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The use of nanoparticles (NP) in diagnosis and treatment of many human diseases,
including cancer, is of increasing interest. However, cytotoxic effects of NPs on cells and
the uptake efficiency significantly limit their use in clinical practice. The physico-chemical
properties of NPs including surface composition, superficial charge, size and shape are
considered the key factors that affect the biocompatibility and uptake efficiency of these
nanoplatforms. Thanks to the possibility of modifying physico-chemical properties of
NPs, it is possible to improve their biocompatibility and uptake efficiency through the
functionalization of the NP surface. In this review, we summarize some of the most
recent studies in which NP surface modification enhances biocompatibility and uptake.
Furthermore, the most used techniques used to assess biocompatibility and uptake are
also reported.

Keywords: nanoparticles, toxicity, biocompatibility, uptake, functionalization

INTRODUCTION

Nanoparticles (NPs) are ultrafine particles with a size between 10 and 500 nm composed of
different organic and/or inorganic materials (Jeevanandam et al., 2018). These particles have
been widely studied because of their unique properties and find suitable application in a great
number of biomedical fields like biomolecule detection, vaccines, regenerative medicine, and tissue
engineering, gene and drug delivery, cancer therapy, high accuracy diagnosis, and theranostics
(Rudramurthy and Swamy, 2018).

When NPs are used in biomedical applications two very important characteristics must be
considered: toxicity and cellular uptake (Rees et al., 2019; Santos-Rasera et al., 2019; Zhang C.
et al., 2019). In fact, the biocompatibility of NPs is one of the most critical characteristics of nano-
platforms to be suitable for biomedical purposes (Elmowafy et al., 2019; Liu et al., 2020), and the
NPs capability to be internalized by target cells, compared to not-target cells, is a very important
goal (Emami et al., 2019; Khan et al., 2019; Khanna et al., 2019).

The use of NPs has grown exponentially in the last 15 years especially for cancer treatment,
because of their capability to perform high precision tasks, such as the delivery of drugs and
imaging contrast agents (CAs) directly to tumor cells (Panebianco et al., 2019; Zhang X. et al., 2019),
by using a large number of molecular targets (Yoo et al., 2019). In particular, the accumulation
of nanocarriers in cancer cells can occur through two different mechanisms: passive and active
targeting. In passive targeting, NPs accumulate in the proximity of the tumor site as result of
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the altered permeability of tumor blood vessels. This
phenomenon, known as the enhanced permeability retention
(EPR) effect, permits the passive accumulation of NPs to solid
tumors and/or metastatic sites, simply through their particular
physical properties including size, shape, and superficial charge
(Maeda, 2015). Active targeting exploits the biofunctionalization
of the NPs surface by using ligands with a strong affinity and
specificity for overexpressed receptors and molecules on the
tumor cells (Bertrand et al., 2014; Yoo et al., 2019) or secreted
proteins in the tumor microenvironment (TME) (Huai et al.,
2019). Active and passive targeting are phenomena often occur
simultaneously, and one does not preclude the other (Figure 1).

The use of NPs for active targeting of drugs and/or contrast
agents is based on the interaction of properly modified NPs
surface with a molecular target overexpressed by cells and tissues.
The molecules used to modify the NPs surface include small
proteins, peptides, antibodies, aptamers, and oligosaccharides
(Large et al., 2019; Yoo et al., 2019). Furthermore, the biochemical
modification of the NPs surface with these specific targeting
ligands is often necessary to reduce toxicity (as widely applied
for silver NPs) and to increase their stability in biological fluids
(Guerrini et al., 2018; Borowik et al., 2019). An example is
represented by the use of human albumin, whose presence
on the NPs surface reduces toxicity and achieves active
targeting at the same time (Li D. et al., 2018; Sanità et al.,
2020).The chemical modification of the NPs surface is a step-
by-step process that requires chemical-physical and biological
characterization for each step. Transmission electron microscopy
(TEM), scanning electron microscopy (SEM), Fourier transform
infrared spectroscopy (FTIR), dynamic light scattering (DLS),
and ζ -potential analysis are some of the most useful and simple
techniques used to study shape, size, chemical composition, and
superficial charge of NPs (Rea et al., 2014; Silvestri et al., 2019).
In contrast, the biological evaluation of NPs requires a more
complex analysis with the assessment of numerous variables
depending on the experimental model, conditions, and other
specific parameters (Terracciano et al., 2015; Barot et al., 2020;
Sanità et al., 2020). In conclusion, it is crucial to consider the
effects of the NPs surface modification on stability, uptake,
and biocompatibility to achieve an efficient nanoplatform for
biomedical applications.

The focus of this review is to summarize the most used
techniques to evaluate NPs toxicity and uptake and to describe
the most useful strategies to avoid these issues through the
modification of the NPs surface.

THE ROLE OF NANOPARTICLES IN
CANCER DISEASE

NPs can be applied to cancer for two main purposes: diagnosis
and therapy (Borkowska et al., 2020; Tammaro et al., 2020).
The usage of nanoplatforms for diagnosis can be classified by
two different approaches: biomolecule detection and imaging
techniques. Biomolecule detection is based on the identification
of tumor markers that are often present in a very small amount
in biological samples (Marrugo-Ramírez et al., 2018). The

possibility to modify NPs by specific ligands with high affinity for
these markers can improve the identification and quantification
of desired compounds (Kiplagat et al., 2019).

Medical imaging techniques have evolved very quickly over
the past 20 years, overall in cancer disease, to identify very little
tumor masses for an early diagnosis (Kumar et al., 2019; Li et al.,
2019c; Vaidya et al., 2019). This evolution has occurred through
the combined use of classical imaging techniques (like MRI, PET
and SPECT) with NPs (Forte et al., 2019; Song et al., 2020) and
advancing toward the use of innovative imaging techniques like
photoacoustic (PA), surface-enhanced Raman scattering (SERS),
and near infrared light up-conversion (NIR-Up) (Silvestri et al.,
2019; Ge et al., 2020; Kim et al., 2020). All these techniques are
very useful in combination with NPs-mediated delivery in order
to accumulate CAs in the tissues of interest.

For cancer therapy, there are currently numerous agents
available depending on the disease stage, location, type of tissue,
age, and conditions of the patient (Reece-Mills et al., 2016;
Cohen, 2017). The use of classical chemotherapeutic compounds,
radiation, and surgical interventions are still useful and widely
used for treating tumors, but the side effects are often a serious
concern (Oun et al., 2018; Schirrmacher, 2019). Furthermore,
the recurrence of cancer due to the incomplete removal of
malignant cells is a major reason of poor prognosis (Chihara
et al., 2017; Corrado et al., 2017). The use of NPs for an early
and precise identification of cancer cells can help to avoid delayed
diagnosis, and the specific delivery of a limited amounts of drug
directly to cancer cells can effectively reduce chemotherapy-
related side effects (Parvanian et al., 2017; Zhao et al., 2018; Chen
Y. et al., 2019). At the same time, the usage of NPs can be useful
to bypass the drug resistance of some tumors, like melanoma
(Naves et al., 2017; Avagliano et al., 2019). In this scenario, the
surface modification of NPs represents an important strategy to
successful develop specific and biocompatible nano-platforms for
precise and sensitive therapy and/or diagnosis.

METHODS FOR NPs SURFACE
MODIFICATION AND UPTAKE AND
BIOCOMPATIBILITY EVALUATION

The surface modification of nanoparticles is a powerful
methodology to fix or attenuate issues related to NPs toxicity
and uptake, since both phenomena are closely related to the NPs
surface composition.

Surface Modifications: Covalent and
Non-covalent Bonds
The surface functionalization of NPs involves a process that aims
to improve and/or add properties useful for the use of NPs
in medical applications. Different types of nanomaterials have
characteristic chemical properties and functional groups exposed
on their surface to be used in the first steps of functionalization.
Generally, the first phase of the surface modification is based
on the use of homo- or hetero-bifunctional cross linkers to the
aim to add an organic functional group (R-NH2, R-COOH, etc.),
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FIGURE 1 | Active and passive uptake of nanoparticles. NPs, Nanoparticles; EPR, Enhanced permeability retention (Created with BioRender.com).

useful to bind biological molecules. For silica NPs, the most
used linkers are aminosilanes that introduce an amino group on
the NPs surface for the next bio-conjugation (Jung et al., 2012;
Rea et al., 2014). Noble metals, like gold, can be functionalized
by using crosslinkers with -SH or -NH2 groups able to react
with the metal and to produce a covalent bond. These bi-
functional linkers, such as thio-carboxylic acids, have at the other
end functional groups to use for binding ligands (Banihashem
et al., 2020). Metal oxides can be easily modified by using a
ligand exchange strategy based on the substitution of the original
surfaces with functional groups such as diol, amine, carboxylic
acid, and thiol useful for the next steps (Korpany et al., 2016).
The carbon-based nanomaterials contain a significant fraction of
sp2 hybridized carbon atoms that can be exploited to generate
functional groups. Through the oxidation it’s possible to generate
-COOH, -OH, and -C = O on the NPs surface (Chen et al.,
2016); through halogenation, it’s possible to obtained halogenated
carbon that can be further modified, for example by reaction with
the amine group (Poh et al., 2013); through cycloaddition it’s
possible to insert different type of functional groups (Kiang Chua
and Pumera, 2013). Table 1 summarizes types of nanomaterials,
their chemical groups and/or composition, and the suitable
compounds or processes that can be used for surface modification
by using crosslinkers.

TABLE 1 | Resume of the most common strategies used to modify NPs surface
related to the nanomaterials.

Material Usable functional/chemical
groups

Example of chemical
compounds/

processes suitable for
surface modification

Silica −SiOH X-Si(OC2H5)3
Noble metals −Au; −Ag (plasmonic metals) X-SH, X-NH2

Metal oxide MOx X-COOH; X-(OH)n; X-NH2

(adsorption)

Carbon based sp2 hybridize carbon Oxidation; halogenation,
cycloaddition . . .

The modification of the NPs surface can be achieved using two
different approaches: non-covalent and covalent conjugation.
The non-covalent strategy is based on a large number of weak
interactions (electrostatic, ionic, van der Walls and hydrophobic
interactions, absorption, hydrogen bonds) and it is specially used
with metallic and silica NPs (Cheng et al., 2011; Nell et al.,
2016; Yue et al., 2019). Non-covalent bonds have the advantage
of being relatively simple and do not affect the structure
of the used molecules and their interaction with biological
targets. Conversely, non-covalent modifications can be easily
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influenced by different variables, such as pH and ionic strength
(Nobs et al., 2004).

The covalent bond strategy can be obtained by using many
alternative approaches, depending on the composition of the NPs
(Abánades Lázaro et al., 2017; Oriana et al., 2018; Sakaguchi et al.,
2019). Moreover, this strategy allows modifications at several
levels using sequential functionalization (Gong et al., 2015; Tian
et al., 2015; Świetek et al., 2019). This methodology can be
exploited to achieve structures with multiple functions (Chen
and He, 2015; Luo et al., 2016), such as diagnosis and therapy to
implement the theranostic approach (Shen et al., 2017; Jung et al.,
2018). Usually, the covalent bond of ligands to the NPs surface
can be achieved using various linker molecules. An example is
PEG, that can be synthesized with specific functional groups at
the ends and used as homobifunctional or heterobifunctional
linkers to perform a wide range of functionalization processes.
Pagels et al. (2020) showed how the production of specific
heterobifunctional PEG molecules is still an active research
field and how this molecule can be very useful to design
efficient nano-platforms for medical applications. Thanks to its
polymeric nature, PEG can be also used as a spacer for high
molecular weight molecules in order to space them across the
surface of the NPs and to reduce steric hindrance of bonded
ligands, allowing bioconjugation at high density (Chen S. et al.,
2017). Generally, non-covalent interactions are used to load
nanoparticles with molecules that must be released in target
cells, such as drugs or RNAi, while covalent bonds are employed
to bind ligands useful to achieve targeting and/or to reduce
he toxicity of NPs. Recently, the use of sensitive bonds, such
as pH-sensitivity or heat-sensitivity, to develop nanoplatforms
for a controlled drug-release has been widely explored (Tai
et al., 2009; Lv et al., 2016; Deirram et al., 2019). In particular,
the tumor microenvironment is very acidic when compared to
the normal microenvironment. pH-sensitive nano-platforms can
been designed for controlled drug release specifically triggered
by the acidity of the tumor environment. In a recent work,
a cationic polymer PBAE pH-sensitive was used to cover
liposome NPs loaded with doxorubicin. Furthermore, the NPs
surface was modified with hyaluronic acid (HA) to perform
active targeting via CD44. In vivo experiments confirmed the
results obtained in vitro, showing that the DOX-loaded NPs
inhibited the growth of tumor more efficiently compared to
free drug and also reduced side-effects (Men et al., 2020).
Another example of pH-sensitive NPs is reported by Taleb
et al. (2019). In this work, mesoporous silicon nanoparticles
were functionalized with amine conjugated phenylboronic acid
linked to dopamine with a pH-sensitive covalent bond. In a
weakly acidic environment, as like the tumor environment, the
nanoparticles released dopamine owing to the hydrolysis of
boronic-ester bond between the two molecules. This intelligent
release resulted in an inhibition of vascular endothelial cell
migration and tubule formation.

Evaluation of NPs Uptake
Several methods have been used to evaluate the internalization
of nanoparticles in a specific cellular context that can be
distinguished as label-free and label-based techniques. Among

the label free methods, the most commonly used are transmission
electron microscopy (TEM), scansion electron microscopy
(SEM), and Raman microscopy. These procedures, unlike label-
based ones, have the advantage of not requiring the use of
fluorophores that could affect the NPs size or chemical properties.
Furthermore, using labeled-NPs complicates the discrimination
of internalized NPs or those attached to the cell membrane.
Conversely, TEM and SEM imaging, despite offering high-
resolution down to the cellular organelle scale, are relatively
expensive and time-consuming. Furthermore, TEM and SEM,
unlike Raman microscopy, are destructive imaging approaches.

TEM analysis is widely used to study nanoparticle uptake
and cellular localization. Rio-Echevarria et al. (2019) showed
a better affinity of the epoxy-coated SiO2 nanoparticles for
the cell membrane, compared to bare NPs, in A549 cells and
human monocytes. Furthermore, TEM allowed to identify the
nanoparticles in endosomes. Youhannayee et al. (2019) used
TEM analysis to evaluate the uptake of bare and APTES-
coated iron oxide nanoparticles in PC3 (prostate cancer epithelial
cell) and BPH1 (benign prostate hyperplastic epithelia cell)
cell lines. Results showed that PC3 cells internalized coated
particles with higher efficiency than BPH1 cells. Boyoglu
et al. (2013) used SEM analysis to correlate the size of gold
nanoparticles with their cellular localization in HEp-2 cells.
Results showed that the presence of nanoparticles in the cytosol
and nucleus was simply based on their sizes, regardless of the
incubation time.

Among label-free techniques, Raman microscopy presents
several advantages useful to study nanoparticles uptake.
Compared to SEM and TEM analysis, Raman microscopy
requires minimum sample preparation and allows in vitro
and in vivo cellular imaging. This methodology was used by
Managò et al. (2018) to evaluate the internalization kinetics
and intracellular localization of diatomite-based nanoparticles
in a lung epidermoid carcinoma cell line. The results indicated
the presence of NPs up to 72 h, without damage to cell
viability or morphology. Raman microscopy has also been
used to study the uptake of metal-based nanoparticles.
Using this technique, Chaves et al. (2017) explored the
cellular uptake of iron oxide nanoparticles in breast cancer
cells. The NPs were totally internalized in cells, displaying a
cytoplasmic localization with a direction toward the nucleus after
24 h of incubation.

Label-based techniques include methods that exploit a
fluorescent signal emitted by the nanoparticles. This signal can
be attributed to an intrinsic property of the NPs (Suzuki et al.,
2007; Chen et al., 2014) or to the use of a fluorophore added
to the nanoparticles. This modification can be obtained adding
the fluorescent tag inside the NPs structure during synthesis or
binding the tag to the NPs surface.

The use of this approach to study NPs cellular uptake has
several advantages like the ease of use, no need or simple
specimen preparation, possibility to analyze live-cells and to
perform time-lapse acquisitions. However, fluorescence methods
do not allow a quantitative analysis, but only comparison between
different experimental conditions (semi-quantitative analysis).
This is due to the fact that the signal is not absolute because
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its intensity depends on the excitation source, the number of
fluorophores per NP, the quantum yield of fluorophores or the
NP itself, and the sensitivity of the detector (Drasler et al., 2017).

The most used label-based techniques to study NPs cellular
uptake are confocal fluorescent microscopy (CFM) and
flow cytometry (FC).

Owing to very high resolution, contrast and penetration
depth, CFM allows the detection of very low amounts of NPs
and to localize them to cellular compartments. Costanzo et al.
(2019) used CFM to study the uptake of various types of NPs
[liposomes, mesoporous silica NPs, poly(lactide-co-glycolide)
NPs, and nanohydrogels] in myoblasts with a high proliferative
rate and in myotubes characterized by a low proliferative rate, to
correlate proliferative rate with NPs uptake. The results showed
that there was a lower uptake in myotubes compared to myoblasts
and the inability to penetrate in nucleus by all analyzed NPs
in both cell types. Silvestri et al. (2019) evaluated melanin-silica
hybrid nanoparticles uptake in two pancreatic cancer cell lines
where NPs appeared as punctate small vesicles, indicating an
endocytic mechanism of internalization.

The use of flow cytometry to study NPs uptake is widely
used, despite the impossibility of discriminating NPs attached
on cellular surface from the internalized ones. Jochums et al.
(2017), using NPs labeled with the fluorescent dye fluorescein
isothiocyanate (FITC), evaluated TiO2 NPs uptake in NIH/3T3
and A549 cell lines. The authors observed that NIH/3T3 cells
internalized the TiO2 NPs more efficiently than A549 cells,
confirming the importance of the cell type in the uptake
behavior. Flow cytometry can also be used to investigate the
internalization pathway of the nanoparticles. Gao et al. (2013)
investigated the uptake pathway of bare and IL13-modified
nanoparticles using several specific endocytosis inhibitors and
flow cytometry. Their results showed that bare NPs were
internalized by macropinocytosis while IL13-modified NPs
were internalized by a clathrin-mediated pathway, typical of a
receptor-mediated uptake.

NPs Biocompatibility Evaluation
To study NPs biocompatibility, there are several aspects,
summarized in Figure 2 that can be evaluated: cell viability
(Figure 2A), cytotoxicity (Figure 2B), proliferation (Figure 2C),
apoptosis/necrosis (Figure 2D), cellular morphology alteration,
oxidative stress (Figure 2E), inflammatory response, and
hemotoxicity (Figure 2F). Using different methodologies
exploiting commercial kits and/or protocols adapted to the
type of analysis it is possible to assess these aspects. Some
of the most useful markers/pathways are summarized in
Table 2.

NPs SURFACE MODIFICATION TO
ENHANCE BIOCOMPATIBILITY AND
UPTAKE

The physiochemical properties of NPs, like shape, size, charge,
material and surface chemical groups, influence their toxicity

and uptake efficiency. Some of these, such as surface charge and
chemical groups, can be easily modified by surface modification.

Biocompatibility and Immune Escape
The functionalization of the NPs surface to enhance
biocompatibility can be exploited by using different molecules;
among these PEG is one of the most used for in vitro and
in vivo applications. Kostiv et al. (2017) showed how the
addition of PEG on the surface of Fe3O4 and SiO2 NPs increased
the biocompatibility when PEGylated NPs were used at high
concentrations (200 µg/mL) with murine neural stem cells,
unlike bare Fe3O4&SiO2 that caused a viability reduction of
about 50% already at a dose of 20 µg/mL. This study is a clear
example of the high convenient properties of PEG to increase
NPs biocompatibility. Furthermore, the presence of PEG on the
NPs surface also improves the hemocompatibility, as observed
with chromium-doped zinc gallate and diatomite based NPs
(Terracciano et al., 2015; Jiang et al., 2019).

To reduce the toxicity of NPs, dextran is a widely used
to modify nanoparticles. Dextran is a complex branched
polysaccharide usually exploited to modified iron-oxide NPs
surface. de Oliveira et al. (2017) showed how the addition of
dextran to iron-oxide NPs increased biocompatibility in zebrafish
larvae; in particular, the treatment with dextran-coated NPs
did not determine any significant mortality or changes in the
hatching rate of the larvae. The toxicity of dextran modified iron-
oxide NPs was also investigated by Balas et al. (2017) on Jurkat
cells. The authors observed low toxicity and small effects on
membrane integrity up to 72 h of incubation. The use of dextran
with iron-oxide nanoparticles to improve biocompatibility was
also studied using primary cells. Wu et al. (2018) demonstrated
that dextran-NPs had no significant effects on cell viability and
apoptosis on human primary monocytes cells.

A further oligosaccharide generally used to enhance NPs
biocompatibility is chitosan, as reported by Shukla et al. (2015)
and Peng et al. (2017). Shukla et al. (2015) observed a decrease
of toxicity in three different cell lines when chitosan-NPs were
compared to iron-oxide NPs. Peng et al. (2017) used chitosan
to modify silver NPs. Results showed that chitosan-coated silver
nanoparticles had higher biocompatibility when compared with
silver nanoparticles without surface modification in human
fibroblast cells.

A more complex NPs surface modification as way to enhance
biocompatibility, stability and dispersity was been reported by
Han et al. (2016). The study demonstrated that encapsulation of
mesoporous silica NPs using a lipid bilayer is a useful way to
improve biocompatibility and hemocompatibility.

Besides the increase of biocompatibility, NPs surface
modification is a very important tool for the modulation of
the body’s immune response against the particles (Qie et al.,
2016; Boraschi et al., 2017; Visalakshan et al., 2019). NPs, after
the injection in blood flow, interact with a lot of aspecific
proteins like opsonin, complement proteins, immunoglobulins,
fibronectin, and apolipoproteins (protein corona) and this
interaction can modify NPs behavior and can trigger an immune
response (Barbero et al., 2017). The NPs surface modification can
be exploited to promote their escape from the immune system
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FIGURE 2 | Biocompatibility evaluation assays (Created with BioRender.com). In red the chemical groups that react with the nanomaterial. X, organic/inorganic free
chemical groups used to bind the ligands. (A) Cell Viability, (B) Cytotoxicity, (C) Cell Proliferation, (D) Apoptosis and necrosis, (E) Oxidative stress, (F) Hemolysis.

and to increase their half-life in blood by reducing the clearance
due to macrophages of the mononuclear phagocyte system
(MPS). Conversely, in the next-generation vaccines, the NPs
surface modification can trigger the immune response toward a
specific antigen (Ahmad S. et al., 2019; Cappellano et al., 2019;
Gu et al., 2019).

Escape from the immune system can be obtained through the
modification of NPs surface with different types of molecules
that make NPs “invisible” to the immune system cells. For this
purpose, the most used compounds are hydrophilic polymers
that bind water molecules producing a shield on NPs surface.
This layer of water reduces the interaction with opsonin and/or
macrophages receptors (Pinzaru et al., 2018). This strategy can

increase NPs circulation time and can reduce the clearance
(Abdollah et al., 2018).

Uptake
It is well known that the cellular uptake of NPs is influenced by
the physicochemical properties of NPs, such as its composition,
size, shape, surface charge, surface functionalization, and surface
hydrophobicity/hydrophilicity. When nanoparticles interact
with the constituents of the plasma membrane, they are mainly
taken up by cells by endocytosis, which is commonly classified
in phagocytosis (macrophages) and pinocytosis (all cellular
types). The latter can be distinguished in clathrin-dependent
endocytosis, caveolae-dependent endocytosis, macropinocytosis,
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TABLE 2 | Biocompatibility evaluation assays used to asses NPs toxicity.

Description Detection method Info References

Cell viability
(evaluation of cells health state)

Measure of ATP concentration Fluorescence, colorimetry,
luminescence

The ATP assay showed very high versatility and ease-to-use in fact
it is used for several different types of nanoparticles like high-density
lipoprotein, gold, silver and silica. Furthermore, the use of
luminescence as ATP quantification method doesn’t show
interference with fluorescence/adsorption of nanoparticles

Vetten et al., 2013; Cao et al.,
2017; Suganuma et al., 2017;
Fehaid and Taniguchi, 2019;
Silvestri et al., 2019; Wang
et al., 2019

Evaluation of NAD+/NADH ratio Luminescence, colorimetry,
fluorescence

NAD+ and NADH are very important molecules for a lot of cellular
processes and their levels are related to cell health. The disponible
luminescence-based assays can avoid fluorescence/adsorption of
NPs

Da Veiga Moreira et al., 2016;
Patgiri et al., 2020

Measure of mitochondrial
membrane potential (19m)

Fluorescence 5,5′,6,6′-Tetrachloro-1,1′,3,3′-tetraethyl-imidacarbocyanine iodide
(JC-1) dye accumulates in the mitochondrial membrane depending
on membrane potential. The high potential of the inner
mitochondrial membrane induces the formation of the dye
aggregates. Free dye and aggregates have different fluorescence
properties. This shift is used to analyze mitochondria membrane
potential

Chen C. et al., 2017; Popov
et al., 2020

Evaluation of
membrane/cytosolic esterase
activity

Fluorescence Membrane esterase evaluation to study cell viability is widely used
to assess NPs toxicity both with flow cytometry and fluorescence
microscopy analysis to obtain semi-quantitive and qualitative data,
respectively

Bancos et al., 2012; Grudzinski
et al., 2013; Singh and
Lamprecht, 2016;
Hernandez-Delgadillo et al.,
2018; Silvestri et al., 2019

Measure of oxygen
consumption and glycolysis

Fluorescence, Luminescence The evaluation of extracellular oxygen consumption rates (OCR) is
directly related to cell health and mitochondria activity. Furthermore,
the evaluation of L-lactate produced by glycolysis is widely used to
evaluate cellular health state

Luo et al., 2015; Grahovac
et al., 2019; Yun et al., 2019;
Zhu et al., 2019; Adeyemi et al.,
2020

Evaluation of live-cell protease
activity

Fluorescence The live-cell protease activity is limited to intact cells and it is
evaluated by using a fluorogenic cell-permeant peptide as substrate
(Gly-Phe-AFC). It is interesting that live-cell proteases activity
decreases when plasmatic membrane loses its integrity and the
enzymes are released in culture medium. This feature can help to
discriminate alive cells from dead cells and to reduce false positives

Amin et al., 2017; Zhang et al.,
2020

Cytotoxicity
(evaluation of dead cells)

Membrane damage evaluation
by dye exclusion

Colorimetry The evaluation of membrane integrity alteration assessed with dyes
(usually Trypan Blu and Erythrosine B) is easy and cheap, but in dye
exclusion cytotoxicity assays (i) survive live cells can continue to
proliferate and (ii) some dead cells can’t be revealed because they
may undergo to an early disintegration

Bejjani et al., 2005; Karlsson
et al., 2008, 2013; Fakhimikabir
et al., 2018

Activity evaluation of released
lactate dehydrogenase

Colorimetry, Fluorescence,
Luminescence

The release of lactate dehydrogenase from cells is one of the most
useful marker of cell death. NPs could interfere with enzymatic
activity and/or with colorimetric assays

Forest et al., 2016; Chen C.
et al., 2017; Gea et al., 2019;
Hu et al., 2019
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TABLE 2 | Continued

Description Detection method Info References

Activity evaluation of cell-death
related proteases

Fluorescence, Luminescence Cell death-proteases release assay estimates the activity of the
intracellular enzymes when they are released after membrane
damage. These cell-death proteases have high activity on specific
target sequences (like Ala-Ala-Phe-R), different from the other
intracellular proteases (like Gly-Phe-R) and for this reason the assay
is very specific. Furthermore, the possibility to perform
luminescence assay can reduce NPs interference

Gonnissen et al., 2016; Iglesias
et al., 2017; Zhang et al., 2017;
Gurunathan et al., 2018

Cell proliferation
(evaluation of mitotic rate)

Evaluation of DNA synthesis Fluorescence, Colorimetry,
Luminescence

The evaluation of cell proliferation through DNA synthesis is
performed by incorporation of nucleoside-analog like
5-bromo-20-deoxyuridine (BrdU) in DNA. This simple assay is
widely used to assess cell proliferation and genotoxicity in presence
of different nanomaterials. Furthermore, BrdU assay can be
performed both in vitro and in vivo

Ruizendaal et al., 2009;
Hernández-Ortiz et al., 2012;
Al-Qubaisi et al., 2013b; Chen
M. et al., 2019; Kutwin et al.,
2019

Dye dilution Fluorescence During cell proliferation for each generation the amount of dye in
each cell is shared between two cells. The cell proliferation can be
monitored by analysis of dye fluorescence reduction

Protein cell nuclear antigen
activation (PCNA)

Chemiluminescence,
Fluorescence, Colorimetry

PCNA is a DNA clamp essential for DNA replication in eukaryotic
cells. Its concentration increases during cell proliferation. PCNA has
a lifetime of about 20 h and for this reason it could be detected also
in non-proliferative cells, causing wrong data about cell proliferation

Khdair et al., 2010; AshaRani
et al., 2012; Chairuangkitti
et al., 2013; Li Q. et al., 2018;
Kutwin et al., 2019

Ki-67 activation Chemiluminescence,
Fluorescence, Colorimetry

Ki-67 protein concentration increases in nucleus during cell
progression in S phase. Ki-67 that is present in all cell cycle steps
except in G0 state has a half-life of about 36 h and could be still
detected in the first phase of quiescence

Ludwig et al., 2017; Marino
et al., 2018

Minichromosome maintenance
protein 2 (MCM-2)

Chemiluminescence,
Fluorescence, Colorimetry

MCM2 is a protein involved in the beginning of DNA replication
(pre-replication complex) and cell proliferation. MCM2 is highly
expressed in early G1, low expressed in S, G2, and M phases, and
it is totally absent in G0. Furthermore, MCM2 shows distinct cellular
localization in cycling cells and this pattern can be used to evaluate
cellular proliferation

Yang et al., 2010

Phosphohistone H3 (PPH3) Chemiluminescence,
Fluorescence, Colorimetry

Histone-3 is extensively phosphorylated (serine-10 and serine-28)
during mitosis and it is widely used to study cell proliferation

Duong Le et al., 2016;
Surapaneni et al., 2018; Tang
et al., 2018; Brzóska et al.,
2019
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TABLE 2 | Continued

Description Detection method Info References

Apoptosis and necrosis
(evaluation of
apoptotic/necrotic cells)

Evaluation of DNA content Fluorescence One of the most used molecules to study DNA content is propidium
iodide. This molecule has fluorescent excitation maximum at
495 nm and emission maximum at 630 nm. When PI binds DNA its
quantum yield increases of about 20–30 folds and a significative
fluorescence red shift (535/615 nm) is observed. PI used at low
concentrations (<50 µg/ml) cannot pass through the biological
membranes of healthy cells but can penetrate into damaged cells
like necrotic or late apoptotic cells, allowing their identification.
Furthermore, the use of a permeabilizing that allows PI entry in all
cells makes possible to evaluate apoptotic cells by studying cell
cycle pattern (due to DNA fragmentation, apoptotic cells have lower
DNA content compared to healthy cells)

Kumar et al., 2015; Li et al.,
2019b; Silvestri et al., 2019;
Yang et al., 2019a

Evaluation of
phosphatidylserine
translocation

Fluorescence To discriminate necrotic cells from apoptotic ones an additional
staining is necessary. During early apoptosis process, translocation
of phosphatidylserine (PS) from the inner to the outer side
(extracellular side) of the plasma membrane can be detected by
using Annexin V protein conjugated with several different
fluorescent dyes.
Propidium Iodide Annexin V Type of cell
Negative Negative Healthy cell
Negative Positive Early apoptotic cell
Positive Negative Necrotic cells
Positive Positive Late apoptotic cells

Kim et al., 2019; Xiao et al.,
2019; Zhu et al., 2019;
Adeyemi et al., 2020; Ding
et al., 2020; Elkeiy et al., 2020

Measure of nick breaks in DNA Fluorescence, Colorimetry The most used assay to evaluate the fragmentation of nuclear DNA
in consequence of apoptosis is the TUNEL assay. This assay is
based on the use of an enzyme (Terminal Deoxynucleotidyl
Transferase) that adds dUTP to the 3’-OH DNA ends. The use of
labeled dUTP (with fluorescent or chromogenic dyes) can allow the
identification and the quantification of DNA fragments by using
microscopy or flow cytometry

Popovtzer et al., 2016; Yu
et al., 2017; Phuong et al.,
2018; Ding et al., 2020

Evaluation of PARP protein
cleavage

Chemiluminescence,
Fluorescence, Colorimetry

Poly-ADP-ribose polymerase (PARP) is widely used to assess
apoptosis. In apoptotic cells PARP is a substrate for caspase-3
enzyme. PARP protein (116 kDa) and its cleavage by caspace-3 in
apoptotic events (which produces an 85 kDa fragment) is a useful
marker to evaluate apoptosis

Kang et al., 2009; Zhang et al.,
2013; Al-Shakarchi et al., 2018;
Wang et al., 2018; Ahmad N.
et al., 2019

Evaluation of caspases and
their cleavage

Fluorescence, Luminescence,
Colorimetry,
Chemiluminescence

Caspase are very important markers of apoptosis. They are
synthesized how pro-enzymes and activated during apoptosis by
proteolytic cleavage. There are several different ways to evaluate
the active enzymes based on the use of specific antibodies: flow
cytometry, western blot or immunohistochemistry. Furthermore, it is
possible to evaluate caspases enzymatic activity in cells by using
specific substrates trough fluorescence, colorimetry or
luminescence both in real-time and in cellular extracts

Baharara et al., 2016;
Al-Shakarchi et al., 2018;
Blanco et al., 2018; Kalaiarasi
et al., 2018; Ahamed et al.,
2019; Kang et al., 2009;
Baharara et al., 2016; Banerjee
et al., 2017; Zhang et al., 2017;
Kalaiarasi et al., 2018
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TABLE 2 | Continued

Description Detection method Info References

Cytochrome C release Chemiluminescence,
Fluorescence, Colorimetry

The enrichment of cytochrome C in cytoplasm and its decrease in
mitochondria can be detected by several techniques, like western
blot or immunofluorescence

Al-Qubaisi
et al., 2013a

Measure of other apoptosis associated
proteins: ATM, AIF, Apap-1, Bcl-2, Bcl-10,
Bcl-x, Bcl-XL, Bcl-XS, Bcl-w, t-BID/BID-p15,
Fas/CD95, Fas-ligand/CD178, Smac/DIABLO,
p53.

Chemiluminescence,
Fluorescence, Colorimetry

There are a lot of proteins involved in apoptosis that can be
detected by using specific antibodies

Plackal
Adimuriyil
George et al.,
2018

Hemotoxicity Hemoglobin release assays Spectrophotometric and naked
eye

Hemolysis can be easily evaluated by measuring hemoglobin
released from red blood cells by naked eye evaluation (qualitative)
or by spectrophotometric analysis at 577 nm (quantitative)

Sanità et al.,
2020

Oxidative stress General oxidative stress Fluorescence, Luminescence General oxidative stress assays are based on cell-permeable
molecules with low or not fluorescence in a reduced state. When
these molecules go inside cells they will be oxidized and become
fluorescent proportionally to the oxidative potential in cells. In the
past two molecules were widely used to evaluate general oxidative
stress: 2’,7’-dichlorodihydrofluorescein diacetate (H2DCFDA) and
dihydroethidium (DHE). Due to several limitations of both molecules
like need to serum-free media, low stability, incompatibility with PFA
fixing, GFP and RFP and detergents, innovative
fluorogenic/luminogenic oxidative stress reagents are product to
evaluate oxidative stress

Aranda et al.,
2013; Ghosh
et al., 2016;
Ahamed et al.,
2019

DNA oxidation Colorimetric (ELISA) For the evaluation of DNA oxidative stress, analysis of
8-hydroxydeoxyguanosine (8-OHdG) in DNA can be performed.
8-OHdG is a DNA modified base produced by hydroxyl radical
attack of guanine in oxidative stress conditions. The 8-OHdG
evaluation assay is usually used in combination with others assay to
evaluate DNA integrity, like COMET and TUNEL assays.

Ghosh et al.,
2016; Kinoda
et al., 2016; Ng
et al., 2017

Protein oxidation Chemiluminescence,
Fluorescence, Colorimetry,

Carbonyl groups (aldehydes and ketones) are usually specific
markers of proteins oxidation. The amount of carbonyl groups can
be detected by using 2,4-Dinitrophenylhydrazine (DNPH) that
reacting with the carbonyl groups on proteins produces a DNP-tag
detectable by western blot or ELISA. Furthermore, there are also
DNPH-modified molecules that can be detected by colorimetric or
fluorescent methods

Arya et al.,
2016; Jayaram
et al., 2017

Lipid peroxidation Colorimetry (ELISA),
Fluorescence

During oxidative stress, lipid peroxidation produces reactive
aldehydes such as the mutagenic compound malondialdehyde
(MDA) and the toxic compound 4-hydroxynonenal (4-HNE). MDA
molecule is the most used marker to evaluate lipid peroxidation,
because it reacts with thiobarbituric acid (TBA) to produce an
MDA-TBA adduct that can be easily detected by colorimetric,
fluorimetric and ELISA assays

Gaharwar et al.,
2017; Ahamed
et al., 2019

aThe use of tetrazolium salt based assays (like MTT, MTS,S and WST-1) or crystal violet can be affected by NPs absorbance properties (Almutary and Sanderson, 2016) resulting in high toxicity overestimation, for this
reason they are not added to this table.
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and clathrin, and caveolae-independent endocytosis. The
modification of the physicochemical properties of NPs surface
can be exploited to enhance cellular uptake.

Passive Uptake
PEG, usually tested to enhance biocompatibility, can also be
explored to increase NPs uptake. The PEG monomer is about
0.35 nm in length with a molecular weight of about 2 kDa, and
can be synthesized at different lengths. This molecule reduces
aggregation and increases NPs stability in biological fluids (Desai
et al., 2016; Harrison et al., 2016). Furthermore, PEGylation of
NPs determines a decrease of the interaction with not-specific
proteins resulting in a “stealth” effect able to enhance PEG-NPs
circulation time and to reduce phagocytosis (Vonarbourg et al.,
2006). This increased stability of PEG-NPs is directly related
to higher cellular uptake if compared with bare NPs that can
aggregate in biological environment and/or to be phagocytized
by immune system cells.

As reported by Cu and Saltzman (2009), the use of PEG can
effectively change the behavior of NPs in relation to its delivery
in tissues. The addition of PEG of different sizes (2.5, 5, and
10 kDa) on poly(lactic-co-glycolic) acid (PLGA) on the NPs
surface can enhance particle diffusion by up to 10-fold into the
cervical mucus and the binding to mucin proteins, depending
on the PEG density and size. Furthermore, the conjugation with
PEG results in a shift in the charge of PLGA NPs, from −45
to + 8 mV, with the NPs size increase related to the efficiency
of PEG coverage. Cruje and Chithrani (2014) showed that NPs
properties can be affected by the length of PEG molecule and
by the surface functionalization density (PEG molecules/nm2).
In particular, when longer PEG molecules and a high density
were used to functionalize gold NPs, a reduction in the non-
specific protein adsorption was observed. However, this kind of
modification resulted in a decrease in the uptake of NPs in all
cell lines tested.

Other molecules used to modify NPs surface involve changes
in the superficial charge. Generally, these consist of amino
ending molecules (R-NH2) that at physiological pH (about 7.4)
are positively charged. Rancan et al. (2012) demonstrated how
the surface charge of silica nanoparticles (SiO2) affects the
cellular uptake of NPs in the HaCaT cell line and in skins
explants. Negatively charged SiO2 NPs showed lower uptake
levels compared to positive 3-aminopropyl-trimethoxysiliane
(APS) modified NPs. Conversely, Liu et al. (2011) reported that
polystyrene-modified NPs with -NH2 groups on the surface
enhanced toxicity, related to the high reactivity of the amino
groups. The higher uptake and toxicity of positively charged NPs,
compared to negatively charged NPs, has also been demonstrated
by Bannunah et al. (2014) in an intestinal epithelial cell model.

Furthermore, the superficial charge of NPs can be selectively
modified to modulate the cellular uptake. Zwitterionic ligands,
like carboxybetaines and sulfobetaines, show a variety of the
positively and negatively charged groups allowing the modulation
of charge densities to optimize solubility and to avoid the
interactions of the protein corona, making NPs highly stable
in biological fluids. This modification reduces non-targeted
uptake and opsonization of modified-NPs, and increases their
accumulation in target tissues (e.g. cancer cells) (Breus et al.,

2009; Muro et al., 2010; Zhang et al., 2011). An example
of the zwitterionic ligands useful to enhance NPs uptake is
reported by Drijvers et al. (2019). In this work, silica coated
CdSe/CdS quantum dots were biofunctionalized with PEG
and with sulfobetaines in order to evaluate the impact of
these modifications on the NPs cellular uptake. The authors
showed the differences in the cellular internalization and, in
particular, they revealed that the uptake of the zwitterion-
modified NPs happened more easily compared to PEG-modified
NPs in HeLa cells.

In Mosquera et al. (2018) gold-NPs were modified with
pyranine (a negatively charged dye) that reduced the NPs uptake.
This behavior can be reversed through the addition of a positively
charged molecular cage that neutralizes the negative charge of
gold NPs and allows cellular uptake. The key role of the surface
charge of NPs in cellular uptake efficiency was also demonstrated
by Jeon et al. (2018), where the surface of fluorophore-conjugated
polystyrene nanoparticles (f-PLNPs) was modified with different
types of functional groups (acetyl, zwitterionic, carboxyl) and
molecules (guanidinium, polyethylene glycol, sulfonic acid). The
nanoparticles were incubated with THP-1 cells (phagocytic) or
A549 cells (non-phagocytic). Results showed a NPs superficial
charge-dependent uptake by both cell lines; in particular, an
increasing trend in internalization was observed in positively
charged modified-NPs and this correlation was stronger in the
THP-1 cells compared to A549 cells.

Another strategy widely explored to increase NPs uptake is
based on the use of cell penetrating peptides (CPPs). These
molecules are composed of a specific aminoacidic sequence,
usually polycationic or amphipathic structures, that enhance NPs
uptake. Asai et al. (2014) used a CPP derived from protamine to
modified lipid-based NPs for the efficient delivery of siRNA. This
modification enhanced internalization of siRNA in B16F10 cells.
Feiner-Gracia et al. (2018) exploited the penetrating capability of
Tat peptide to functionalize PLGA NPs surface. They observed
that while bare NPs did not enter HeLa cells, when Tat peptide
was added (Tat-NPs), cellular uptake was detected.

Due to the importance of enhancing the uptake of NPs,
research into alternative molecules that bind on the NPs
surface is very active. Yang et al. (2018) reported the use of
phosphatidylcholine (PC) modified with different alkyl chain
lengths (from C12 to C18), to increase lipid-PLGA hybrid NPs
internalization. Even if PC had little effect on NPs stability
and physicochemical properties, results showed an enhanced
cellular uptake of hybrid nanoparticles in HepG2 or A549
cells. Furthermore, the PC-modified NPs uptake increased
proportionately to the length of PC alkyl chain.

Active Uptake
In recent years, surface modification of NPs was mainly aimed
at active targeting and cellular uptake by exploiting the specific
interactions of NPs surface ligands with a wide range of receptors
overexpressed in cancer cells (Salahpour Anarjan, 2019). The
molecules useful to perform NPs active uptake include several
main categories, among these the most used are antibodies,
small peptides, proteins, aptamers, carbohydrates, and small
molecules (Figure 3). During the conjugation process, usually
performed by covalent interactions, these molecules are linked
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FIGURE 3 | Design of nanoparticles for active uptake (Created with BioRender.com). (A) Monoclonal Antibodies, (B) Fabs, (C) Small Peptides, (D) Natural Proteins,
(E) Aptamers, (F) Carbohydrates, (G) Small molecules.

to the NPs surface in order to preserve their ability to bind the
target receptors.

Monoclonal antibodies (mAbs) used to perform active uptake
of NPs are extensively studied due to their high stability,
specificity and binding ability (Figure 3A). Fathian kolahkaj
et al. (2019) reported a very efficient uptake of PLGA NPs
modified with an anti-HER2 mAb. Uptake evaluation in HER2
positive (MDA-MB-453) and negative (MCF-7 and BT-20) cells
demonstrated higher internalization levels in a HER2 positive
cell line, compared to the negative ones. Another example related
to the use of targeted uptake with the anti-HER2 antibody was

reported by Wu et al. (2019). In this work, boron-containing gold
NPs were bioconjugated with an anti-HER2 antibody and their
uptake was studied both in vitro and in vivo. Results showed an
elevated selective uptake in N87 human gastric cancer cells of
mAb-gold NPs when compared to bare NPs. In vivo experiments
indicated accumulation of mAb-gold NPs in tumor sites and a
reduction of non-specific uptake at others anatomical districts.
Another receptor widely used to perform active uptake in cancer
cells is the epidermal growth factor receptor (EGFR). As reported
by McDaid et al. (2019), the functionalization of PLGA NPs
surface by using a therapeutic mAb against EGFR (Cetuximab)
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enhanced the NPs uptake in an in vivo model. A further example
of mAb modified NPs to improve cellular internalization was
reported by Khanna et al. (2019), where PLGA nanoparticles were
functionalized with a mAb against heparan sulfate proteoglycan
2 (HSPG2) protein, a surface receptor highly expressed in triple
negative breast cancer (TNBC) that binds growth factors such as
VEGF-A and FGF-2, acting as “co-receptor.” Even in this study
the presence of mAb on the NPs surface increased specific cellular
uptake in Luciferase-expressing MDA-MB-231-LM2 cells.

Antibodies are very useful molecules to enhance specific NPs
uptake, but they have high molecular weight (about 150 kDa),
and this could be an issue in bioconjugation process, above all
with smaller NPs (<10 nm). The use of the antibody antigen-
binding fragments (Fabs) to perform NPs active uptake is a viable
alternative, as reported by Houdaihed et al. (2020) (Figure 3B).
To target breast cancer cells, the PEG-PLGA NPs were loaded
with paclitaxel and everolimus and the NPs were coated with
anti-HER2 and anti-EGFR Fabs. Results showed higher uptake
levels in HER2 and EGFR positive cell lines (SKBR3) compared
to negative or low EGFR expressing cell lines (MCF-7 and MDA-
MB- 436).

A viable alternative to the use of antibodies and Fabs to modify
NPs surface is represented by peptides that bind with high affinity
to specific receptors (Figure 3C). Indeed, specific peptides can be
obtained by the screening of phage libraries and by the isolation
of binding sequences from proteins using three-dimensional (3D)
structural analysis. A small peptide (GE11) with high affinity
for EGFR was used by Li et al. (2019a) to modify nanomicelle
containing evodiamine (GE11-Evo-NPs) in order to enhance
drug uptake into cancer cells. Results obtained in vivo showed
that GE11-Evo-NPs allow higher evodiamine concentration in
tumor after intravenous administration, compared to the drug
alone. Furthermore, the accumulation of GE11-Evo-NPs in
tumor masses in vivo was higher than Evo-NPs. Another study
where a peptide was used to enhance active NPs accumulation
is reported by Qian Q. et al. (2019). In this study, hybrid
chitosan/poly(N-isopropylacrylamide) NPs functionalized with
K237 peptide (that binds KDR/Flk-1 receptor) were described.
The modified NPs showed higher uptake in the MDA-MB-231
cell line overexpressing KDR/Flk-1 compared to K237 free NPs
and to L929 cells that do not express the KDR/fLK-1 receptor.
The use of peptides was also explored to perform a personalized
therapy approach. Martucci et al. (2016) showed that the surface
functionalization of diatomite-based NPs with an idiotype-
specific peptide (Id-peptide), which recognizes hypervariable
region of immunoglobulin B-cell receptor, enhanced Id-NPs
uptake in specific myeloma cells of threefold compared to
nonspecific cells. Furthermore, same results were obtained if a
random control peptide was used.

The use of natural proteins that interact with cancer cell
receptors has been widely investigated, as reported in several
recent studies (Figure 3D). Scheeren et al. (2020) used transferrin
(Tf) to functionalize the surface of doxorubicin-loaded PLGA
NPs. The interaction between transferrin and Tf receptors (Tf-R),
highly expressed in cancer cells, was exploited to enhance uptake
and drug release. Results showed that Tf-PLGA@DOX NPs
greatly reduced viability of human epithelial cervical cancer cells

HeLa (Tf-R positive), when compared to immortalized HaCaT
keratinocytes with low Tf-R expression. Another protein used
to perform NPs active delivery is human serum albumin (HSA)
that interacts with tumor-associated protein SPARC. Sanità
et al. (2020) modified hybrid melanin-silica-silver nanoparticles
(MelaSil_Ag) surface using HSA to enhance cellular uptake in
breast cancer cells. Results showed that MelaSil_Ag-HSA NPs
were mostly internalized by SPARC positive cell line (HS578T)
compared to SPARC negative cells (MCF10a).

Furthermore, other molecules are currently being explored to
modify NPs surface and to perform active uptake. Among these,
aptamers represent a useful molecule since are cheap and easy to
synthetize (Figure 3E). Aptamers are short nucleic acid sequences
(dsDNA, ssDNA or RNA) with specific 3D structure that can
bind a molecular target in cancer cells with high specificity
and affinity. Mie et al. (2019) reported the conjugation of the
aptamer S-MUC-1 (able to bind MUC1 protein) on paclitaxel-
loaded protein nanoparticles. Incubation of aptamer-modified
and bare NPs with MCF-7 cells (that overexpress MUC-1 protein)
showed higher uptake levels of aptamer-functionalized NPs when
compared to the bare NPs. Further examples of aptamers as
ligand for active uptake are reported by Gui et al. (2019) and
Yang et al. (2019b). Yang et al. (2019b) modified the surface of
mesoporous silica nanoparticles (MSNs) with Sgc8 aptamer able
to bind protein tyrosine kinase-7 (PTK-7) on human acute T
lymphocyte leukemia cells. Sgc8-MSNs NPs were also loaded with
DOX, in order to enhance drug uptake in leukemia cells. The
results obtained with two different cell lines, CCRF-CEM with
high expression of PTK-7 and Ramos cells with no expression
of PTK-7, showed a high uptake level of Sgc8-MSNs in CCRF-
CEM cells compared to Ramos cells. Furthermore, no differences
in NPs uptake either cell lines was observed using bare MSNs. Gui
et al. (2019) used an aptamer designed to bind CD133 receptor
on osteosarcoma cells in order to enhance the uptake of lipid
NPs loaded with all-trans retinoic acid (ATRA). Results showed
high internalization of aptamer-modified NPs in CD133 positive
cells compared to the negative ones, confirming the CD133
mediated targeting.

Exploitation of simple molecules to enhance active uptake
also includes the use of carbohydrates (Figure 3F). Among
these, one of the most studied is hyaluronic acid (HA). This
molecule enhances the NPs uptake through its interaction with
CD44 protein. Li et al. (2020) recently demonstrated that HA
can be easily used to biofunctionalized carbon dots loaded with
doxorubicin to enhance drug uptake in CD44 overexpressing
cells (4T1). Results obtained by competitive assay performed with
free HA showed that the HA-modified NPs were internalized
through the binding of HA-modified NPs with the CD44
receptor. Furthermore, in vivo experiments showed that the
enhanced accumulation into tumor tissue was confirmed. The use
of carbohydrates was also explored for targeted gene-delivery in
macrophages by Chen et al. (2020). PLGA-PEG NPs decorated
with various carbohydrates (mannose, galactose and dextran) and
loaded with eGFP (enhanced Green Fluorescent Protein) mRNA
and GFP (Green Fluorescent Protein) plasmid DNA (used as
reporters) was developed. The results showed that carbohydrates
on the NPs surface, especially mannose and dextran, improved
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the active uptake of carbohydrate-modified-NPs in the Raw 264.7
murine macrophage cell line, that express specific receptors for
mannose and dextran.

In addition to the molecules already mentioned, there are
other small molecules useful to perform NPs active uptake
(Figure 3G). Khan et al. (2020) used folate (FA) to functionalize
chitosan-lipid hybrid NPs in order to increase uptake through
the interaction of FA with folate receptor (FR), highly expressed
on cancer cells. Results showed higher uptake of FA-conjugated
NPs in an ovarian cancer cell line (SK-OV-3) when compared
to bare NPs. Similar results were obtained with the 3D spheroid
cell model, with a 2.4-fold higher uptake of FA conjugated
NPs compared to uptake by the control group. Other simple
molecules used to perform NPs active uptake are anisamide (AA)
and phenylboronic acid (PBA) able to bind sigma receptors and
sialic acid (SA), respectively. These molecules were successfully
investigated by Qian X. et al. (2019) and Ramzy et al. (2020).
Ramzy et al., functionalized the surface polymeric NPs loaded
with thymoquinone (TQ) by using AA, in order to enhance
uptake and drug accumulation in colon cancer cells. Researchers
used three colon cancer cell lines, HT-29 (overexpressing sigma
receptor), HCT-116, and Caco-2, to evaluate the toxicity of AA-
TQ-NPs. Results showed higher toxicity of AA-TQ-NPs in HT-29
cells, compared to the other two cell lines. Furthermore, bare
TQ-NPs showed lower toxicity in HT-29 cells compared to AA-
functionalized NPs. These results are due to the active uptake of
AA-modified NPs after interaction with the sigma receptor. The
use of PBA was described by Qian et al. with soy protein-based
NPs. The high affinity of PBA for SA, which is overexpressed in
tumor cells, was exploited to enhance the uptake of PBA-modified
NPs in cell lines with different SA expression. The results showed
a high uptake level of PBA-NPs in HepG2 cells (SA positive) when
compared to SH-SY5Y cells (SA negative).

DISCUSSION

In the last years, the development of nanoparticles
functionalization strategies is considerably grown, due to
potential applications of NPs in nanomedicine. Surface
modification is evolved from the use of simple molecules
(PEG), to the aim to decrease toxicity, clearance and immune
response, to more specific and complex ligands, in order to
increase specificity and efficacy. The evolution of the NPs surface
bioconjugation went hand in hand with the identification of
specific cellular targets. The possibility to tune the NPs physico-
chemical properties in combination with the knowledge of
cancer biology makes possible the use of these nano-platforms
in biomedical applications, both for therapy and diagnostic,
providing a great contribution to the advance of nanomedicine.

Uptake and biocompatibility are two of the most important
features of a usable nanoplatform for medical applications,
and overcoming issues related to these two aspects is the first
goal in the development of NPs. For this reason, the study of
toxicity and cellular uptake is the first step during the biological
assessment of NPs.

The NPs surface modification is a powerful instrument to
enhance uptake and biocompatibility, as confirmed by the vast

amount of scientific papers focused on this topic. These studies
demonstrate that the conjugation of molecules on the NPs surface
can effectively enhance biocompatibility both in vivo and in vitro,
due to the modification of surface charge and to the inactivation
of reactive chemical groups that can affect cellular membrane
stability. Moreover, the addition of specific molecules can also
enhance NPs passive and active uptake, reducing systemic
toxicity in vivo and allowing high precision therapy and/or
diagnosis. The binding of molecules on the NP surface can be
obtained by covalent and non-covalent approaches. The former
is widely used to bind proteins, antibodies, aptamers and peptides
exploited to enhance uptake and to perform active targeting,
while non-covalent interactions are generally used for loading of
drugs and for all molecules that must be released in the cells.

The protocols for the conjugation of molecules on NPs surface
depend on the nanomaterial used and on the available functional
groups, for this reason the use of linker molecules or the
modification of NPs and/or ligands in order to obtain a stable
conjugation could be necessary. Furthermore, some molecules
used to functionalize NPs have high molecular weight due to the
overall size of the proteins and the use of a spacer (e.g., PEG(n))
could be necessary to stave off the ligand from NP surface. The
use of spacers also has an effect on conjugation density. In fact,
in order to bind a sufficient amount of molecules to the NPs it is
necessary to reduce steric hindrance. As reported in numerous
studies, the conjugation density is a very important parameter
that can affect the behavior of NPs. Moreover, it is important
to note that the conjugation of some molecules, usually used to
enhance uptake, can also increase the NPs biocompatibility.

Due to the high variability of nanomaterials and ligands to
modify the NPs surface, it is not possible to follow specific
guidelines to functionalize NPs. It is necessary take in account
that: (I) the addition of big size molecules could change the size
of the NPs, thus influencing uptake; (II) some molecules used
for active targeting could change their 3D structure during the
functionalization protocol and to lose the ability to bind target
molecules; (III) the conjugation with non-covalent bonds could
result in an unstable surface modification due to the influence
of environmental conditions like pH and ionic strength; (IV) the
conjugation density and the orientation of ligands on NPs surface
is a key parameter to enhance uptake; (V) the reduction of toxicity
could be due to a reduction in NPs uptake; and (VI) positively
charged NPs are usually better internalized by cells.

In conclusion, through the handling of surface characteristics,
the nanoparticles can be transformed in smart platforms,
containing therapeutic and imaging agents as well as stealth
property, delivering drugs to specific tissues and providing
controlled release therapy. This targeted and sustained drug
delivery decreases the drug related toxicity and the frequency of
treatments. Nanoparticles have proven useful in the treatment of
cancer, and many other diseases, also providing advancement in
diagnostic and theranostic applications.
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