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The ongoing threat of Coronavirus is alarming. The key players of this virus are modeled

mathematically during this research. The transmission rates are hypothesized, with the

aid of epidemiological concepts and recent findings. The model reported is extended, by

taking into account the delayed dynamics. Time delay reflects the fact that the dynamic

behavior of transmission of the disease, at time t depends not only on the state at

time t but also on the state in some period τ before time t. The research presented

in this manuscript will not only help in understanding the current threat of pandemic

(SARS-2), but will also contribute in making precautionary measures and developing

control strategies.

Keywords: SARS-CoV2, dynamical analysis, kinetic modeling, numerical simulations, monoclonal antibody,

theoretical analysis

1. INTRODUCTION

In the field of biological sciences, the delayed processes takes place, not only at macro scale but also
at micro scale. The computational framework for such problems can help in understanding the
dynamics in a more cost effective manner (Yan, 2007; Fang et al., 2020; Sohail and Nutini, 2020).

Recently, the World Health Organization (WHO) has declared the novel corona virus
(2019-nCoV) outbreak a Public Health Emergency of International Concern (PHEIC) It is named
as severe acute respiratory syndrome corona virus 2 (SARS-CoV-2). The SARS-CoV-2 has been
determined as the seventh member of the corona viruses infected humans (Zhu et al., 2020).

The antiviral immune response, also in the case of SARS-CoV2, behaves according to two
characteristics: “lytic” and “non-lytic.” These characteristics emerge from the action of two
fundamental elements of the immune system in the case of an anti-viral response: antibodies
(non-lytic response) and cytotoxic T cells also called CTL—Cytotoxic Lymphocites (lytic response).

At themoment the epitopes that can be identified to analyze these responses, are not clear. There
are strong homologies with the SARS-CoV virus (75.5%). Furthermore, there is a strong alteration
of antigenicity compared to SARS-CoV2 even if important epitopes in the Spike protein have
been identified through the analysis of the localization of the RDB sequences, which can therefore
become specific targets for drugs and vaccines (Zheng and Song, 2020).

The non-lytic response occurs against adaptive humeral immunity through the production
of antibodies by B cells whose action is to neutralize the virion through direct connection with
the same; specific antibodies are important in the defense against viruses during the early stages
of infection when the virus is still extra-cellular; neutralizing antibodies facing the virus bind
to the capsid or viral pericapside proteins, preventing their adhesion to the cell surface and
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therefore entry into the cells. Opsonizing antibodies can
potentate the elimination of viral particles by phagocytosis.

In the case of SARS-CoV2, virus-specific IgG reached 100%
approximately 17–19 days after symptom onset, while the
proportion of patients with positive virus-specific IgM reached
a peak of 94.1% approximately 20–22 days after symptom onset
while during the first 3 weeks after symptom onset, there was
increase in virus-specific IgG and IgM antibody titters.

Three types of seroconversion are possible: synchronous
seroconversion of IgG and IgM, IgM seroconversion earlier
than that of IgG and IgM seroconversion later than that of
IgG (Long et al., 2020); specific data on the production of
IgG and IgM is crucial to allow the rapid identification of the
infection (di Mauro Gabriella et al., 2020). The lytic response
depends on the action of the CTL cells which, in order to take
place efficiently, must result from a cooperation between CD4+

and CD8+ lymphocytes. CD8+ cells recognize endogenously
synthesized viral antigens in association with MHC class I
molecules on all cell types; CD4+ cells recognize viral antigens
in association with MHC class II antigens and the complete
differentiation of CD8+ cells requires the intervention of CD4+

T helper cells. The antiviral effect of CTL is due to the
lysis of infected cells, the activation of endocellular enzymes
(endonucleases) which cause the degradation of the viral genome
and the secretion of cytokines with interferon activity.

CTL epitopes of SARS-CoV-2 have been predicted by several
studies, which can be used effectively to understand the
pathogenesis (Kumar et al., 2020).

The fundamental mechanism by which the advancement of
the virus in an organism is contrasted is given by a balance
between the two mechanisms (lytic and non lytic). During
multiple stages of the infection, the initial coordinated action of
the antibodies join the lytic activity of the CTL cells to eradicate
the virus.

The current research is motivated by the possible lack of the
“control” and “coordination” between the two types of immune
response, such that, a strong CTL response induces a limited and
insufficient antibody action (or the reverse); is interlinked with
the strong decrease in viral load induced by one of the two types
of response.

During this imbalanced process, the coordinative response
of the CD4+ helper T cells also varies considerably: in SARS-
CoV-2 infected patients, it has been reported that the analysis
showed activation and reduction in CD4+ and CD8+ T cell
counts (Li et al., 2020).

The purpose of this paper, therefore, is to quantify a
possible mathematical model that investigates the possible non-
coordination between lytic and non-lytic response and indicate
a mathematical quantification of the best antiviral immune
response in the case of SARS-CoV2.

2. MATERIALS AND THE METHODS

2.1. Basic Model of Virus Transmission
Consider the basic transmission model, with the coefficients, as
listed in Table 1.

TABLE 1 | Parameters description.

Symbols Description Value References

ρ Rate of generation of Susceptible host cells 110 Wodarz, 2005

d The death rate of suspected host cells 0.01 Wodarz, 2005

µ The replication rate of the virus 0.01 Wodarz, 2005

a The death rate of infected cells 0.01 Assumed

p The strength of the lytic component 1 Wodarz, 2005

κ Rate of infected cells produced in Free virus 1 Assumed

q The neutralization death rate by antibodies 1 Wodarz, 2005

φ Decays rate in free virus 1 Assumed

g Rate of Antibodies develop in response to free

virus

20.5 Assumed

h Rate of decays in Antibodies response 0.1 Wodarz, 2005

c Rate of CTL response to viral antigen derived

from infected cells

20.5 Assumed

b Rate of decays in the absence of antigenic

stimulation

0.1 Assumed

TABLE 2 | Compartments and their description.

Symbols Description

U(t) Susceptible host cells

W(t) Infected cells

V (t) Free virus

A(t) Antibody response

C(t) CTL response

Model

dU

dt
= ρ − dU − µVU,

dW

dt
= µVU − aW − pWC,

dV

dt
= κW − qVA− φV ,

dA

dt
= gVA− hA,

dC

dt
= cWC − bC.

(1)

The description of compartments U(t), W(t), V(t), A(t), and
C(t) are presented in Table 2. The basic concept of modeling was
adapted from the work of Wodarz (2005).

2.1.1. Positivity of Solution
For the model (1) transmission to be epidemiologically feasible,
it is necessary to show that for all time every state variable is
non-negative. Thus, the solutions of themodel with non-negative
initial value for all time t > 0 will remain non-negative.

Theorem 2.1. Suppose that the model (1) consists of all feasible
solutions with non-negative initial result then it remains non-
negative for all time t.
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Proof: Let the model (1) satisfy the initial non-negative
solution, i.e.,
U(0) ≥ 0,W(0) ≥ 0, V(0) ≥ 0, A(0) ≥ 0 and C(0) ≥ 0.
It can be deduced from the model (1)

dU

dt
= ρ − dU − µVU, (2)

as the solution of variableU can be computed by following result,

U = U(0)eG +
∫ t

0
πeH(k)d(k) ≥ 0, (3)

where G = −
∫ t
0 G(k)d(k) and H(k) = −

∫ t
0 G(l)d(l). This gives

non-negativity of U(0) ≥ 0 for all t ≥ 0. The non-negativity of
the rest of the variables in the model (1) is given below.

dW

dt
= µVU − aW − pWC,

dV

dt
= κW − qVA− φV ,

dA

dt
= gVA− hA,

dC

dt
= cWC − bC.

(4)

In term of matrix the above can be expressed as,

dF(t)

dt
= H(t)+MF(t) (5)

where

F(t) =









W(t)
V(t)
A(t)
C(t)









,H(t) =









a
0
0
0









(6)

and Mmatrix.

M =









−a µρ

d
0 0

κ −φ 0 0
0 0 −h 0
0 0 0 −b









. (7)

The matrix M is a Matzler matrix so by the result presented in
Smith (1996) the model is monotone. The fact thatR4+ is invariant
with respect to stream of model (1).

2.1.2. Qualitative Analysis
Stability analysis is an essential key to validate the models in the
field of science and technology. The remarkable contributions by
Tunc (2002), Tunç (2004, 2008, 2013) and other researchers in
the cross references can not be denied, since their contribution
help the researchers to deal with the highly nonlinear models.

Here we present the stability analysis of given mathematical
model (1). The model (1) is locally asymptotically stable at
uninfected and infected equilibrium points. For uninfected
equilibrium, the model is locally stable, if the value of

reproduction number R0 < 1, whereas for infected equilibrium
the model is stable if the value of the basic reproduction
number R0 > 1. Furthermore, we will investigate the model
(1) is locally stable at uninfected and infected. The uninfected
equilibrium point E0 = (U0, 0, 0, 0, 0) and infected equilibrium
point E∗ = (U∗,W∗,V∗,A∗,C∗) of model (1) are constructed by
following theorems.

Theorem 2.2. The uninfected equilibrium point E0 of the model
(1) is given by

E0 = (U0, 0, 0, 0, 0),

where:

U0 =
ρ

d
.

Proof: By putting the equations of model (1) equal to zero, the
dynamics is determined as follows:

ρ − dU − µVU = 0,

µVU − aW − pWC = 0,

κW − qVA− φV = 0,

gVA− hA = 0,

cWC − bC = 0,

and after further algebraic manipulation, we got

U0 =
ρ

d
, (8)

which completes the proof.

Theorem 2.3. The model (1) admits a unique infected
equilibrium E∗ = (U∗,W∗,V∗,A∗,C∗) if and only if R0 > 1.

Proof: The infected equilibrium point is given as:

U∗ =
gρ

dg + µh
,

W∗ =
b

c
,

V∗ =
h

g
,

A∗ =
bgκ − chφ

chq
,

C∗ =
−abdg − abµh+ µchρ

bp(dg + µh)
.

(9)

2.1.3. Reproduction Number R0 and Stability Analysis
The basic reproduction number R0 is formulated by evaluating
infection matrix F and transmission matrix V constructed from
Jacobian matrix J of model (1). The reproduction number R0 is
the spectral radius of matrix FV−1. The Jacobian matrix for J0 for
uninfected equilibrium point is

J0 =













−d 0 −µρ

d
0 0

0 −a µρ

d
0 0

0 κ −φ 0 0
0 0 0 −h 0
0 0 0 0 −b













(10)
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The infection matrix F and rest of transmission matrix V are give
as follow:

V =













d 0 0 0 0
0 a 0 0 0
0 −κ φ 0 0
0 0 0 h 0
0 0 0 0 b













, (11)

F =













0 0 −µρ

d
0 0

0 0 µρ

d
0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0













. (12)

The matrix K = FV−1 is constructed as follows:

K =













0 −µκρ

adφ
−µρ

dφ
0 0

0 µκρ

adφ
µρ

dφ
0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0













. (13)

The spectral radius of matrix K = FV−1 give reproductive
number of model (1) is

R0 =
µκρ

adφ
. (14)

The stability analysis of system (1) is presented in following
Theorem 2.4.

Theorem 2.4. Uninfected equilibrium point E0, will be locally
asymptotically stable if R0 < 1 and otherwise it will be unstable.

Proof: The Jacobian matrix J(E0) of model (1) for uninfected
equilibrium point is formulated as follows:

J(E0) =













−d 0 −µρ

d
0 0

0 −a µρ

d
0 0

0 κ −φ 0 0
0 0 0 −h 0
0 0 0 0 −b













. (15)

The eigenvalues of Jacobian matrix J(E0) is evaluated by
characteristic equation that is det(J(E0) − Iλi) = 0, for i = 1 : 5.
The eigenvalues are given as follows:
λ1 = −b, λ2 = −d, λ3 = −h,

λ4 = −

(√
d
)

(a+φ)+
√

d(a−φ)2+4µκρ

2
√
d

and

λ5 = −
√
d(a+φ)−

√
d(a−φ)2+4µκρ

2
√
d

.

Thus, all eigenvalues λi are strictly negative for i = 1 : 5. Hence,
model (1) is locally asymptotically stable.

Lemma 2.5. If R0 > 1, the infected equilibrium point of system is
locally asymptotically stable, otherwise it is unstable.

Proof: The results can by obtained by the same procedure
of (2.4).

2.1.4. Sensitivity Analysis
The sensitivity of basis reproductive

R0 =
µκρ

adφ
(16)

is analyze with respect to each parameters is follows:

∂R0

∂µ
=

κρ

adφ
> 0,

∂R0

∂κ
=

µρ

adφ
> 0,

∂R0

∂ρ
=

µκ

adφ
> 0,

∂R0

∂a
= −

µκρ

a2dφ
< 0,

∂R0

∂d
= −

µκρ

ad2φ
< 0,

∂R0

∂φ
= −

µκρ

adφ2
< 0.

(17)

It is clear that reproductive number is directly proportional to the
replication rate of the virus, rate of infected cells produced in free
virus and rate of generation of susceptible host cells. Decrease
with the death rate of infected cells, decays rate in free virus and
the death rate of suspected host cells.

The basic reproductive number is R0 = µκρ

adφ
> 1 in

case of infection. In the absence of an immune responses the
model (1) converges to the following equilibrium points E(0) =
(U(0),W(0),V(0),A(0),C(0)) which is defined as

U(0) = (
ρ

d
, 0, 0, 0, 0). (18)

We assumed that the immune responses is present. this desires
following conditions: cW(0) > b and gV(0) > h. In this case
following can be observed.

1. The anti body response can’t established and the CTL response
develops. Because the CTL response is strong and decrease
virus load to levels which are vary low to stimulate antibody
response. It has following equilibrium points,
E(1) = (U(1),W(1),V(1),A(1),C(1)) where,

U(1) =
cφρ

bκµ + cdφ
,

W(1) =
b

c
,

V(1) =
bκ

cφ
,

A(1) = 0,

C(1) =
−abκµ − acdφ + cκµρ

p(bκµ + cdφ)
.

(19)

This is obtained if
bgκ
cφ < h and chρµ

a(dg+hµ)
> b.
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2. The sustained CTL response zero and antibody response
develop, because the antibody response is strong relative to
CTL response and decrease virus load to levels which are vary
low to stimulate CTL. It has following equilibrium points.

E(2) = (U(2),W(2),V(2),A(2),C(2)),

which is defined as follows:

U(2) =
gρ

dg + hµ
,

W(2) =
hµρ

a(dg + hµ)
,

V(2) =
h

g
,

A(2) =
−adgφ − ahµφ + gκµρ

aq(dg + hµ)
,

C(2) = 0.

(20)

This is obtained if
bgk
cφ > h and chρµ

a(dg+hµ)
< b.

3. CTL and anti body response develops. This equilibrium points
are as follows:

E(3) = (U(3),W(3),V(3),A(3),C(3)) (21)

where,

U(3) =
gρ

dg + hµ
,

W(3) =
b

c
,

V(3) =
h

g
,

A(3) =
bgκ − chφ

chq
,

C(3) =
chµρ − abdg − abhµ

bp(dg + hµ)
.

(22)

This is obtained if
bgk
cφ > h and chρµ

a(dg+hµ)
> b.

2.2. Modified Modeling Approach

dU

dt
= ρ − dU − µ

VU

1+ ηU
,

dW

dt
= µ

VU

1+ ηU
− aW − pWC,

dV

dt
= κW − qVA− φV ,

dA

dt
= gVA− hA,

dC

dt
= cWC − bC,

(23)

where the description of compartments U(t), W(t), V(t), A(t),
and C(t) are presented in Table 2.

2.2.1. Positivity of Solution
For the model (23) transmission to be epidemiologically feasible,
it is necessary to show that for all time every state variable is
non-negative. Thus, the solutions of themodel with non-negative
initial value for all time t > 0 will remain non-negative.

Theorem 2.6. Suppose that the model(23) consists of all feasible
solutions with non-negative initial result then it remains non-
negative for all time t.

Proof: Let the model (23) satisfy that the initial non-negative
solution, i.e.,
U(0) ≥ 0,W(0) ≥ 0, V(0) ≥ 0, A(0) ≥ 0, and C(0) ≥ 0.
It can be deduced from model (23) that is,

dU

dt
= ρ − dU − µ

VU

1+ ηU
. (24)

As the solution of variableU can be computed by following result,

U = U(0)eG +
∫ t

0
πeH(k)d(k) ≥ 0 (25)

where G = −
∫ t
0 G(k)d(k) and H(k) = −

∫ t
0 G(l)d(l). This gives

non-negativity of U(0) ≥ 0 for all t ≥ 0. The non-negativity of
rest variables in the model (23) is given as follows,

dW

dt
= µ

VU

1+ ηU
− aW − pWC,

dV

dt
= κW − qVA− φV ,

dA

dt
= gVA− hA,

dC

dt
= cWC − bC.

(26)

In term of matrix the above can be expressed as,

dF(t)

dt
= H(t)+MF(t) (27)

where F(t) and H(t) are as follows:

F(t) =









W(t)
V(t)
A(t)
C(t)









,H(t) =









a
0
0
0









(28)

and we have matrix M

M =









−a µρ

d
( ηρ

d
+1

) 0 0

κ −φ 0 0
0 0 −h 0
0 0 0 −b









. (29)

The matrix M is a Matzler matrix so by the result presented in
Smith (1996) the model is monotone. the fact thatR4+ is invariant
with respect to stream of model (23).
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2.2.2. Qualitative Analysis
Here we present the stability analysis of (23). The model
(23) is locally asymptotically stable at uninfected and infected
equilibrium points. We investigate the model (23) is locally
stable at uninfected and infected. The uninfected equilibrium
point E0 = (U0, 0, 0, 0, 0) and infected equilibrium point
E∗ = (U∗,W∗,V∗,A∗,C∗) of model (23) are constructed by
following theorems.

Theorem 2.7. The uninfected equilibrium point E0 of the model
(23) is given by

E0 = (U0, 0, 0, 0, 0),

where:

U0 =
ρ

d
.

Proof: By putting the equations in (23) equal to zero, the
dynamics is determined as follows,

ρ − dU − µ
VU

1+ ηU
= 0,

µ
VU

1+ ηU
− aW − pWC = 0,

κW − qVA− φV = 0

gVA− hA = 0,

cWC − bC = 0.

By solving these equations, we got

U0 =
ρ

d
. (30)

This completes the proof.

Theorem 2.8. The model (23) admits a unique infected
equilibrium E∗ = (U∗,W∗,V∗,A∗,C∗) if and only if R0 > 1.

Proof: Calculating the infected equilibrium point, we obtain

U∗ =
−

√

4dηg2ρ + (dg − ηgρ + hµ)2

2dgη

+
ηgρ − dg − hµ

2dgη
,

W∗ =
b

c
,

V∗ =
h

g
,

A∗ =
bgκ − chφ

chq
,

C∗ =
−ab− cdU∗ + cρ

bp
.

(31)

2.2.3. Reproduction Number R0 and Stability Analysis
The basic reproduction number R0 is formulated by evaluating
infection matrix F and transmission matrix V constructed from
Jacobian matrix J of system (23). The reproduction numberR0 is
the spectral radius of matrix FV−1. The Jacobian matrix for J0 for
uninfected equilibrium point is,

J0 =















0 0 − µρ

d
( ηρ

d
+1

) 0 0

0 −a µρ

d
( ηρ

d
+1

) 0 0

0 κ −φ 0 0
0 0 0 −h 0
0 0 0 0 −b















. (32)

The infection and transmissionmatrices, F &V are give as follow:

V =















0 0 µρ

d
( ηρ

d
+1

) 0 0

0 a − µρ

d
( ηρ

d
+1

) 0 0

0 −κ φ 0 0
0 0 0 h 0
0 0 0 0 0















, (33)

F =











0 − µρ

d
( ηρ

d
+1

) 0 0

0 µρ

d
( ηρ

d
+1

) 0 0

0 0 0 0
0 0 0 0











. (34)

The matrix K = FV−1 is constructed as follows:

K =











− κµρ

ad
( ηρ

d
+1

)

φ
− µρ

d
( ηρ

d
+1

)

φ
0 0

κµρ

ad
( ηρ

d
+1

)

φ

µρ

d
( ηρ

d
+1

)

φ
0 0

0 0 0 0
0 0 0 0











. (35)

The spectral radius of matrix K = FV−1 finally provides the
reproductive number for given model (23):

R0 =
µρ(a− κ)

aφ(d + ηρ)
. (36)

The stability analysis of system (23) is presented by
follows theorem.

Theorem 2.9. For uninfected equilibrium point E0 if the real
part of eigenvalues of Jacobian matrix J of the system (23) are
strictly negative, then the system (23) is locally stable otherwise it
is unstable.

Proof: The Jacobian matrix of model (23) for uninfected
equilibrium point J(E0) is formulated as follows:

J(E0) =















0 0 − µρ

d
( ηρ

d
+1

) 0 0

0 −a µρ

d
( ηρ

d
+1

) 0 0

0 κ −φ 0 0
0 0 0 −h 0
0 0 0 0 −b















. (37)
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The eigenvalues of Jacobian matrix J(E0) is evaluated by
characteristic equation det(J(E0) − Iλi) = 0, for i = 1 : 5. The
eigenvalues are given as follows:

λ1 = 0, λ2 = −b, λ3 = −h,

λ4 = 1
2

(√

(a− φ)2 + 4κµρ

d+ηρ
+ a+ φ

)

and
λ5 = 1

2

(

−
√

(a− φ)2 + 4κµρ

d+ηρ
+ a+ φ

)

.

Since the all eigenvalues λi, satisfy the criteria (where as i = 1 : 5).
Hence, the model (23) is locally stable.

2.2.4. Sensitivity Analysis
The sensitivity of basis reproductive

R0 =
µρ(a− κ)

aφ(d + ηρ)
(38)

is analyze with respect to each parameters is as follows:

∂R0

∂a
=

κµρ

a2φ(d + ηρ)
> 0,

∂R0

∂µ
=

aρ − κρ

adφ + aηρφ
> 0,

∂R0

∂ρ
=

dµ(a− κ)

aφ(d + ηρ)2
> 0,

∂R0

∂κ
= −

µρ

adφ + aηρφ
< 0

,
∂R0

∂d
= −

µρ(a− κ)

aφ(d + ηρ)2
< 0,

∂R0

∂φ
= −

µρ(a− κ)

aφ2(d + ηρ)
< 0,

∂R0

∂η
= −

µρ2(a− κ)

aφ(d + ηρ)2
< 0.

(39)

Therefore, the reproductive number R0 is directly proportional
to a, µ, and ρ and inversely proportional to κ , d, φ and η.
The basic reproductive number is R0 = µκρ

adφ
> 1 in case

of infection.
In the absence of an immune responses the model (23)

converges to the following equilibrium points: E(0) =
(U(0),W(0),V(0),A(0),C(0)) which is defined asU(0) = ρ

d
,W(0) =

0,V(0) = 0,A(0) = 0,C(0) = 0. We assumed that the immune
responses is present. This desires following conditions: cW(0) > b
and gV(0) > h.

In this case, the following can be observed:

1. The anti body response can not be established and the CTL
response develops.

Because of strong CTL response and low virus load to
levels, it has the following equilibrium points:

E(1) = (U(1),W(1),V(1)A(1),C(1)),

E(1) = (X,
b

c
,
bκ

cφ
, 0,Y),

(40)

where:

U(1) =
−bκµ − cφ(d − ηρ)

2cdηφ
,

−

√

(bκµ + cφ(d − ηρ))2 + 4c2dηρφ2

2cdηφ
,

W(1) =
b

c
,

V(1) =
bκ

cφ
,

A(1) = 0,

C(1) =
−ab− cdU(1) + cρ

bp
.

(41)

This equilibrium points is obtain if it follows the
following condition:

bgκ
cφ < h and

c
√

4dηg2ρ+(−dg+ηgρ−hµ)2+cdg+cηgρ+chµ

2agη > b.

2. For null sustained CTL response, the antibody response
develops. Because of strong antibody response to relative CTL
response and low virus load to levels which is too small for
stimulate CTL. It has the following equilibrium points:

E(2) = (U(2),W(2),V(2),A(2),C(2)), (42)

which is defined as follows:

U(2) =
−dg + ηgρ − hµ

2dgη
,

−

√

4dηg2ρ + (dg − ηgρ + hµ)2

2dgη
,

W(2) =
gρ

a
− U(2),

V(2) =
h

g
,

A(2) =
gκ(ρ − dU(2))− ahφ

ahq
,

C(2) = 0.

(43)

The equilibrium point satisfies the following criteria:
bgκ
cφ > h

and
c
√

4dηg2ρ+(−dg+ηgρ−hµ)2+cdg+cηgρ+chµ

2agη < b.

3. CTL and anti body response develops. The equilibrium point
is given as:

E∗ = (U∗,W∗,V∗,A∗,C∗) (44)
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FIGURE 1 | Schematic of the model.

FIGURE 2 | For three different values of antibody-SARS-2 interaction rates (q). (Top) without, (Bottom) with delay τ1 = 0.5, τ2 = 0.08.

Frontiers in Molecular Biosciences | www.frontiersin.org 8 April 2021 | Volume 7 | Article 585245

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


Yu et al. Forecasting SARS-2 Delayed Dynamics

where:

U∗ =
−

√

4dηg2ρ + (dg − ηgρ + hµ)2

2dgη
,

+
ηgρ − dg − hµ

2dgη
,

W∗ =
b

c
,

V∗ =
h

g
,

A∗ =
bgκ − chφ

chq
,

C∗ =
−ab− cdU∗ + cρ

bp
,

(45)

under the criteria:
bgκ
cφ > h and

c
√

4dηg2ρ+(−dg+ηgρ−hµ)2+cdg+cηgρ+chµ

2agη > b.

2.3. Delayed Model
Different biological models with delayed transmission are
available in the literature (Maiti et al., 2008; Lv and Yuan,
2009; Kuniya and Nakata, 2012). The schematic 2 presents the

transmission of the virus from one compartment to the other.
The delay takes place after the interaction of virus with the target
cells at τ1, it is further assumed that at delay τ2, the infected cells
and the CTLs interact and the antibodies and the virus interact.

dU(t)

dt
= ρ − dU(t)− µ

V(t)U(t)

1+ ηU(t)
,

dW(t)

dt
=

µV(t − τ1)U(t − τ1)

1+ ηU(t − τ1)
− aW(t),

− pW(t)C(t),

dV(t)

dt
= κW(t)− qV(t)A(t)− φV(t),

dA(t)

dt
= gV(t − τ2)A(t − τ2)− hA(t),

dC(t)

dt
= cW(t − τ2)C(t − τ2)− bC(t).

(46)

2.3.1. Local Stability for Delay Differential Equations
In ODE’s, the local stability of consistent condition relies upon
the area of underlying foundations of characteristic function, that
are polynomial in shape. The unfaltering condition is steady if
the majority of the roots having −ve real part. The outstanding
Routh-Hurwitz criteria provide exact situation for arbitrary
polynomials. For DDE’s, nearby stability is likewise controlled by

FIGURE 3 | For three different values of the replication rate of virus. (Top) without, (Bottom) with delay τ1 = 0.5, τ2 = 0.08.
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the area of trademark work, yet for this situation, this capacity
appears as an alleged quasi polynomial, that is supernatural.
Hence, there are vastly numerous roots. Moreover, the Routh-
Hurwitz criteria are not pertinent. Numerous methodologies
decide the stability of steady states delay equations.

2.3.2. Domain Subdivision
D-subdivision or Domain subdivision, utilizes basic details about
the actions of the roots of characteristic functions, as a parameter
modifies to split parameter space into parts where the no. of
roots with +ve real parts is constant. The roots’ position depends
consistently on the models’ parameter and when the parameters
are altered, another root rises if imaginary root exists for a set
of parameters.

Now we subdivide the parametric domain by hypersurfaces
comprising of parameter routines for which at least one simply
imaginary roots exist. When the districts are limited by these
hypersurfaces, the quantity of roots with+ve real part is constant.
Obviously, the locales where the number is zero and their
supplements are more interesting. This technique is especially

FIGURE 4 | For three different values of g. (Top) without, (Bottom) (with)

delay τ1 = 0.5, τ2 = 0.08.

simple to picture when the framework in question relies upon two
parameters, so the area is R2, and, the hypersurfaces are curve.

3. RESULTS AND DISCUSSION

During this research, we have used the MatlabTM delay
differential equations bifurcation analysis tools. For the validity of
the computational model, extensive numerical experiments were
conducted using simulink toolbox.

3.1. Analysis of SARS-CoV2 and Antibodies
Interaction
With the aid of mathematical model we have concluded
the following:

1. The analysis of lytic vs. non lytic immune response plays an
important role in infection control.

2. TheHill function is important in kineticmodeling and theHill
coefficient is important parameter to forecast a complete cycle
of infection.

3. The analytic approach and numerical Matcont bifurcation
analysis proved to be efficient in parametric approximation for
such complex dynamics.

Figure 1 presents the schematic to understand the interaction
of key players. Figure 2 provides the phase space portraits to
explore the interaction between the CTL’s, the anti bodies and
the virus, for three different values of q. We can see that for
increasing values of q, there is reduction in the concentration
of CTL, as well as the length of the cycle increases over time
(top panel). On the other hand, when delay was considered,
the dynamics were different. Figure 3 provides analysis relative
to the replication rate of virus. Figure 4 presents the dynamics
relative to the parameter g. We can see a twist in the phase
space portraits when the delay was taken into account. In
the supplementary figures, (Figures S1 and S2, we can see the
dynamics more clearly relative to change in parametric values).
We can see that the dynamics are more visible to witness the
rapid action of SARS-2. Thus, a model without delay, and
with η = 0 will not be able to demonstrate the dynamics
well. We thus conclude that the disease transmission and the
immune response depends on time delay as well as nonlinear
Hill formalism.

4. CONCLUSIONS AND FUTURE WORK

The manuscript presents a state of the art model, with delay,
from one compartment to the next due to transition. In
nature, there is always a delay in the onset of infections.
The proposed mathematical model quantifies and analyzes this
imbalance and describes the temporal trend of the phenomenon,
leaving its application open to possible direct therapies in
that sense.

• Mathematical analysis of the non-lytic and lytic action of the
immune reaction to SARS-CoV2.

• Construction of a model that describes the balance between
antibody reaction and cellular reaction mediated by CTL cells.
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• Analysis of the imbalance between non-lytic and lytic action of
the immune response.

• Description and quantification of the model related to the
infection and functionality of CTL cells over time.

• Evidence of delay in disease transmission.
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