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Head and neck squamous cell carcinoma (HNSCC) is the most common type of head
and neck tumor. It is a high incidence malignant tumor associated with a low survival rate
and limited treatment options. Accumulating conclusions indicate that the Wnt signaling
pathway plays a vital role in the pathobiological process of HNSCC. The canonical
Wnt/β-catenin signaling pathway affects a variety of cellular progression, enabling tumor
cells to maintain and further promote the immature stem-like phenotype, proliferate,
prolong survival, and gain invasiveness. Genomic studies of head and neck tumors
have shown that although β-catenin is not frequently mutated in HNSCC, its activity is
not inhibited by mutations in upstream gene encoding β-catenin, NOTCH1, FAT1, and
AJUBA. Genetic defects affect the components of the Wnt pathway in oral squamous
cell carcinoma (OSCC) and the epigenetic mechanisms that regulate inhibitors of the
Wnt pathway. This paper aims to summarize the groundbreaking discoveries and
recent advances involving the Wnt signaling pathway and highlight the relevance of this
pathway in head and neck squamous cell cancer, which will help provide new insights
into improving the treatment of human HNSCC by interfering with the transcriptional
signaling of Wnt.

Keywords: Wnt signaling pathway, head and neck squamous cell carcinoma, canonical, non-canonical,
epigenetic

INTRODUCTION

Head and neck squamous cell carcinoma (HNSCC) is the sixth most common malignant tumor in
the world (Alamoud and Kukuruzinska, 2018). HNSCC causes over 330,000 deaths worldwide,
and more than 650,000 HNSCC cases are reported each year (Xi and Grandis, 2003). In the
United States, the overall incidence of HNSCC is 11 per 100,000 people, and HNSCC is more
common among black populations than white populations. It originates from the mucosa of various
organs that have a squamous epithelial lining. These organs include the mouth, nasopharynx, and
throat. Oral squamous cell carcinoma (OSCC) is the main type of HNSCC, which is characterized
by poor prognosis and low survival rate. Local recurrence of the primary site and cervical lymph
node metastasis are the main reasons for the failure of treatment in patients with OSCC. Therefore,
elucidating the molecular mechanisms that regulate the occurrence and development of OSCC will
help to understand the etiology of these diseases, allow the design of more effective strategies for
the treatment of OSCC, and possibly improve treatment.
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In 1982, Nusse found an oncogenic gene in mouse models
of mammary cancer, named int1, and which has homology
to the wingless gene of drosophila reported later by Sharma,
and the two were collectively called Wnt (Nusse et al., 1991).
The Wnt signaling pathways play important roles in embryonic
development, tissue regeneration, cell proliferation, and cell
differentiation and is abnormally activated in many types of
cancers, such as colon cancer (Zheng and Yu, 2018; Flores-
Hernández et al., 2020), liver cancer (Li et al., 2019), lung
cancer (Ji et al., 2019), breast cancer (Ma et al., 2016), and
childhood T-cell acute lymphoblastic leukemia (Ng et al., 2014).
Previous studies have shown that dysfunction of the Wnt
signaling pathway can promote the development of oral cancer
(González-Moles et al., 2014) and that abnormalities in this
pathway affect the prognosis of patients with HNSCC. More and
more research highlights the importance of the Wnt signaling
pathway for the prognosis of HNSCC patients and suggests the
possibility of actively developing new gene therapy methods that
target this pathway in HNSCC. Thus, this review summarizes
recent research findings regarding the Wnt signaling pathway
in HNSCC to improve our understanding of the mechanisms
underlying the roles of this important signaling pathway in
cancer cell activity.

WNT SIGNALING PATHWAY

With the advancement of research, people are learning more
and more about the Wnt signaling pathway. So far, 19 members
of the Wnt family have been found in the human genome,
including Wnt1, Wnt2, Wnt2b, Wnt3, Wnt3a, Wnt4, Wnt5a,
Wnt5b, Wnt6, Wnt7a, Wnt7b, Wnt8a, Wnt8b, Wnt10a, Wnt10b,
Wnt11, Wnt14, Wnt15, and Wnt16. These secreted glycoproteins
usually contain 350–400 amino acids. In order to trigger the
cellular response and activate intracellular signal transduction,
the extracellular Wnt ligands combine with the 10 Frizzled
(Fzd 1-10) receptors and several coreceptors, such as Lrp-
5/6, Ryk, or Ror2 (Logan and Nusse, 2004; Kestler and Kühl,
2008). Intracellular signal transduction cascades diversify into
three main branches, the canonical Wnt/β-catenin signaling
pathway, and the non-canonical Wnt signaling pathway, which
mainly comprises the Wnt/Ca2+ and Wnt/PCP pathways
(González-Moles et al., 2014).

CANONICAL WNT SIGNALING PATHWAY

The hallmark of the canonical Wnt signaling pathway is the
accumulation and transport of β-catenin proteins associated
with adhesion junctions into the nucleus (Dawson et al.,
2013). In an experimental analysis of the axial development
of Xenopus laevis and the segmental polarity and wing
development of Drosophila, researchers first clarified the role
of this canonical pathway in embryonic development (Ng
et al., 2019). glycogen synthase kinase 3 (GSK3)β is a central
participant in the canonical Wnt pathway. The activity of
the Wnt/β-catenin signaling pathway depends on the amount

and cellular location of β-catenin (Lustig and Behrens, 2003).
Wnt ligands interact with the Fzd receptors. When the Fzd
receptors are unoccupied, cytoplasmic β-catenin is degraded
by its destruction complex, which includes Axin, APC protein,
GSK3, casein kinase 1α (CK1α), and β-catenin (Tejeda-Muñoz
and Robles-Flores, 2015). Once the complex is formed, β-catenin
begins to phosphorylate sequentially. The first phosphorylation
is at Ser45 by CK1α, and subsequently at Thr41, Ser37, and
Ser33 by GSK3β. Phosphorylated β-catenin is released from the
complex allowing for its ubiquitination at the N-terminal end
of the protein and subsequent degradation by E3. Axin and
APC can also be phosphorylated by GSK3β and CK1α, resulting
in the enhancement of β-catenin phosphorylation (Hagen and
Vidal-Puig, 2002). This continuous degradation prevents the
accumulation and translocation of β-catenin to the nucleus
(MacDonald et al., 2009). When the Wnt/β-catenin signaling is
activated, Wnt ligand binds to Fzd receptors and its co-receptor,
low-density lipoprotein receptor-related protein 5/6 (Lrp5/6)
(Gordon and Nusse, 2006). This complex leads to the recruitment
of the scaffold protein (Disheveled, Dvl) to the receptors which
are then phosphorylated. Subsequently, Axin, GSK3β, and CK1
migrate from the cytoplasm to the plasma membrane, which
contributes to the inactivation of the destruction complex,
resulting in β-catenin stabilization through dephosphorylation.
Stable β-catenin translocates into the nucleus and interacts with
T-cell factor (TCF) transcription factors to induce the expression
of Wnt target genes such as c-Myc, cyclin D1, Axin-2, Lgr5,
ITF-2, PPAR-δ, and matrix metalloproteinase 1 and 7 (MMP-1,
MMP-7) (Wu and Pan, 2010; Velázquez et al., 2017). A variety of
Wnt/β-catenin target genes have been identified, including cell
proliferation regulation genes, development control genes, and
genes related to tumor progression. Wnt1 class ligands (Wnt2,
Wnt3, Wnt3a, and Wnt8a) play main roles through the canonical
Wnt/β-catenin signaling pathway.

NON-CANONICAL WNT SIGNALING
PATHWAY

Non-canonical Wnt signaling is mediated through Fzds but
Lrp5/6 is not involved and consists of two main branches
(Valenta et al., 2012): the PCP pathway and the Wnt/Ca2+

pathway. Non-canonical Wnt signaling is initiated by Wnt5a
type ligands (Wnt4, Wnt5a, Wnt5b, Wnt6, Wnt7a, and Wnt11).
These Wnt ligands bind to Fzd receptors. In addition, receptor
tyrosine kinase-like orphan receptor 2 (Ror2), and receptor
tyrosine kinase (Ryk) have been suggested as non-canonical
signaling co-receptors, which are required for downstream
activation. These signal transductions jointly activate the
calcium-dependent signaling cascade by activating Dvl (Rao
and Kühl, 2010). In the Wnt/Ca2+ pathway, Wnt ligands bind
to receptor complex, leading to the activation of phospholipase
C (PLC). This results in inositol 1,4,5-triphosphate-3 (IP3)
production and subsequent Ca2+ release (Anastas and Moon,
2013). Calcium release and intracellular accumulation activate
several calcium-sensitive proteins, including protein kinase C
(PKC) and calcium/calmodulin-dependent kinase II (CaMKII)
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(González-Moles et al., 2014). Calcineurin activates nuclear
factor of activated T cells (NFAT) and subsequent NFAT-
mediated gene expression (Saneyoshi et al., 2002). Some evidence
had been found that parts of the non-canonical Wnt signaling
proteins influence the canonical Wnt/β-catenin pathway (van
Tienen et al., 2009; Fan et al., 2017). However, the specific
mechanism is not yet clear, and more research is needed.

PCP was first demonstrated in insects because their cuticular
surface has a rich morphology (Adler, 2012). The Wnt/PCP
pathway mediates the event of collective migration, but abnormal
activation leads to tumor migration ability. In the Wnt/PCP
pathway, the binding of Wnt to Fzd and a co-receptor causes
recruitment of Dvl to Fzd and its association with disheveled-
associated activator of morphogenesis 1 (DAMM1). DAMM1
activates small G protein Rho, through guanine exchange factor
and then activates Rho-associated protein kinase to reorganize
the cytoskeleton and change cell polarity and migration (Peng
et al., 2011). It is characteristic of the plane polarity signal that
Rho-associated kinases can mediate cytoskeleton rearrangement.
Alternatively, the PCP pathway can also be mediated by the
triggering of RAC to initiate the c-Jun amino terminal kinase
(JNK) signaling cascade (Javed et al., 2019). The activation of
Dvl-mediated Wnt signal induces the activation of heterotrimeric
G protein and promotes the transport of intracellular Ca2+ to
the extracellular environment (De, 2011). This transport activates
JNK and Nemo-like kinase (NLK) which can phosphorylate
TCF transcription factors and antagonize the canonical Wnt
signaling pathway (Humphries and Mlodzik, 2018). Taken
together, these observations indicate that the Wnt/Ca2+ pathway
is a key regulator of canonical signaling pathways and planar cell
polarity pathways. On the other hand, non-canonical signaling
pathways phosphorylate TCF through NLK, thereby mediating
the activation of canonical Wnt signaling (Figure 1).

ABERRANT WNT SIGNALING PATHWAY
IN HNSCC

With the discovery that a number of Wnt genes are associated
with the development of various human cancers, aberrant
activation of Wnt signaling pathway became evident. To
date, different roles of Wnt in HNSCC have been confirmed.
Leethanakul et al. used microarray technology to reveal the
role of Wnt in HNSCC for the first time. They found that
homologs of both Fzd and Dvl were increased compared
with normal tissue samples. This suggests that Wnt mediates
invasiveness in the development of HNSCC (Leethanakul et al.,
2000). Currently, several other studies have shown that abnormal
activation of the Wnt signaling pathway facilitates tumor
transformation in head and neck tissues (Iwai et al., 2005). For
example, Wnt1-induced signaling pathway protein 1 (WISP-1)
is involved in the progression of OSCC, and high expression
of WISP-1 is significantly associated with treatment failure
(Zhang C. et al., 2019). Wnt7b, an agonist of the canonical Wnt
pathway, shows significantly increased expression in samples
from patients with OSCC compared with matched samples of
adjacent non-tumorous tissues (Shiah et al., 2016), and the

Wnt/β-catenin signaling pathway prevents shedding-mediated
apoptosis (anoikis) in SCC1 cells and promotes the growth of
HNSCC-xenograft tumors in vivo (Farooqi et al., 2017). The
Wnt/β-catenin signaling pathway may regulate the epithelial–
mesenchymal transition in laryngeal squamous cell carcinoma,
thereby regulating tumor development (Psyrri et al., 2014). In
OSCC, the non-canonical Wnt/Ca2+/PKC pathway is activated
by Wnt5a, which promotes migration and invasion (Prgomet
et al., 2015). Wnt5b has been found to be significantly increased
in the highly metastatic cell line of OSCC cells. Wnt5b gene
silencing can significantly inhibit the formation of filopodia-like
protrusive structures and migration, whereas stimulation with
Wnt5b can significantly increase the formation of filopodia-like
protrusions in SAS-LM8 cells (Takeshita et al., 2014). The roles
of more Wnt ligands in HNSCC are listed in Table 1. Thus,
both canonical Wnt pathways and non-canonical Wnt pathways
play great roles in HNSCC. Although Wnt1 type or Wnt5a
type ligands activate canonical or non-canonical Wnt pathways,
respectively, there is more research that suggests that the results
of different Wnt ligands depend on specific combinations of Wnt
receptors and coreceptors (Wang et al., 2013; Sakisaka et al.,
2015). Besides the canonical Fzd and Lrp receptor, Ror and Ryk
are also important alternative receptors for Wnt transduction.

Head and neck squamous cell carcinoma can be divided
into human papillomavirus (HPV)-positive and HPV-negative
tumors, each of which has its unique clinical, pathological, and
epidemiological significance (Cancer Genome Atlas Network,
2015). Increasing evidence shows that Wnt/β- catenin signaling
has an impact on the pathobiology of HPV- and HPV + HNSCC.
HPV viral oncoprotein E6/E7 has been used to alter the prognosis
of HPV-HNSCC patients (Liu et al., 2017). In oropharyngeal
squamous cell carcinoma, β-catenin is driven to nuclear
translation through E6 oncoprotein by activating epidermal
growth factor receptors (EGFR). Some researchers have used
small interfering RNAs to suppress E6 expression and erlotinib
to downregulate EGFR activity and thereby eliminate the nuclear
localization of β-catenin and the phosphorylation of EGFR
while reducing the invasion characteristics of HPV + HNSCC
cell lines in vitro (Nwanze et al., 2015). According to reports,
E6/E7 may also suppress E3 ubiquitin ligase protein to induce
nuclear translocation of β-catenin. The regulatory effect of
E6/E7 on HPV + HNSCC requires further study. Recently, it
was found that some microRNAs have potential roles in the
attenuation of HPV+/HPV- HNSCC, although the effects are
weak (Nwanze et al., 2015). More research is needed to deepen
the understanding of the Wnt/β-catenin signaling pathway in
HPV + HNSCC (Kobayashi et al., 2018). Due to limited tumor
specimens and relevant clinical data, research on HPV + HNSCC
lags behind than on HPV-HNSCC (Cancer Genome Atlas
Network, 2015; Beck and Golemis, 2016).

GENETIC AND EPIGENETIC CHANGES
OF WNT SIGNALING IN HNSCC

Components of the Wnt signaling pathway, such as Wnt
ligand proteins, Wnt antagonists, membrane receptors, and
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FIGURE 1 | Overview of the Wnt pathway. (A) Canonical pathway. Binding of Wnt to frizzled receptors activates disheveled (DVL), which disrupts the stability of the
destruction complex, composed of Axin, APC, GSK3-β, CK1, and β-catenin. Subsequently, phosphorylation and degradation of β-catenin are inhibited, which allows
the association of β-catenin with TCF transcription factors. In the absence of Wnt ligands, the complexes promote phosphorylation of β-catenin. Phosphorylated
β-catenin becomes multiubiquitinated (Ub) and subsequently degraded in proteasomes (Foulquier et al., 2018). (B) Non-canonical pathway. In the Wnt/Ca2+

pathway, Wnt ligands bind to a complex consisting of Fzd, DVL, and G-proteins, leading to the activation of PLC, which cleaves phosphatidylinositol 4,5
biphosphate (PIP2) into diacylglycerol (DAG) and IP3. DAG activates PKC whereas IP3 promotes the release of intracellular Ca2+, which in turn activates CamKII and
calcineurin (Russell and Monga, 2018). Calcineurin activates NFAT to regulate cell migration and cell proliferation. In the PCP pathway, Wnt ligands bind to a complex
consisting of Fzd, Ror2, and DVL, which mediates the activation of RhoA and ROCK, or activation of Rac and JNK signaling, to regulate cell polarity and migration.
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TABLE 1 | The roles of different Wnt ligands in HNSCC.

Wnt
ligands

Type of Wnt
signaling

HNSCC Cell
lines

Type of HNSCC Function References

Wnt1 Canonical SCC1483,
SNU1076

Oral squamous cell carcinoma Promote invasion, inhibit apoptosis Rhee et al., 2002;
Zhang C. et al., 2019

Wnt3 Canonical – Oral leukoplakia Cause dysplasia Ishida et al., 2007

Wnt3a Canonical – Laryngeal squamous cell carcinoma Worse histological grade, advanced clinical stage,
and higher cervical lymph node metastatic potential

Zhang D. et al., 2019

Wnt4 Non-canonical WRO, CAL62,
FB2, and BCPAP

Thyroid carcinoma Reduce migration Filippone et al., 2014

Wnt5a Non-canonical SCC9 Oral squamous cell carcinoma Enhance migration and invasion Prgomet et al., 2017

Wnt5a Non-canonical HTH-74, C-643 Thyroid carcinoma Decrease proliferation, migration, invasiveness, and
clonogenicity

Kremenevskaja et al.,
2005

Wnt5a Non-canonical CNE-2, 5-8F Nasopharyngeal carcinoma Lead to tumorigenesis and metastasis Zhu et al., 2014; Qin
et al., 2015

Wnt5a Non-canonical – Laryngeal squamous cell carcinoma High tumor stage and lymph node metastasis Prgomet et al., 2017

Wnt5b Non-canonical SAS-LM8 Oral squamous cell carcinoma Enhance migration and invasion Zhang et al., 2017

Wnt7a Canonical HSC3, CAL27 Oral squamous cell carcinoma Promote migration Sakamoto et al., 2017

Wnt7b Canonical DOK, FaDu Oral squamous cell carcinoma Promote proliferation and invasion Xie et al., 2020

Wnt10b Canonical SNU1076 Head and neck squamous cell
carcinoma

Promote growth and survival, inhibit apoptosis Shiah et al., 2014

Wnt11 Non-canonical – Oral squamous cell carcinoma Suppress tumor Andrade Filho et al., 2011

intracellular conduction medium, are often disrupted by genetic
or epigenetic inheritance in human tumors (Polakis, 2012). It
is reported that the activation of the Wnt1 and Wnt pathways
occurs due to epigenetic changes in secreted frizzled-related
protein (SFRP), Wnt inhibitory factor (WIF), and the Wnt
signaling pathway inhibitor Dickkopf 3 (DKK3). Previous data
demonstrated that DKK-3 protein is mainly expressed in HNSCC
(Katase et al., 2013), and its expression is associated to the
high metastasis rate and poor prognosis of OSCC (Katase
et al., 2012). Therefore, epigenetic changes of DKK3 may be
closely related to the occurrence and development of HNSCC
(Katase et al., 2020). Epigenetic alterations of SFRP, WIF-
1, and DKK-3 genes can active Wnt pathways, resulting in
delocalization of catenin in HNSCC (Pannone et al., 2010).
It was recently reported that overexpression of β-catenin is
significantly associated with increased transcriptional activity in
HNSCC (Kartha et al., 2018). The destructive complex strictly
controls the level of β-catenin in the cytoplasm. Previous studies
have suggested that mutations in APC, Axin, and β-catenin are
widespread in colon cancer (Hernández-Maqueda et al., 2013;
Yu et al., 2018), esophageal cancer, and gastric cancer. The
Axin1 mutation was first identified in hepatocellular carcinoma
(Satoh et al., 2000). In a small, diverse group of colon cancer
cases, activation of point mutations in β-catenin removed
the regulated N-terminal Ser/Thr residue. Similar β-catenin
mutations have also been reported in melanoma and other
tumors (Morin et al., 1997; Rubinfeld et al., 1997). Mutations in
these genes stabilize β-catenin, allowing it to accumulate in the
nucleus, and subsequently activate the Wnt signaling pathway.
However, mutants of APC, Axin, or β-catenin still ultimately
depend on exogenous Wnts (Lammi et al., 2004). According to
HNSCC studies, there are few gene mutations relevant to Wnt
pathways in HNSCC, which indicates that abnormal β-catenin

accumulation in oral cancer is not associated with mutations
in these genes. Although Wnt/β-catenin mutations are not
common in HNSCC, other signal pathways, such as FAT1 and
AJUBA, can crosstalk with Wnt/β-catenin, resulting in changes
in the activity of Wnt signaling pathway (Cancer Genome
Atlas Network, 2015; Beck and Golemis, 2016). Mutations in
these signaling cascades are almost entirely related to HPV-
negative tumors and to the absence of epithelial differentiation
programs. Another possible mechanism for the degradation and
inactivation of β-catenin involves EGFR signaling (Lee et al.,
2010). In OSCC, EGFR stabilizes β-catenin and enhances nuclear
accumulation of β-catenin through phosphorylation, possibly
via two molecular mechanisms: (1) binding directly and then
β-catenin is phosphorylated and (2) phosphorylation through
GSK-3β to regulate the activity of the destruction complex
(Billin et al., 2000; Hu and Li, 2010).

DNA methylation and histone modification also play
important parts in the occurrence of HNSCC. Epigenetic
regulation may contribute to the silencing of Wnt related
genes. Because there is no changes of methylation levels in
the CpG island of APC, Axin, and β-catenin genes in OSCC
(Shiah et al., 2016), downregulation of Wnt signaling in OSCC
and HNSCC is usually due to methylation of different Wnt
pathway inhibitors, such as SFRP-2, WIF-1, DKK-1 (Katase
et al., 2010), Dachshund family transcription factor 1 (DACH1),
and RUNT-related transcription factor 3 (RUNX3). Microarray-
based genome-wide epigenetic analyses of human cancer have
shown that inhibitors of Wnt signaling pathway are common
sites for promoter methylation silencing. However, these Wnt
pathway inhibitors may have different levels of methylation
in OSCC and HNSCC cells, and may be significantly related
to tumor recurrence or disease-free survival. For example,
in OSCC cell, the WIF-1 and SFRP2 genes are frequently
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methylated, whereas the DACH1 and Dkk1 genes are less
frequently methylated (Farooqi et al., 2017). In the same way,
the WIF-1 gene is often methylated in primary oropharyngeal
cancer tissue and associated with poorer survival (Paluszczak
et al., 2015). In addition, methylation of the E-cadherin
promoter is the main reason for the loss of membrane β-catenin
expression, which leads to the release of β-catenin from
the E-cadherin/β-catenin complex into the cytoplasm (Wong
et al., 2018). By performing chromatin immunoprecipitation
promoter array and gene expression analyses in hepatocellular
carcinoma, Cheng et al. (2011) found that enhancer of zeste
homolog 2 (EZH2) occupancy of the promoter decreased
the expression of several Wnt antagonists including Axin2,
NKD1, PPP2R2B, DKK1, and SFRP5. EZH2 is the core
components of polycomb repressor complex 2 (PRC2) and
has methyltransferase activity. It can catalyze histone 3 lysine
27 trimethylation (H3K27me) and eliminate PRC2-mediated
gene suppression. Thus, overexpression of EZH2 promotes the
neoplastic transformation of epithelial cells. These findings show
that inhibiting the activity of Wnt antagonists through DNA
methylation and histone modification enables to the constitutive
activation of Wnt/β-catenin signaling. Moreover, testing body
fluids to detect DNA methylation is feasible and minimally
invasive. Therefore, the Wnt antagonist gene such as SFRP-2,
WIF-1, and DKK-1 secreted in plasma can be used as a biomarker
for diagnosis and prognosis (Shiah et al., 2016).

WNT SIGNALING PATHWAY IN CANCER
STEM CELLS OF HNSCC

Stem cells (SCs) have the ability of self-renewal and
differentiation. The maintenance and repair of tissue homeostasis
depends on the activity of tissue-specific SCs. Cancer SCs (CSCs)
are a subset of cells that are resistant to chemotherapy and
radiotherapy and often promote relapse by stopping or evading
clinical treatment (Mannelli and Gallo, 2012). Like other cancer
tissues, HNSCC tissue contains small cell subsets with stem-like
characteristics (CSCs), which can bring about tumors with
hierarchical structure.

According to reports, aberrant Wnt signaling has a promoting
effect on different forms of cancer (such as colon cancer, liver
cancer, and lung cancer), and plays a key role in guarding
CSCs (Vermeulen et al., 2010). Le et al. co-cultured HNSCC
tumor spheres and cancer-related fibroblast (CAF) cell line in
3D environment to simulate the interaction in vivo and found
that Wnt3a activated Wnt signals in cancer cells and CAF. The
activation of Wnt increases the characteristics of CSC, such
as sphere formation and invasiveness (Lamb et al., 2013; Le
et al., 2019). Non-canonical Wnt signals in CSCs are activated
by Wnt5a, Wnt11, or other non-canonical Wnt ligands. It is
known that non-canonical Wnt signals promote the survival
and drug resistance of CSCs through activation of PI3K-AKT
signal and YAP/TAZ-mediated transcription. But there are few
studies on the role of non-canonical Wnt signaling pathway
in the CSC of HNSCC, most of the findings focus on the
Wnt/β-catenin signaling pathway. Recent advances suggest that

Wnt/β-catenin signaling is involved in the differentiation and
development of CSCs in HNSCC. One proposed mechanism
is that Wnt/β-catenin may play a specific role in asymmetric
cell division, which allows Dvl, Fzd, Axin, and APC to divide
asymmetrically in the cytoplasm, producing a progenitor cell
and a cell destined to differentiate (Lien and Fuchs, 2014).
The analysis of CSC proliferation stimulated by canonical Wnt
signal pathway inhibitors has become the latest experimental
method to study the role of this signal pathway in CSC
self-renewal. In nasopharyngeal carcinoma, CSC isolated from
HNE1 cell line treated with Wnt-C59, an inhibitor of Wnt,
can reduce the proliferation of CSC (Cheng et al., 2015).
In addition, several other studies have shown that numerous
canonical Wnt signal pathway inhibitors, including SFRP4, all-
trans retinoic acid (Atra), and active natural compounds and
honokiol, can reduce the expression of β-catenin and ultimately
inhibit the proliferation of CSC in HNSCC (Lim et al., 2012;
Yao et al., 2017). The Wnt/β-catenin signaling pathway also
plays an important role in regulating differentiation of SC during
early embryonic development (Vlad et al., 2008) and cancer
including HNSCC. It is reported that CSC isolated from M3a2
and M4e (HNSCC cell lines) are highly activated. The CSCs
injected into nude mice differentiate into tumor cells, resulting
in five times larger tumor growth than non-CSC after 8 weeks
(Lee et al., 2014).

A study showed that the expression of CD44 + was
essential for maintaining tumor heterogeneity in HNSCC (Prince
et al., 2007). The CSCs with high CD44+ were shown to be
characterized by high aldehyde dehydrogenase activity (ALDH)
and by expression of c-Met and SOX2. According to reports,
CD44+/ALDH (high) cells have stronger oncogenicity and self-
renewal ability than CD44 + ALDH (low) cells. ALDH is thought
to cause treatment resistance and tumor prevalence by regulating
the expression of phosphoinositide 3-kinase (PI3K) and SOX2
signaling pathway (Bertrand et al., 2014). The mesenchymal–
epithelial transition factor c-Met has been reported to interact
with the Wnt/β-catenin pathway in HNSCC (Arnold et al.,
2017). The roles of c-Met and Wnt/β-catenin have been
widely studied in colon cancer cells, in which their activities
determine the fate of cells in CSC. However, the activation of
c-Met inhibitor in the presence of β-catenin has been found
to result in the elimination of CSCs in HNSCCs (Arnold
et al., 2017). It has been reported that FZD8, a modulator
of the Wnt/β-catenin pathway, increases the expression of
CSCs in HNSCCs by activating the (extracellular regulated
MAP kinase) ERK/c-fos signaling axis (Bordonaro et al., 2016;
Chen and Wang, 2019).

Due to the presence of drug-resistance CSCs, disease
recurrence is the main marker of HNSCC. A large body of
evidence suggests that Wnt confers chemotherapeutic resistance
by upregulating CSC activity in HNSCC. The use of the Fzd/Wnt
antagonist SFRP4 was found to increase the drug sensitivity
of HNSCC by 25%. SFRP4 was shown to compete directly
with Wnt, significantly enhancing cisplatin-induced apoptosis
and reducing the activity of tumor cells (Warrier et al., 2014).
Furthermore, the use of antagonists had no effect on non-
tumorigenic mouse embryonic fibroblasts, suggesting that Wnt
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signaling plays an important role in the development and
differentiation of CSCs related to HNSCC. However, the potential
mechanism underlying the upregulation of chemical resistance
in CSCs remains unclear, as does the mechanism by which
Wnt mediates the activation of CSCs. Studies have identified
five types of ABC transporters, ABCC1 to ABCC5, as main
mediators in the canonical hyperactivation of the Wnt pathway
in spheroid cells of HNSCC. The ability of spheroid cells to
exhibit CSC-induced chemotherapy resistance was eliminated
after knocking out the genes for β-catenin synthesis. However,
this knock out resulted in the loss of SC tags necessary for self-
renewal (Song et al., 2010; Yao et al., 2013). Although research
on Wnt signal modulators has made great progress, few drugs
have been imported for clinical use. Since CSCs have the same
characteristics (self-renewal, differentiation) as normal SCs, they
present an obstacle to the development of suitable pharmaceutical
formulations for HNSCC.

WNT SIGNALING AS A THERAPEUTIC
TARGET FOR HNSCC

Wnt signaling plays an important role in tumorigenesis and
acts as a regulator of CSCs renewal in the process of cell
homeostasis; thus, it is an attractive therapeutic target. To
date, several approaches have been developed, and a few have
moved on to clinical trials. One of them is to block the
activity of Wnt with specific inhibitor. PORCN, also known
as porcupine, is an enzyme which can limit the activation of
Wnt signals in serine residues and promote the palmitoylation
of Wnt. Using small inhibitors of PORCN, such as IWP, C59,
and LGK974 caused rapid decreases in the expression of Wnt
signaling (Proffitt et al., 2013). In vitro, C59 inhibited the activity
of PORCN, and then inhibited the Wnt palmitoylation, Wnt
interaction with carrier protein Wntless/WLS, Wnt secretion,
and Wnt activation of β-catenin reporter protein. The chick
chorioallantoic membrane (CAM) experiment proved that
LGK974 can inhibit the growth and metastasis of HNSCC (Rudy
et al., 2016). Studies have also shown that PORCN directly
prevents the excessive production of Wnt, thus inhibiting the
interaction between Wnt and Fzd protein. At present, the
inhibition of PORCN on Wnt is being verified in vivo and
in vitro. Additionally, inhibitors of tankyrase stabilize axin and
antagonize Wnt signaling including XAV939, IWR, G007-LK,
and G244-LM, though they have not yet entered clinical trials
(Huang et al., 2009; Lau et al., 2013; Kulak et al., 2015). Moreover,
ICG-001, a small molecule that inhibits the transcription of
CREB binding proteins, downregulates β-catenin/T cell factor
signaling by specifically binding to cyclic AMP response element-
binding protein (Emami et al., 2004; Bordonaro and Lazarova,
2015). ICG-001 is currently in phase I clinical trials in patients
with HNSCC. Furthermore, OMP-18R5 is a human monoclonal
antibody against the Fzd receptor and is currently in phase I
clinical trials. Wnt ligands and their compound receptors are
also being evaluated in clinical trials (Kawakita et al., 2014).
Examples include Omp-54F28, a chimera of human IgG1 and
Fzd8, which is related to the growth of pancreatic cancer cells.

Currently, most clinical trials use small RNAs as biomarkers
for cancer detection, diagnosis, and prognostic evolution (Hayes
et al., 2014). To date, no clinical trial has used miRNAs to predict
prognosis and the clinical effect in HNSCC patients. A more
comprehensive understanding of the involvement of the Wnt
pathway in HNSCC is necessary to develop effective therapeutics
for oral cancer.

CONCLUSION

As outlined above, aberrant activation of the Wnt signaling
pathway may impact on HNSCC. In addition to gene mutations
in the Wnt component, abnormal changes downstream of
EGFR are involved in regulating the Wnt/β-catenin pathway,
which can reshape the histone/chromatin structure of the target
gene. Because the epigenetic alterations of Wnt antagonists
are the cause of Wnt signal activation, it may become a
potential biomarker for predicting OSCC recurrence in plasma.
Appropriate methods are required to deal with CSC generated
by aberrant Wnt signaling. Wnt signaling is one of the regulators
of CSC generation involving HNSCC. Because of the complexity
of non-canonical signal pathway, most of the research on Wnt
in HNSCC is focused on canonical WNT signal pathway, but
there are few related studies on non-canonical signal pathway.
More attention needs to be paid to non-canonical signaling
pathways in the future. The evaluation of various aspects of
signal transduction can expand our understanding of both this
key pathway and the crosstalk between signaling pathways in
cells. Such advancement will enable the development of a broad
range of therapeutic interventions to eradicate and respond to
HNSCC recurrence.
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