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The human gut microbiome is a reservoir for antibiotic resistance gene (ARG). Therefore,
characterizing resistome distribution and potential disease markers can help manage
antibiotics at the clinical level. While much population-level research has highlighted the
strong effect of donor geographic origin on ARG prevalence in the human gut, little
is known regarding the effects of other properties, such as age, sex, and disease.
Here we employed 2,037 fecal metagenomes from 12 countries. By quantifying the
known resistance genes for 24 types of antibiotics in each community, we showed
that tetracycline, aminoglycoside, beta-lactam, macrolide-lincosamide-streptogramin
(MLS), and vancomycin resistance genes were the dominant ARG types in the human
gut. We then compared the ARG profiles of 1427 healthy individuals from the 2,037
samples and observed significant differences across countries. This was consistent with
expectations that regional antibiotic usage and exposure in medical and food production
contexts affect distribution. Although no specific uniform pattern of ARG was observed,
a significant increase in resistance potential among multiple disease groups implied that
the disease condition may be another source of ARG variance. In particular, the co-
occurrence pattern of some enriched bacterial species and ARGs that were obtained in
type 2 diabetes (T2D) and liver cirrhosis patients implied that some disease-associated
species may be potential hosts of enriched ARGs, which could be potential biomarkers
for the prediction and intervention of such diseases. Overall, our study identifies factors
associated with the human gut resistome, including substantial effects of region and
heterogeneous effects of disease status, and highlights the value of ARG analysis in
disease research and clinical applications.
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INTRODUCTION

Antibiotic resistance in pathogens is a global health crisis
(Klein et al., 2018). Abuse of antibiotics in clinical settings
and food production results in the widespread adaptation
of bacteria to antibiotic exposure, as well as to the rapid
evolution and dissemination of antibiotics resistance genes
(ARGs). The presence of ARGs generally indicates lower
antibiotic susceptibility in pathogens, making these genetic
markers valuable for clinical screening.

A tremendous number of microbes inhabit the human
intestinal tract and play a vital role in human physiological
function (Lynch and Pedersen, 2016). The human gut
microbiome is considered a reservoir of ARGs, which makes
it possible to investigate clinical resistance by gut microbiome
analysis (Haak et al., 2018). Various approaches, such as
the isolation of antibiotic resistant bacterial strains, DNA
microarrays (Lu et al., 2015), and metagenomic expression
libraries, have been used to characterize the resistome within a
community (Boolchandani et al., 2019). Among these strategies,
high-throughput sequencing-based metagenomic analysis is a
powerful tool for ARG surveys. Several comparative resistome
studies have been performed to date using sequence data
analysis from fecal samples (Forslund et al., 2013; Hu et al.,
2013; Gibson et al., 2015; Li et al., 2015, 2018; Rampelli et al.,
2015; Fitzpatrick and Walsh, 2016; Pal et al., 2016; Pehrsson
et al., 2016; Feng et al., 2018). Four significant from this
research include: (i) The most abundant resistance determinants
in the human gut are those for antibiotics available for a
long time (Forslund et al., 2013). (ii) Robust differences in
country-level resistance potential are observed, which correlate
with local antibiotic consumption (Forslund et al., 2013; Hu
et al., 2013; Pehrsson et al., 2016). (iii) Donor properties other
than country of origin, such as age, sex, or body mass index
(BMI), have minor influences on the resistome (Forslund
et al., 2014) (iv) Resistance potential is significantly correlated
with microbial community composition (Pehrsson et al., 2016;
Feng et al., 2018).

However, most of these previous studies suffer from small
sample size, which reduces the statistical power of the analyses. In
thee integrated analyses of multiple data sets, generalized results
demand increased sample sizes to overcome the ambiguous
comparisons. Furthermore, the resistome in disease states is
largely unexplored. Antibiotic intervention influences some
phenotypes closely related to the gut microbiome, such as
metabolic disorders (Yang et al., 2017; Fu et al., 2018),
immunopathologies (Wypych and Marsland, 2018), cancer (Cao
et al., 2018; Zhang et al., 2019), and hypertension. Thus, it is
worthwhile to explore the characteristics of ARGs in disease
states and its association with bacteria, which may provide a new
perspective for the identification of disease markers.

Abbreviations: ARG, antibiotic resistance gene; AS, ankylosing spondylitis; BMI,
body mass index; CRC, colorectal cancer; IBD, inflammatory bowel disease;
IBS, irritable bowel syndrome; MLS, macrolide-lincosamide-streptogramin;
PERMANOVA, permutational multivariate analysis of variance; RA, rheumatoid
arthritis; SARG, structured antibiotic resistance genes database; T2D, type 2
diabetes.

In this study, we aim to explore the factors associated with
ARG’s composition in a large samples size. By description of the
ARG profiles of 2,037 individuals from 12 countries, we provide
an overview of the human gut resistome. This investigation will
enhance our understanding of ARG’s population distribution.

MATERIALS AND METHODS

Data Sets
A total of 2,037 fecal metagenome samples from 1,004 Chinese,
32 Japanese, 62 Mongolian, 463 Israelis, 15 Austrian, 55
French, 239 British, 41 Swedish, 24 Canadian, 19 Peruvian, 32
EI Salvadoran, and 51 American (United States) individuals,
were collected from the National Center for Biotechnology
Information (NCBI) Sequence Read Achieve (SRA1) (Leinonen
et al., 2011) and our unpublished datasets. Among them, 1,427
samples were from healthy individuals, while 610 Chinese
samples were from disease state individuals. Seven disease states
were surveyed: colorectal cancer (CRC), type 2 diabetes (T2D),
liver cirrhosis, rheumatoid arthritis (RA), (pre)hypertension,
psoriasis (our unpublished dataset), and ankylosing spondylitis
(AS). All sequencing data were generated using pair-end shotgun
sequencing by Illumina technology. Physiological data of all
subjects, including age, sex, BMI, and health status were extracted
from literature sources and are listed in Supplementary Table S1.

ARGs and Microbial Taxon Quantification
ARG profiles were acquired with the ARGs-OAP v. 2.0 pipeline
(Yin et al., 2018). This pipeline consists of a regularly updated
database, Structured Antibiotic Resistance Genes (SARG),
that has a hierarchical structure (ARG type-subtype-reference
sequence). SARG is an integrated database containing sequences
from two other commonly used resistance gene databases,
ARDB (Antibiotic Resistance Genes Database) and CARD (The
Comprehensive Antibiotic Resistance Database). SARG version
2 is further complemented using a potential resistance protein
collection from the NCBI-NR protein database. The abundance
of a gene (unit: number of ARG sequences in one million
sequences) is the ARG-like sequence number normalized to the
corresponding ARG reference sequence length (nucleotide) and
the total reads in each metagenomic sample. MetaPhlAn2 (Segata
et al., 2012) was used to characterize taxonomic profiles of the
sample fecal metagenomes.

ARG Total Abundance and Diversity
Comparison
Both the total abundance and the diversity of resistance genes
were considered. Richness of all subtypes was defined as the
diversity in a sample. The total ARG abundance was obtained
by using the sum of the normalized values of all subtypes.
These two indices were compared between populations using
Kruskal–Wallis and Wilcoxon sum-rank tests. ARG structure was
visualized using non-metric multidimensional scaling (NMDS)
analysis based on the abundance matrix of the subtypes, and then

1http://www.ncbi.nlm.nih.gov/sra
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tested by permutational analysis of variance (PERMANOVA)
from the R vegan package (Oksanen et al., 2019). The R vegan
adonis function with 999 permutations and the Bray–Curtis
method were used to calculate pairwise distances after the
samples with missing phenotypic value were removed.

Identification of Discriminative ARGs and
Enriched Bacteria
Specific indicator subtypes for each population were identified
using the indval function from the R Laboratory for Dynamic
Synthetic Vegephenonenology (labdsv) package (Roberts, 2019),
where IV ranges from 0 to 1 with higher values for stronger
indicators. ARG subtypes with IV value > 0.3 and p-value < 0.05
in a specific group were selected as potential indicators. Linear
discriminant analysis effect size (LEfSe) (Segata et al., 2011) was
used to identify enriched bacteria between healthy and disease
groups, with the alpha value set for class normality and the
threshold of Wilcoxon sum-rank test set to 0.05. The threshold
on the logarithmic score of the linear discriminant analysis
(LDA) was set to 2.0.

Association Analysis of Bacteria and
ARGs
The Procrustes test for correlation analysis between ARGs and
bacterial communities was performed in R with the vegan
package (Oksanen et al., 2019). Spearman’s correlation analysis
was employed to assess associations between ARG subtypes
and bacterial species. Pairs with thresholds of correlation
coefficient > 0.5, adjust p-value < 0.05, and with the two items
both occurring in more than half of the samples were selected to
build the network using software Gephi (Bastian et al., 2009).

RESULTS

Overview of ARGs Detected in the
Human Gut
There are 24 ARG types and 1208 subtypes in SARG v.2. We
found 21 of 24 types, in total, in at least one of the 2,037
samples. The human gut resistomes that we analyzed were
dominated by particular ARG types with high prevalence
and abundance. For example, genes conferring resistance
toward tetracycline, aminoglycoside, beta-lactam, macrolide-
lincosamide-streptogramin (MLS), and vancomycin were
shared by all samples (Figure 1A). Other common resistance
gene types included bacitracin, multidrug, chloramphenicol,
fosmidomycin, and polymyxin. However, there was an absence
of carbomycin, fusidic-acid and spectinomycin resistance genes.
ARGs resistant to puromycin, tetracenomycin_C, and fusaric-
acid were considered rare types because of low detected rates,
0.30%, 0.15%, and 0.10%, respectively. At the subtype level,
809 subtypes were detected in at least one sample. There were
100 ubiquitous ARG subtypes defined by those present in at
least half of our samples (Figure 1B). Most of the ubiquitous
subtypes belong to the multidrug resistance type (34), followed
by tetracycline (15), beta-lactam (10), MLS (9), aminoglycoside

(8), vancomycin (7), and unclassified (7) resistance genes. Six
tetracycline resistance genes (tet32, tetM, tetO, tetQ, tetW,
and tet resistance protein) were detected in all 2,037 samples,
indicating widespread occurrence in the human gut. Additional
dominant subtypes that we found in the human microbiome
included bacA (within the bacitracin type), vanR (within the
vancomycin type), aadE (within the aminoglycoside type),
CfxA2 (within the beta-lactam type), ermF and ermB (within the
MLS type), and acrB (within the multidrug) (Figure 1C). The
abundance of ARG types and subtypes that we found is shown in
Supplementary Tables S2, S3.

Geographic Origin and Health Status
Impacting on ARGs
Geographic factors are widely accepted to be associated with
ARGs profile (Forslund et al., 2013; Hu et al., 2013; Pehrsson
et al., 2016). To verify this hypothesis, a permutational
multivariate analysis of variance (PERMANOVA) was applied
based on the subtype profile of 2,037 samples. The result
confirmed that geographic origin was a strong influential
factor impacting on ARGs (R2 = 0.2, p-value = 0.001).
The result also suggested a significant difference across
health states with a p-value of 0.001, although it was much
weaker than geographic origin (R2 = 0.05). ARG baseline
distribution and its alteration in disease groups were described
in subsequent sections.

The Gut ARG Distribution Profile
Baseline in Healthy Individuals
We visualized subtype profile patterns using NMDS to evaluate
resistome composition similarities among 1,427 health samples.
The results revealed that resistance subtype profiles were
structured by country but with limited overlap (Figure 2A,
PERMANOVA analysis: R2 = 0.21, p-value = 0.001), which
implied that the distribution of antibiotic resistance genes and
the abundance of those genes were geographically distinct.
The five widespread types, tetracycline, multidrug, MLS,
aminoglycoside, and beta-lactam accounted for >85% of the
total antibiotic resistance genes in each of the 12 countries, but
the composition of those types varied across the populations
(Figure 2B). For example, the tetracycline type was the most
abundant and accounted for more than 50% in the majority
of countries, except in the United Kingdom, Sweden, Peru,
and EI Salvador, where resistance potentials for multidrug
were higher. The United States antibiotic resistome had a
relative bias toward aminoglycoside and less MLS, which was in
contrast to Mongolia.

We then compared ARG richness and potential resistance
across different countries, based on the number of subtypes
and total abundance for each sample, respectively. As
shown in Figure 2C, there were significant differences
among these populations. Chinese and EI Salvador samples
presented higher resistance potential than the others, which
was consistent with previous studies (Pehrsson et al.,
2016; Feng et al., 2018; Li et al., 2018). Region-specific
subtypes were identified using the R package labdsv. We
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FIGURE 1 | Most common antibiotic resistance gene (ARG) types and subtypes found in the present study. The y-axis is the detection rate and the x-axis represents
the log10-transformed mean abundance of each ARG (A) types and (B) subtypes in all samples. (C) Top50 most abundant subtypes in the human gut.
Abbreviations: bifunctional_AAC/APH, bifunctional aminoglycoside N-acetyltransferase and aminoglycoside phosphotransferase.

identified 26 subtypes according to the criteria of IV > 0.3,
p-value < 0.05 (Figure 2D and Supplementary Table S4)
including six aminoglycoside subtypes [aac(6′)-I, aadA, aph(3′′)-
I, aph(3′′′)-III, aph(3′)-VII, and bifunctional aminoglycoside
N-acetyltransferase and aminoglycoside phosphotransferase],
six MLS subtypes (ermB, ermF, ermG, ermX, lnuA, mphA),
four beta-lactam subtypes(OXA-209, PBP-1B, PBP-2X, TEM-
157), four chloramphenicol subtypes (catB, catS, floR, and cat
chloramphenicol acetyltransferase), two tetracycline subtypes
(tet37, tetA), one multidrug subtype (adeB), one quinolone type

(qnrB), one sulfonamide (sul1), and one vancomycin (vanU).
Ten markers were enriched in the Peruvian population, which
involved a limited sample number in the present study. Japanese
and Chinese counts were closely behind, accounting for six and
four markers, respectively. Previous studies (Hu et al., 2013)
have mentioned that ermF was China’s representative ARG
subtype. Correspondingly, we also found the ermF gene subtype
(IV = 0.36, p-value = 0.001) within the MLS type to be a Chinese
indicator. Another subtype, however, bifunctional aminoglycoside
N acetyltransferase and aminoglycoside phosphotransferase may
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FIGURE 2 | The ARG profile in healthy individuals across different countries. (A) Non-metric multidimensional scaling (NMDS) plot based on subtype profiles of 1,427
healthy individuals. (B) Composition of types. (C) Richness of subtypes and total resistance potential across countries. (D) Heatmap of scaled abundance for the 26
indicator subtypes (row) in each sample (column). The number in the brackets indicated the corresponded number of individuals. Abbreviations: AUT, Austria; CHN,
China; CAN, Canada; ESA, EI Salvador; FRA, France; ISR, Israeli; JPN, Japan; MGL, Mongolia; PER, Peru; SWE, Sweden.

be more representative of China, because we found a higher
indval value (IV = 0.51, p-value = 0.001) for it.

In general, our results based on a large baseline number
of samples, were consistent with previous findings: that is, the
composition of the human-associated resistome was geographic-
specific.

ARG Abundance and Richness in Most
Disease State
To describe bias caused by disease, we focused on the 1,004
Chinese samples from seven independent disease state studies:
CRC, T2D, liver cirrhosis, RA, (pre)hypertension, psoriasis, and
AS. We first examined whether factors such as sample region, age,
sex, or BMI could have confounding effects in a healthy subset of
the data population (Table 1). Similar to the above results, the

TABLE 1 | PERMANOVA analysis based on healthy Chinese population.

Factor df Sums of sqs Mean sqs F model R2 p-value

Region 3 5.19 1.73 14.6 0.13 0.001*

Sex 1 0.09 0.09 0.79 2.3e–3 0.586

Age 1 0.1 0.1 0.83 2.4e–3 0.518

BMI 1 0.07 0.07 0.56 1.6e–3 0.822

Residuals 299 35.46 0.12 0.87

Total 305 40.91 1

geographic effect was obvious. Conversely, the effect of age, sex,
or BMI was not significant. To avoid interference of geographic
origin, we analyzed each disease dataset separately.

ARG total abundance and richness were compared in each
of the seven datasets, and remarkable differences emerged in
most (Figure 3). Both indices in T2D (Richness: p-value = 0.019;
Abundance: p-value = 0.006) and liver cirrhosis (Richness:
p-value = 0.001; Abundance: p-value < 0.001) went beyond those
in healthy controls significantly. AS groups had richer ARG
diversity (p-value = 0.034), while patients with other diseases had
no apparent effect on ARG profiles.

Shared ARG Markers Between Different
Diseases
We further identified the ARGs enriched in different disease
groups. At the cutoff of IV > 0.3 and p-value < 0.05, 147 subtypes
were found to be differently enriched between different diseases
and corresponding controls (Supplementary Table S5). The T2D
and liver cirrhosis group was enhanced by the most subtypes (69
and 67, respectively), while only one subtype (tetX) was enriched
in the psoriasis group. We could not find any universal pattern
of disease markers. Indeed, none of these ARGs were shared
by more than three conditions (Supplementary Table S6). The
enriched ARGs may reflect the clinical experience of patients. For
example, ARGs from the sulfonamide type enhanced in the AS
dataset patient group (IV = 0.795, p-value = 0.002), consistent
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FIGURE 3 | Richness of subtypes and total abundance of ARGs between seven diseases and corresponding controls. Asterisks indicate significant differences
(Wilcoxon sum-rank test). * p-value ≤ 0.05; ** p-value ≤ 0.01.

with those patients’ exposure to sulfasalazine. A large number
of multidrug subtypes was found in patients with liver cirrhosis,
many of whom have had a high reported prevalence of multidrug-
resistant (MDR) bacterial infection in a previous study (Piano
et al., 2019). In general, these results indicated heterogeneous
differential ARGs across different disease states.

Correlation Between Resistance Genes
and Microbial Taxa
Apart from the selective pressure of antibiotics, microbial
composition may shape the ARG profile. In support of
this notion, our Procrustes analysis showed that give ARG
subtypes had significant associations with particular microbial
species (Figure 4A, M2 = 0.912, p-value = 0.001). More
detailed resistance gene and bacterial phylogeny information was
acquired using network analysis. Pairs with Spearman r > 0.5 and
p-value < 0.05 were used to stand for co-occurrence patterns.
A total of 74 nodes (13 species and 61 ARG subtypes) and 93
edges (subtypes-species connections) were included in the co-
occurrence network (Figure 4B). The resulting figure clearly
showed Escherichia coli to be a hub node with a high degree

of connectedness. It co-occurred with most ARG subtypes,
including 31 multidrug resistance genes (e.g., acrA, acrB, acrF,
bcr, emrA, emrB), seven unclassified type genes (e.g., LuxR,
cpxR, gadX), and three beta-lactam resistance genes (class C
beta-lactamase, TEM_1, and TEM_117).

Relationships between ARG markers and different species,
in comparison to that between disease states and controls,
were noteworthy. For example, E. coli was a T2D-enriched
bacteria identified by LEfSe (Supplementary Table S7) and
predicted to harbor most of the T2D-enriched subtypes.
Streptococcus salivarius was more abundant in a liver cirrhosis
disease group and might play a key role in promoting cirrhosis
with hepatic encephalopathy (Zhang et al., 2013). Our study
showed this group to potentially carry beta-lactam resistance
subtypes PBP-2X (Spearman r = 0.502, p-value < 0.01) and
penA (Spearman r = 0.607, p-value < 0.01). We also found
PBP-2X to be correlated with another cirrhosis-associated
bacteria Streptococcus_parasanguinis. Another beta-lactam
resistance subtype that we found, PBP-1A, was predicted to be
carried by Haemophilus parainfluenzae, Veillonella parvula, and
Veillonella_unclassified by our correlation analysis, all of which
were enriched bacteria in patients with cirrhosis in our study.
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FIGURE 4 | Correlation of ARG subtype and bacteria species. (A) Significant agreement between average species and average resistome distances by Procrustes
analysis (Monte Carlo p-value = 0.001). (B) Network representing the co-occurrence patterns between microbial species and ARG subtypes. The chartreuse nodes
represent bacterial species. The other nodes represent ARG subtypes, with color according to type. The node size is proportional to degree of occurrence. An edge
is a strong (r > 0.5) and significant (p-value < 0.05) connection between nodes.

DISCUSSION

We reanalyzed the metagenomic sequence data of 2,037
samples, focusing on geographic and disease effects on
the gut resistome. In general, we found geographic origin
to be a substantial factor impacting the composition of
human gut resistance genes, which agrees with most
previous studies. Disease status effects on the gut resistome
were heterogeneous, and further investigations may

help unearth the value of ARG in disease research and
clinical applications.

As expected, tetracycline, aminoglycoside, beta-lactam, MLS,
vancomycin, and multidrug resistance genes were the dominant
types in the human gut. Larger sample size would help to
identify rare ARGs. Regardless, carbomycin, fusidic-acid, and
spectinomycin resistance genes were not detected at all. These
three types, coupled with puromycin, tetracenomycin_C, and
fusaric-acid, were defined as rare types in our data. The
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unevenness in ARG abundance and prevalence that we observed
may be due to: (i) The way antibiotics are used. For example,
dominant antibiotics like tetracycline, aminoglycoside, beta-
lactam, and MLS have been widely used in animals-based food
productions and in human medical care for a very long time,
while fusidic-acid and puromycin are primarily used as scientific
tools, not particularly suitable for large-scale application toward
medical use and food production. (ii) The limitations of the
resistome database itself. Reference sequence counts of rare ARG
types in SARGv2 are less than 10. This rare sequence sparsity
may be contributed to low detection rates. Regardless, a well-
established and up-to-date database needs to be representative of
reality, and the number of resistance gene types in the database
also needs to be determined by the utilization of antibiotics in the
real world. Indeed, SARGv2 contains sequences not only from the
two most commonly used resistance gene databases, CARD and
ARDB, but also carefully selected and curated sequences from the
latest protein collection of the NCBI-NR database. The extensive
collection of reference sequences in SARGv2 enables less bias in
quantitative and qualitative analyses of ARGs (Yin et al., 2018).
Moreover, the knowledge gained from large-scale quantifications
of known resistance genes can be used as a proxy for the non-
characterized fraction of the resistome in a given environment
(Bengtsson-Palme, 2018). Generally, our results reinforce the
notion that most ARGs in the human gut are those resistant for
widely used antibiotics.

Analysis of ARG distribution in the population provides an
important indicator for public health policies. For example,
similar patterns of resistance between countries indicate an
extensive spread of resistance, and inter-country collaborative
mechanisms will be urgently needed for the rational use of
antibiotics (Zhang et al., 2006). The widespread ARG subtypes
identified in our study, such as tetQ, tetW, CfxA2, ermF, bacA,
and vanR, are consistent with previous studies (Seville et al.,
2009; Hu et al., 2013; Gibson et al., 2015; Fitzpatrick and
Walsh, 2016). We also found some subtypes with region-specific
markers that have not been mentioned before, such as the
MLS type lnuA for China, catS for Austria, aph(3′)-VII for
Japan, and sul1 for Peru. These findings strengthen the view
that geographic origin strongly impacts the composition of
the human-associated resistome, and provide some promising
indicators for surveillance programs of antibiotic resistance.

In addition to geographic variation, we were concerned about
antibiotic resistance in patient groups. Previous studies and
our data suggest that bacterial phylogeny could structure the
antibiotic resistome (Forsberg et al., 2014). Various diseases are
known to be associated with intestinal microbiota alterations,
which may be reflected in the resistome. A recent example (Vich
Vila et al., 2018) was paradigmatic in this respect. In the large
population from 1792 participants consisting of inflammatory
bowel disease (IBD), irritable bowel syndrome (IBS) and controls,
changes in the microbiome composition in patients had an
impact on the antibiotic resistance load, although the majority of
individuals were not taking antibiotics. In our current study, total
resistance abundance or richness alteration was found in most
diseases, but no consistent pattern of ARGs was observed. In liver
cirrhosis and T2D, some resistance gene perturbations identified

were related to the disease-associated bacteria, while a similar
outcome was not seen in CRC or autoimmune disorders. This
heterogeneity may be attributed to disease characteristics, various
treatment regimens, and/or lifestyles among groups of people.
For example, a high prevalence of MDR bacterial infection is
common in patients with cirrhosis (Piano et al., 2019), which is in
quite good agreement with our finding of the enrichment of many
multidrug resistance genes in these individuals. Furthermore,
most of AS patients in our dataset experienced treatment
with sulfasalazine at some point. Although the washout period
between intervention and sampling was at least three months,
enrichment of sulfonamides type ARGs is still observed in this
group of patients. These phenomena imply that ARGs in disease
can provide the following indications: (i) The host bacteria
of some resistance genes are associated with the etiology of
some non-infectious disease. Antibiotic exposure may make it
predominant, potentially leading to disease status. In this context,
ARGs may be used as indicators for prediction and antibiotic
intervention in these diseases; (ii) Disease-associated microbes,
identified merely based on the analysis of differences between
groups, may be false positives contributed from antibiotic
exposure. Patient groups are more likely to be exposed to medical
environments with a variety of drugs, and a long-term effect is
pronounced in their gut microbiome. This could partly explain
why bacteria that are abundant in some diseases are enriched in
the healthy group in other studies. In our research, Streptococcus
parasanguinis and Streptococcus salivarius were associated with
cirrhosis but enriched in healthy control in AS dataset. Given
these bacteria’s strong association with PBP-2X and penA, further
investigations are needed to validate whether they are involved in
the pathological process of cirrhosis.

We acknowledge there are some limitations in the current
study. First, the samples come from 12 countries, which
might not be representative of all world enough, although the
geographic scope of these countries covers Europe, America and
Asia. Incorporating the data from more different regions, such
as traditional populations in Africa, may help to gain additional
insights. Second, the geographic sample distribution is non-
homogeneous. In baseline of gut ARG distribution profile in
healthy individuals, this may lead to biased identification of
region-specific ARG markers, especially those in regions with
relatively small sample size. When focusing on the unhealthy
population, there are 7 disease groups and all samples are
from China, which makes the findings insufficient to generalize.
Further investigation with more types of diseases, together with
comparison their ARG markers between different cohorts are
warranted to reach a stronger and fairer conclusion. Third, we
used the Spearman’s analysis to relate ARG subtype and species.
The significant positive coefficient may further indicate the host-
gene relationship. However, resistant genes can be transferred
from one to another by mobile genetic elements (MGEs) in the
real world. As a result, some genes cannot be identified merely
through correlation analysis, especially those that have been
widely distributed in most bacteria. More reliable information of
ARG host can be obtained by the genome sequence analysis at
strain level. Finally, it would be interesting to see if the degree of
population resistome variation is at the same level as the other
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microbiome function. We will focus on the relationship between
ARGs and other gene families in the future work. Nevertheless,
our work provides a broad view of the human gut resistome
and highlights the value of ARG analysis in disease research and
clinical applications.
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