, and acquired mechanisms, such as decreased cell permeability,
enzymatic drug inactivation via horizontal gene transfer, and biofilm development (Bonomo and
Szabo, 2006; Zavascki et al., 2010). Moreover, the β-lactamase gene present in its genome makes
cephalosporins and penicillin ineffective (Strateva and Yordanov, 2009). It has been estimated that
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biofilm-forming P. aeruginosa is responsible for
65% of patient mortality and antibiotic resistance
(Strateva and Yordanov, 2009).

Biofilm-embedded bacteria are 1,000 times more resistant to
antibiotics than planktonic bacteria, and the biofilm also enables
the bacteria to avoid a host’s immune system (Gaddy and Actis,
2009). In a biofilm, bacterial cells are embedded inside the
matrix of extracellular polymeric substances (EPSs) composed
of proteins, exopolysaccharides, DNA, macromolecules, and
lipids (Flemming and Wingender, 2001). All of these render
the antibiotics impermeable and ineffective. The presence of
persistent cells in biofilms also significantly contributes to their
multidrug resistance property (Lewis, 2007). Overall, the complex
morphology of biofilms is a significant barrier in designing
potent therapeutic agents that can eradicate biofilm-associated
infections successfully.

Quorum sensing (QS), a cell-to-cell communication system,
reportedly plays a pivotal role in establishing persistent infections
(Hentzer et al., 2003; Alhede et al., 2009; Van Gennip et al.,
2009; Chiang et al., 2013). QS relies on the processing,
secreting, and sensing of small diffusible quorum sensing
signal molecules (QSSMs), known as autoinducers (Waters and
Bassler, 2005). When a bacterial community reaches a certain
threshold (density), which is reflected by AI concentration
in the surrounding environment, bacterial gene transcription
in the community becomes synchronized, which enables the
community to behave collectively. A wide range of activities
is controlled by AIs, including virulence factor secretion,
swimming motility, secondary metabolite production, biofilm
maturation, and antibiotic resistance (Ng and Bassler, 2009).
A promising approach to control the growth of this pathogen is
to interfere with QS-mediated signaling, which disrupts bacterial
communication and attenuates virulence so that the bacteria
can be eliminated from the host (Mühlen and Dersch, 2016;
Wagner et al., 2016; Kamal et al., 2017). Therefore, QS inhibitors
can be very useful and effective as a prophylactic to control
antibiotic-resistant bacteria.

Pseudomonas aeruginosa has three major QS systems (rhl, las,
and pqs) that mediate cell-to-cell communication and control
the synthesis and secretion of virulence factors (Williams and
Cámara, 2009; Jimenez et al., 2012; Figure 1). For instance,
the las system positively regulates both the rhl and pqs systems
by initiating the expression of AI receptors (RhlR and PqsR).
RhlR and PqsR are also transcriptional activators when their
respective AIs are bound. The las and rhl systems use two
different AIs (acyl-homoserine-lactones, AHLs) (Alhede et al.,
2009). The pqs system employs two signal molecules: 2-heptyl-
3-hydroxy-4(1H)-quinoline or Pseudomonas quinolone signal
(PQS) (Pesci et al., 1999) and its biosynthetic precursor 2-heptyl-
4-hydroxyquinoline (HHQ) (Xiao et al., 2006). When PQS or
HHQ molecules are bound to the PqsR transcriptional activator,
PqsR induces the expression of various virulence genes, their
biosynthetic genes, and biofilm formation-related genes (Calfee
et al., 2001; Cao et al., 2001; Xiao et al., 2006). Although
both PQS and HHQ bind to and activate PqsR, PQS is 100-
fold more potent than HHQ (Xiao et al., 2006). Because the
enzyme (PqsA) is responsible for the synthesis of the PQS signal

molecule (Grandclément et al., 2016), inhibition of the PqsA
enzyme can disrupt biosynthesis of PQS signal molecule and
consequently PqsR-dependent gene regulation and ultimately
biofilm formation. The PQS act as a linker of the las and
rhl quorum sensing systems in Pseudomonas aeruginosa and
it has been shown that PQS system showed activity even in
the lasR mutant strains, which represents that PQS could be a
more significant modulator in the quorum sensing (McKnight
et al., 2000). Also, PQS system is a broad regulatory system
in P. aeruginosa influencing iron acquisition, outer membrane
vesicle production, cytotoxicity through oxidative stress, and
immune responses in the host cell (van Kessel, 2019).

To date, several SAR studies have been conducted to identify
the potential inhibitors for QS system in P. aeruginosa and also
provide important scaffolds for future QS inhibitor development
(Ji et al., 2016; Fong et al., 2017). According to reported studies,
sulfur-containing compounds possess excellent QS inhibiting
properties and can demolish the bacteria virulence.

In this study, we predicted putative QS inhibitor based on
in silico drug discovery technology. We prepared a library of 521
compounds containing dialogs of reported inhibitors. Further,
their binding affinities were predicted through molecular docking
to screen the most potent binder. Subsequently, Molecular
Dynamic (MD) simulation was performed to validate the
screened putative QS inhibitors affinity for the docked site and
understand the dynamic behavior of the enzyme. Finally binding
free energy for hit drug compounds was calculated with the MM-
PBSA/GBSA approach (Miller et al., 2012), which leads to a
possible mechanistic calculation useful for future experimental
analysis. Our in silico results support the prediction that these
predicted compounds can efficiently suppress the PqsA QS
system and block virulence.

MATERIALS AND METHODS

Preparation of Enzyme Structure
To understand the interactions of the enzyme with ligands, the
3D structure of the target enzyme is required. Although the
PqsA enzyme structure has not been experimentally proven, we
subjected the protein sequence of P. aeruginosa PqsA (UniprotKB
ID: Q9l4 × 3) to homology modeling using MODELLER9.24
(Eswar et al., 2007). In structural biology, comparative modeling
or homology modeling is the most promising technology for
significantly narrowing down the gap between experimentally
determined structures and known protein sequences (Xiang,
2006). Two templates with maximum sequence identity and
query coverage were used for better homology structure
prediction (Template 1: PDB ID = 5OE3, query coverage = 77%,
sequence identity = 100% and Template 2: PDB ID = 1ULT,
query coverage = 96%, sequence identity = 25%). Multiple
sequence alignment (MSA) of PqsA and the two templates was
performed (Supplementary Figure S1). To date, only N terminal
domain of the enzyme is determined due to the difficulty in
getting the full-length protein structure. In this study, by using
a close homology template we predicted the remaining structure
of the PqsA in addition to the available N-terminal domain.
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FIGURE 1 | Schematic diagram of rhl, pqs, and las QS systems in P. aeruginosa. The three major QS systems use C4-HSL, 3-oxo-C12-HSL, and HHQ/PQS for
cell-to-cell communication. In addition, the three QS systems can interact with each other for facilitating a complex regulation of the physiology of P. aeruginosa.

It is significant to highlight the dynamic aspect of full-length
protein upon ligand or drug molecules binding (Itoh et al.,
2015; Flydal et al., 2019). However, in this study the C-terminal
region did not affect the binding pocket of the N-terminal
domain, we used only the N-terminal domain structure for
putative inhibitor screening. Different online servers were used
for structure assessment, including the Swiss-Model structure
assessment tool (Waterhouse et al., 2018), Ramachandran plot
(Gopalakrishnan et al., 2007), and PDBsum (De Beer et al., 2014).
University of California San Francisco (UCSF) Chimera (version
1.14) (Pettersen et al., 2004) was used for structural visualization
and energy minimization of a total 1,500 steps divided into the
first 750 steps of the steepest descent and the last 750 steps of the
conjugate gradient (Ahmad et al., 2017). During minimization,
standard residues were treated with AMBER ff14SB force-field.

QS Inhibitor Preparation
The QS inhibitors of PqsA were selected from those reported
across various studies in the literature (Ji et al., 2016; Fong et al.,
2017) and used as positive controls in this study. Moreover,
521 structural analogs to the reported inhibitors were generated
from online repositories, such as ChemSpider (Ayers, 2012),
ChEMBL (Davies et al., 2015), and PubChem (Kim et al.,
2019). These web-servers provide a search module where users
can find the available structures having a similar chemical
composition (similar scaffolds) of the query structure. The
similarity index was set to >85%, compounds having more
than 85% structural similarity were selected for analog library.
Discovery Studio (DS) and UCSF Chimera were used for ligand
preprocessing, including protonation; ionization; and addition of

explicit counter ions, hydrogen atoms, or atomic partial charges.
Energy minimization was performed using forcefield AMBER
ff14SB for small molecules. The refined dataset was further
utilized for computational experiments.

Here, the previously reported QS inhibitors of PqsA were
used for conducting a docking study to reveal their binding
affinity toward the target enzyme. ChemDraw (Mendelsohn,
2004), a chemical drawing tool, was used to draw 2D structures
of the compounds and to convert the compounds into
3D structures. The compounds were eventually subjected to
ligand preprocessing.

Ligand Binding Domain Analysis
To date, only the functional N-terminal domain of PqsA has
been analyzed (Witzgall et al., 2017). For a brief binding
pocket analysis, Witzgall et al. compared the N-terminal binding
domain of PqsA from P. aeruginosa with the other CoA
ligase-like anthraniloyl-CoA transacylase AuaE from Stigmatella
aurantiaca (Sandmann et al., 2007), the PqsA ortholog HmqA
from Burkholderia pseudomallei and B. ambifaria (Diggle et al.,
2006; Vial et al., 2008), and an anthranilate-CoA from Azoarcus
evansii (Schühle et al., 2001). According to the reported study,
PqsA possesses highly conserved residues when compared with
other aryl-CoA ligases, such as Gly307, Gly302, Ala278, Gly279,
His308, and Tyr211.

Molecular Docking
Molecular docking was performed on the analog library through
the PyRx interface (Dallakyan and Olson, 2015) of AutoDock
Vina (Trott and Olson, 2010). During docking, the following
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FIGURE 2 | Ramachandran plot of predicted PqsA structure. The blue dots indicate torsion angles distributed along the core secondary structure regions of the
enzyme (shown in red). Yellow and pale-yellow areas contain favored and generously allowed torsion angles, respectively.

FIGURE 3 | The five reported PqsA inhibitors. The compounds are displayed in a stick representation along with their respective inhibitory constant values.
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parameters were applied: exhaustiveness was set to 300, residues
of the N-terminal domain involved in the binding pocket were
established as the binding site, and the maximum number
of poses was set to 300. The PyRx tool generates binding
affinity values in the negative (a larger negative value implies
a stronger binding affinity. The top 300 inhibitors showing
a high binding affinity were retrieved for further analysis.
The docking results of the top 10 inhibitors are shown in
Supplementary Table S1. The docking protocol used herein

was first tested by docking a known co-crystallized compound
at the N-terminal structure of PqsA (PDB ID = 5OE3)
with 300 iterations. We found the same binding mode of
the known inhibitors determined in crystallization studies.
Docking reproducibility results by AutoDock Vina are shown in
Supplementary Figure S2.

A brief binding analysis, including interaction, binding
angles, binding poses, binding residues, and bond lengths,
was visually conducted using DS, UCSF Chimera, and

FIGURE 4 | Illustration of PqsA binding with five known inhibitors. The five known inhibitors are rendered in the active pocket: (A–E) correspond to compound 1–5.
Inhibitors are displayed in stick representation, and backbone hydrogen bonds are shown as cyan-colored lines.
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LigPlot (Wallace et al., 1995). Ligands with a strong
binding affinity [6-amino-9-((2R,3R,4S,5R)-5-(((N-(2-
aminobenzoyl)sulfamoyl)oxy)methyl)-3,4-dihydroxytetrahydro
furan-2-yl)-3H-purine-1,7,9-triium—named compound
1066—and 6-amino-9-((2R,3R,4S,5R)-3,4-dihydroxy-5-(((N-(3-
hydroxy-2-naphthoyl)sulfamoyl)oxy)methyl)tetrahydrofuran-
2-yl)-3H-purine-1,7,9-triium—named compound 1084] to the
active pocket were selected as more potent QS inhibitors of PqsA
from P. aeruginosa.

Bioavailability
The physicochemical properties of the molecule, including
Lipinski’s rule of five (molecular weight <500 Dalton, H-bond
donor <5, H-bond acceptor <10, and cLogP < 5), toxicity
prediction (tumorigenic, mutagenic, and irritant), and drug-
likeness, were predicted using SwissADME (Daina et al., 2017)
and PreADME (Lee et al., 2004).

Molecular Dynamic (MD) Simulations
The dynamic behavior of top docked complexes was studied
using molecular dynamic (MD) simulations. The top two docked
complexes were used in MD simulations carried out through
the Sander Module of AMBER (Assisted model building with
energy refinement) (Case et al., 2016). Primary coordinates
of docked complexes were performed for MD simulations,
including energy minimization (for the complete system, water
and heavy atoms of the system), heating (at 300 K for the 20
picoseconds), equilibration (for 100 picoseconds with a time
step of 2 nanoseconds), pressure (for 50 picoseconds), and
production (for 100 ns). A general amber force field (GAFF)
(Dickson et al., 2012) was used for putative inhibitor while
ff03.rl (Case et al., 2014) used for the enzyme. Sodium ions
were added randomly to neutralize the system. A simulation
production run of 50 ns was accomplished to evaluate the

dynamics of the complex and check the docked conformation
stability of the ligand. Langevin dynamics (Izaguirre et al., 2001)
were used for temperature and pressure control, whereas the
SHAKE algorithm (Kräutler et al., 2001) was applied for correct
bond length. The production run was performed in constant
volume and temperature (NVT) ensemble (Nosé, 1984) using
the Berendsen algorithm (Lemak and Balabaev, 1994). MD
simulation trajectories of each nanosecond were recorded and
visualized and analyzed with Visual Molecular Dynamic (VMD)
(Humphrey et al., 1996).

Binding Free Energies of Complexes
The binding free energy for top docked complexes was calculated
using two methods: Molecular Mechanics Poisson-Boltzmann
Surface Area (MMPBSA) and Molecular Mechanics-Generalized
Born Surface Area (MMGBSA) incorporated with MMPBSA.py
module of AMBER18 (Miller et al., 2012). In total, 50 frames from
the trajectories were processed and the net energy of the system
was calculated through the following equation.

1GBinding = 1GComplex −1GReceptor −1GInhibitor

Each of the terms in the equation involves the calculation
of several energy components, including van der Waals energy,
electrostatic energy, and internal energy summed from molecular
mechanics and polar contribution toward solvation energy. The
analysis also takes into account the contribution from non-polar
terms toward solvation energy and inhibitor entropy.

RESULTS AND DISCUSSION

Overall Structure Assessment of PqsA
In rational drug discovery, the most fundamental step is to
obtain a 3D structure of the target protein. The 3D structure

FIGURE 5 | 2D interaction maps of the top two predicted compounds. The compounds 1066 (A) and 1084 (B) are shown.
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is used to understand the structural details and molecular
function and to discover potent inhibitors of the target enzyme
(Kopec et al., 2005). Because the full 3D structure of the
PqsA from P. aeruginosa was unavailable, we performed
comparative modeling using 5OE3 (PqsA N-terminal domain)
from P. aeruginosa PAO1 and 1ULT from Thermus thermophilus
using MODELLER9.24 (Eswar et al., 2007).

The predicted PqsA 3D structure is composed of a large
N-terminal domain and a small C-terminal domain, and the
domains are connected by a small flexible hinge (Gulick, 2009;

Supplementary Figure S3). The N-terminal domain of PqsA can
be subdivided into three subdomains: two β-sheets connected
by an internal 2-fold symmetry surrounded by α-helices and a
distorted β-sheet followed by a flexible hinge region that links the
N-terminal and C-terminal domains.

Ramachandran plot analysis was performed to assess the
quality of the predicted structure. Most residues (77.5%) of the
structure were grouped in the most favored region, whereas
only 0.5% of the residues lie in the outlier region, which
indicates a good structure quality (Figure 2). The secondary

FIGURE 6 | Graphical representation of binding poses and residues that interact with the compounds 1066 (A) and 1084 (B). The hydrogen bond is represented in
cyan color.
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structure contained the following: 17.6% strand, 20.3% alpha
helix, 2.1% 3–10 helix, and 60% gamma turns, beta turns,
helix-helix interactions, beta bulges, beta hairpins, and beta
alpha beta motifs. The 2D structure of the protein was also
predicted using MODELLER software, and it is illustrated in
Supplementary Figure S4.

Reported QS Inhibitors of PqsA
In this study, five recently reported PqsA inhibitors were
retrieved from the literature (Ji et al., 2016; Fong et al., 2017) and
used as reference compounds to discover more potent inhibitors
(Figure 3). The inhibiting potency of these compounds has been
experimentally measured (Ji et al., 2016; Fong et al., 2017). The
IC50 values of compounds 1–4 were 15 ± 2.64, 2.28 ± 0.11,
0.98 ± 0.14, and 36.2 ± 2.39 µM, respectively. For compound
5, its constant Ki used to represent inhibitory potency was
16.5 ± 2.6 nM. Structure comparison of known compounds
determined that compound 4 and 5 have a significant structure
similarity, the 3D structures of the five compounds are shown in
Figure 3.

A library of 521 analogous compounds to the reported
PqsA inhibitors was generated to screen for potent inhibitory
compounds of PqsA by utilizing similarity search tools from
online compound databases (PubChem, ChemSpider, and
ChEMBL) based on 85% structural similarity to the known
selected inhibitors.

After a brief docking analysis, including binding affinity,
binding poses, interacting residues, and enzyme–inhibitor
interactions of all the compounds (five reported PqsA inhibitors
and the analog library), compounds with a stronger binding
affinity than that of controls were selected as potent PqsA
inhibitory compounds.

Molecular Docking
Protein-ligand docking plays a pivotal role in predicting the
accurate orientation of a ligand with its target protein (Morris
and Lim-Wilby, 2008). For better understanding, molecular
docking was divided into two phases: (1) enzyme docking
with the known PqsA inhibitors and (2) enzyme docking
with the analog library. Compounds with a strong binding

FIGURE 7 | Superimposition of the reported and predicted PqsA inhibitors. Inhibitors are displayed in stick representation, (A) superimposition of the top two
predicted PqsA binders, compound 1066 is in brown while compound 1084 in cyan color and (B) Superimposition of the five reported PqsA inhibitors within the
binding pocket. Yellow, blue, red, chartreuse and navy-blue colors represent compounds 1–5, respectively..
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affinity and correct binding poses were selected. Binding affinity
denotes the sum of total torsional energy, internal energy, and
intermolecular energy subtracted from the unbound energy
system. A strong binding affinity conformation indicates a stable
protein-ligand complex. We also found that the compounds
docked in similar conformations to both full-length PqsA
structure as well as to the N-terminal structure only. As no
significant contribution of the C-terminal on compounds binding
at the N terminal was found, this study proceeded with the
N-terminal structure only.

Enzyme Docking With Reported QS
Inhibitors
To find the binding poses, interactions, and binding affinity
of all the five known inhibitors, they were docked into the
binding pocket of PqsA using the PyRx tool. Consequently,
300 poses for each inhibitor were generated, and inhibitors

with a strong binding affinity were selected for further
analysis (Figure 4). The docking results showed that the
binding affinity ranged from −4.4 to −8.5 kcal/mol. Docking
analysis exhibited that the shared motif in compound 4
and 5 binds to the same residues (Val254, Phe209, Pro205,
Phe252, Ala278, Tyr211, Gly279, Gly214, and Ile310), and the
identical hydrogen bond of the shared motif in compound
4 and 5 was observed with the active site residues (Tyr211
and Gly214). There is a correlation between IC50 values
of compounds and binding affinities of known inhibitors,
except compound 4 that has a low IC50 value but high
binding affinity. One possible reason for this could be that
compound 4 has a large structure and more interactions, which
produced a higher binding affinity, considers as a limitation
of binding affinity-based inhibitor design. The interactions
between each known inhibitor and PqsA are depicted in
Supplementary Figure S5.

TABLE 1 | Binding affinity and interacting residues of the five reported compounds and two predicted analogs.

Known Inhibitors Compounds Interacting residues Binding affinity (kcal/mol)

Compound 1
Val254, Pro205, Phe209, Phe252, Met213, Gly210, Gly279, Gly214, Ala278, Thr304,
Tyr211, Phe276, Gly300, Ala303, Gly302, Ile301, Val309, His308, Gly307

−4.4

Compound 2

Lys206, Pro205, Phe209, Val254, Phe252, Met213, Gly210, Gly279, Gly212, Ala278,
Gly214, Thr304, Tyr211, Asn215, Ala303, Gly302, His308, Val309, Gly307

−5.0

Compound 3
Pro205, Met213, Gly214, Phe209, Phe252, Tyr211, Gly210, Ala278, His308, Thr304,
Gly279, Val309, Ala303, Glu305, Gly302, Ser167, Ile301

−5.6

Compound 4
Lys206, Pro205, Phe209, Val254, Gl253, Phe252, Met213, Gly212, Gly214, Gly210,
Tyr211, Ala278, Gly279, Phe276, Gly300, Gly302, Ala303, Ile301, Val309, His308

−7.6

Compound 5

Lys206, Pro205, Val254, Phe209, Phe252, Met213, Gly212, Gly214, Gly210, Tyr211,
Ser165, Ala278, Ser280, Gly279, Gly166, Thr164, Thr304, Ser167, His308, Ala303,
Gly302, Glu305, Ile301, Arg379

−8.5

Compound 1066

Predicted inhibitors Pro205, Met213, Phe209, Gly214, Phe252, Gly210, Tyr211, Ala278, Thr304, His308,
Gly279, Ser280, Val309, Ala303, Ser167, Glt307, Glu305, Lys172, Gly302, Thr168,
Tyr362, His394, Arg397, Asp382, ly381, Gly381, Thr380, Tyr378, Arg379

−9.1

Compound 1084

Pro205, Phe252, Met213, Gly214, Phe209, Ala278, Gly279, Tyr211, Gly210, Ser280,
Val309, His308, Thr304, Ser165, Gly302, Ala303, Thr164, His394, Ser167, Glu305,
Lys172, Thr168, Arg397, Asp382, Thr380

−9.3

Frontiers in Molecular Biosciences | www.frontiersin.org 9 October 2020 | Volume 7 | Article 577316

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org/
https://www.frontiersin.org/journals/molecular-biosciences#articles


fmolb-07-577316 October 11, 2020 Time: 10:50 # 10

Shaker et al. In silico PqsA Inhibitor Design

FIGURE 8 | RMSD of PqsA protein in the presence of a compound. (A) Structure dynamics RMSD of PqsA protein in the presence of ligand (B) ligand dynamics
RMSD in the PqsA protein pocket.

FIGURE 9 | Ligand movement from 1 to 50 ns. Ligand pose at 1 ns is represented by dim gray color while pose at 50 ns is in cyan. (A) Movement of compound
1084 and (B) movement of compound 1066.
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Docking Analysis of Top Hits From
Analog Library
The library containing 521 analog compounds was used for
virtual screening to find more potent compounds to inhibit
the QS system in P. aeruginosa. A brief binding analysis was
performed for the top complexes with a high binding affinity
to select the potent pqs QS-binder. As a result, the top two hit
compounds were selected from the library, and these compounds
were predicted to have greater potential than the previously
reported compounds. Both top compounds (compound 1066
and 1084) have a significant structural similarity and also their
shared motif docked in a similar position by making interactions
with conserved active residues within the binding pocket. 2D
interactions of the top two hit compounds are depicted in
Figure 5.

The top two predicted compounds showed a stronger binding
affinity with the conserved residues in the binding pocket
(Figure 6). Both compounds contain one sulfur group in
their structures. Generally, compounds with sulfur scaffolds,
including antibiotics, antifungal agents, antitumor agents, and
enzyme inhibitors, are related to a wide range of bioactivities
(Feng et al., 2016).

Compound 1066 possessed seven conventional hydrogen
bonds with the key residues, His308, Ala303, Arg397, Asp382,
Thr380, and two bonds with Glu305; one carbon-hydrogen
bonds with Gly279; one pi-alkyl interaction with Ala278; and

one pi-sulfur interaction with Phe209. The residues Tyr211,
Gly210, Gly307, Thr304, Gly302, His394, Ser167, Lys172, Tyr378,
Pro205, Phe252, Gly214, and Val309 took part in van der Waals
interactions. The binding affinity of the compound 1066 with
PqsA was−9.1 kcal/mol.

Compound 1084 also showed a very strong binding affinity
(_9.3 kcal/mol) with PqsA by forming one conventional
hydrogen bond with Ser280; one carbon-hydrogen bond with
Asp382; one pi–pi stacked interaction with Phe209; and two
pi-alkyl bonds with Ala278. The residues Glu305, Thr167,
Ser165, Thr304, Ala303, Gly302, Gly210, Tyr211, His308,
Gly214, Phe252, Pro205, Gly279, His394, and Arg397 were
involved in van der Waals interactions with the compound,
while one residue (Ser167) is involved in unfavorable donor-
donor interaction.

The two hit compounds are analogs of compound 5 and
share a significant portion of the structure. Compound 5 has
been experimentally proved as a potent QS inhibitor exhibiting
a Ki value of 16.5 ± 2.6 nM and a predicted binding affinity
of −8.5 kcal/mol. Compared with the compound 5, the two hit
compounds showed higher binding affinities of −9.3 kcal/mol
and −9.1 kcal/mol, which represents that the two hits could be a
high-affinity binder of PqsA enzyme. The hit compounds share
a structural motif. The motifs of the hit compounds interact
with the conserved active site residues in the same docking pose.
RMSDs of the docked complexes with the two hits were 0.000Å,

TABLE 2 | Binding Free Energies of the complexes.

MMGBSA MMPBSA

Energy Component Average Std. Dev. Std. Err. of Mean Energy Component Average Std. Dev. Std. Err. of Mean

Compound 1064 VDWAALS −35.1814 3.2543 0.3254 VDWAALS −35.1814 3.2543 0.3254

EEL −196.9409 10.4290 1.0429 EEL −196.9409 10.4290 1.0429

EGB 218.0214 8.8511 0.8851 EPB 203.9634 8.6698 0.8670

ESURF −4.3052 0.1455 0.0146 ENPOLAR −3.2338 0.0879 0.0088

− − − − EDISPER 0.0000 0.0000 0.0000

1G gas −232.1223 9.5819 0.9582 1G gas −232.1223 9.5819 0.9582

1G solv 213.7161 8.8466 0.8847 1G solv 200.7296 8.6597 0.8660

1TOTAL −18.4062 3.2335 0.3233 1 TOTAL −31.3927 3.3925 0.3392

Compound 1084 VDWAALS −57.6556 2.7124 0.2712 VDWAALS −57.6556 2.7124 0.2712

EEL 17.7792 8.4691 0.8469 EEL 17.7792 8.4691 0.8469

EGB 17.4195 7.8428 0.7843 EPB 9.6471 10.1448 1.0145

ESURF −4.9013 0.1551 0.0155 ENPOLAR −4.1481 0.0759 0.0076

− − − − EDISPER 0.0000 0.0000 0.0000

1G gas −39.8764 9.5508 0.9551 1G gas −39.8764 9.5508 0.9551

1G solv 12.5181 7.8326 0.7833 1G solv 5.4990 10.1226 1.0123

1TOTAL −27.3583 3.5233 0.3523 1 TOTAL −34.3774 5.1235 0.5124

TABLE 3 | Physicochemical properties of hit compounds.

Compound MW
(g/mol)

Lipinski’s rule
of five

PAINS Lipophilicity TPSA (Å2) Synthetic
accessibility

Water
solubility

Bioavailability
score

BBB
Permeation

Skin permeability
(cm/s)

Compound 1066 462.48 0 violations 0 alerts 0.07 187.51 4.69 Soluble 0.55 No −8.91

Compound 1084 513 1 violation 0 alerts 1.33 181.72 4.84 Moderately
soluble

0.17 No −8.10
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which indicates that there is no significant variability in enzyme
structure and ligand binding pose.

In the docking analysis with known inhibitors, the residues
(Pro205, Phe252, Met213, Gly214, Phe209, Ala278, Gly279,
Tyr211, Gly210, His308, Gly302, and Ala303) were found to
be involved in the interactions. We also found that Tyr211,
Pro205, Phe252, Gly214, Phe209, Ala278, Gly279, Gly210,
His308, Gly302, and Ala303 residues are also involved in the
interactions with the compounds 1066 and 1084. Interestingly,
Ala278 that is involved in the interactions of all inhibitors and
is also involved in the interactions of compounds 1066 and
1084. This represents that the two hit compounds interact with
the binding pocket in a similar manner with known inhibitors.
This result provides important information in designing PqsA
inhibitors. A brief graphical docked complex representation of
both reported and predicted compounds has been depicted in
Figure 7 and their binding affinities are shown in Table 1.

Molecular Dynamics Simulation
The predicted two complexes comprised of a chemical compound
and PqsA enzyme were used in molecular dynamics simulation to
unveil the dynamics of the enzyme in the presence of a ligand as
well as to confirm the conformation stability of ligands predicted
by the docking simulation. For the two compounds, the initial
conformations docked on the PqsA were stable and no major
changes were observed in terms of ligand RMSD (Figure 8). The
mean RMSD of compound 1064 was 1.7 Å, and the mean RMSD
of compound 1064 was 1.51 Å. This result confirmed that the
predicted binding modes by docking are stable and consistent.
Ligand movements during the simulation from 1 to 50 ns are
depicted in Figure 9.

MM-PBSA/GBSA Binding Free Energy
Analysis
MM-PBSA method has been recently used to estimate the
binding free energy of a given complex in rational drug discovery.
As shown in Table 2, the gas phase energies (1Ggas) in
both complexes are very high mainly due to the significant
contribution of electrostatic energy (compound 1064) and the
decent role of van der Waals energy (compound 1084). In
contrast, the net solvation energy (1Gsolv) is less favorable
in both systems. Nevertheless, the total binding free energies
of both complexes are promising: PqsA-compound 1064 has
−18.4 kcal/mol in MM-GBSA and−31.4 kcal/mol in MM-PBSA,
and PqsA-compound 1084 has −27.4 kcal/mol in MM-GBSA
and −34.4 kcal/mol in MM-PBSA. These values reflect the stable
complex conformation and high intermolecular affinity.

Bioavailability
The bioavailability of the two selected compounds is important
in drug discovery because it determines the applicability of the
compounds as a drug. Pharmacophoric properties, including
Lipinski’s rule of five and toxicological properties, are noteworthy
to determine drug accessibility. Ideal drug candidates exhibit
the following pharmacophoric properties. Drugs should satisfy
Lipinski’s rule of five (molecular weight < 500 g/mol, H-bond

donor < 5, H-bond acceptor < 10, and cLogP < 5). The
topological polar surface area (TPSA) should range from 20
to 130 Å. Lipophilicity should range from −0.7 to +6.0, and
more negative values indicate lower skin permeability. Online
servers (SwissADME and PreADME) were used to evaluate
the physicochemical properties of the top two hit compounds
(Table 3). Important physicochemical properties of the hit
compounds were predicted, which included Lipinski’s rule of
five, PAINS assay, lipophilicity, TPSA, and, more importantly,
bioavailability. All these predicted physicochemical properties
of the two compounds were suitable enough to attempt
experimental evaluations. Therefore, these compounds could
be new candidate agents for the efficacious management of
bacterial infections.

CONCLUSION

Inhibition of the P. aeruginosa quinolone signaling system is
an attractive and promising approach to impede infections
by preventing biofilm formation. In this study, we present
the applications of rational in silico drug discovery techniques
to identify novel and more putative inhibitors for PqsA, an
important enzyme in P. aeruginosa quinolone signaling. Based
on virtual screening, we identified two compounds (compounds
1066 and 1084) as potent compounds showing a good affinity
for the PqsA enzyme. Both these compounds have vital chemical
moieties responsible for important chemical interactions with
hotspot residues of the PqsA enzyme. The length of the
compound also seems important because it provides a balanced
network of chemical interactions at the docking site. The affinity
and stability of the compounds binding mode were examined
through molecular dynamic simulation and MMPB/GBSA assay
both are in strong agreement of strong intermolecular affinity and
formation of stable complexes. Furthermore, a suitable profile of
drug-like properties and pharmacokinetics was revealed for both
compounds, thereby increasing their chances of being good leads.
Based on the findings, we believe that the compounds should be
subjected to in vitro and in vivo investigations to affirm their
potency and could be used in further structural optimization of
new potent derivatives.
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