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Insulin resistance (IR), currently called prediabetes (PD), affects more than half of the

adult population worldwide. Type 2 diabetes (T2D), which often follows in the absence

of treatment, affects more than 475 million people and represents 10–20% of the health

budget in industrialized countries. A preventive public health policy is urgently needed

in order to stop this constantly progressing epidemic. Indeed, early management of

prediabetes does not only strongly reduce its evolution toward T2D but also strongly

reduces the appearance of cardiovascular comorbidity as well as that of associated

cancers. There is however currently no simple and reliable test available for the diagnosis

or screening of prediabetes and it is generally estimated that 20–60% of diabetics are not

diagnosed. We therefore developed an ELISA for the quantitative determination of serum

Insulin-Regulated AminoPeptidase (IRAP). IRAP is associated with and translocated in

a stoechiometric fashion to the plasma membrane together with GLUT4 in response

to insulin in skeletal muscle and adipose tissue which are the two major glucose

storage sites. Its extracellular domain (IRAPs) is subsequently cleaved and secreted

in the blood stream. In T2D, IRAP translocation in response to insulin is strongly

decreased. Our patented sandwich ELISA is highly sensitive (≥ 10.000-fold “normal”

fasting concentrations) and specific, robust and very cost-effective. Dispersion of fasting

plasma concentration values in a healthy population is very low (101.4 ± 15.9µg/ml) as

compared to those of insulin (21–181 pmol/l) and C-peptide (0.4–1.7 nmol/l). Results of

pilot studies indicate a clear correlation between IRAPs levels and insulin sensitivity. We
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therefore think that plasma IRAPs may be a direct marker of insulin sensitivity and that

the quantitative determination of its plasma levels should allow large-scale screening of

populations at risk for PD and T2D, thereby allow the enforcement of a preventive health

policy aiming at efficiently reducing this epidemic.

Keywords: IRAP, diabetes, biomarker, prediabetes, diagnosis, screening, GLUT4

STATE OF THE ART AND CURRENT
ISSUES

Type 2 diabetes (T2D) is a severe chronic disease whose
incidence has been increasing continuously over the past decades
becoming a major public health and socio-economic issue
(Herman and Zimmet, 2012; Menke et al., 2015; International
Diabetes Federation, 2019). T2D does not develop abruptly,
but is preceded by a gradually worsening impaired glucose
tolerance or insulin resistance, now generally referred to as
prediabetes (Perreault, 2000; Edwards and Cusi, 2016). This
disease which is essentially asymptomatic, is due to the
progressive appearance of a resistance of target tissues to
the metabolic actions of insulin (Kahn, 1996). One of the
most extensively characterized initial signs of prediabetes is a
reduction of the rate of glucose uptake by the insulin responsive
cells after a meal (Garvey et al., 1998; Jung and Lee, 1999).
This together with increased hepatic gluconeogenesis leads to
higher levels of postprandial glycemia and to a delayed return
to basal glycemia levels. These two phenomena are usually
accompanied by increased postprandial insulin levels. Additional
features are usually hypertriglyceridemia, mild hypertension
and overweight.

The situation generally worsens with time over a period which
can take several years, to finally result in fasting hyperglycemia
which is the definition of type 2 diabetes (Geiss et al., 2010).

Contrary to type 1 diabetes which is due to a severe decrease
in insulin secretion by the pancreas, type 2 diabetes is due
to defects in signal transduction between the insulin receptor
and the molecular mechanisms involved in glucose uptake and
other metabolic actions of insulin. These defects, make the
cells resistant to the metabolic actions of insulin (Kahn, 1992,
1996). Whereas, not all tissues, e.g., the brain and the liver,
depend on insulin for glucose uptake, the major glucose storage
tissues, i.e., skeletal muscle and adipose tissue do. In addition,
insulin is no longer able to inhibit gluconeogenesis, especially
by the liver, thereby contributing to the progressive worsening
of hyperglycemia. Numerous studies have shown that in the
absence of early and adequate management of insulin-resistance,
prediabetes almost invariably evolves to T2D (Perreault, 2000;
Herman and Zimmet, 2012; Kerrison et al., 2017; Braga et al.,
2019). Currently the International Diabetes Foundation (IDF)
estimates that more than 460 million people have diabetes
worldwide. Seventy five percent of the individuals having diabetes
(> 350 million) are aged between 20 and 64 years and are
therefore part of the working age population which explains
the huge socio-economic burden of the disease (International
Diabetes Federation, 2019).

T2D is the first cause of death in adults worldwide, namely
about 4.2 million people, i.e., 11.3% of deaths. It is also a major
cause of disability (Gregg et al., 2016; International Diabetes
Federation, 2019).

It is now widely recognized that prediabetes carries an equal
risk of morbi-mortality as T2D (Huang et al., 2016; Casagrande
et al., 2018b) with regard to cardiovascular diseases (Balakumar
et al., 2016; Strain et al., 2018) and/or cancer (Scappaticcio
et al., 2017). Current IDF estimations emphasize that more
than 375 million people worldwide have prediabetes (Bullard
et al., 2018; International Diabetes Federation, 2019). The total
number of people living with a high risk of developing insulin-
resistance associated diseases, essentially cardiovascular diseases
and cancer, is therefore ≥ 835 million individuals. Moreover, the
IDF considers that approximately half of the population having
diabetes is undiagnosed and therefore unaware of having the
disease (International Diabetes Federation, 2019).

Finally, about 16% of the pregnant women, i.e., more than 20
million women worldwide, develop diabetes during pregnancy.
This gestational diabetes often results in potentially severe
complications either during pregnancy or at the parturition and
even later on in life both for the infant and the mother (Chiefari
et al., 2017; Casagrande et al., 2018a; Plows et al., 2018).

From an economic point of view, the IDF estimated last
year’s worldwide direct cost of diabetes at 760 billion USD and
its indirect costs at 455 billion USD (in 2015) (International
Diabetes Federation, 2019).

Despite these impressive figures and the grim projections
of the progression of the prevalence of these diseases for
the next decades, there is so far no simple, reliable, and
cost-effective diagnostic test for T2D and even less so for
prediabetes (Muniyappa et al., 2008; Malkani and DeSilva, 2012;
Wolffenbuttel et al., 2013; Xiang et al., 2014; Gloyn and Drucker,
2018).

Currently, all diagnostic tests for T2D are based either on
the determination of glycemia, insulin or its secreted precursor
C-peptide levels or on the assessment of the consequences of
hyperglycemia, e.g., hemoglobin glycation (HbA1c levels). The
most common screening test used is random plasma glucose
testing (RPG). In an elegant paper, Herman’s group showed
that this method results in an extremely high overestimation
of the incidence of T2D using a cut-off value of 130 mg/dl
(Johnson et al., 2005). In order to try to standardize screening
it has been recommended to assay fasting plasma glucose levels
instead. It turned out that using a cut-off value of 126 mg/dl,
the sensitivity of FPG ranges between 35 and 59% and the
specificity between 85 and 95%, comparable to the sensitivity and
specificity of an RPG cut-off point of 160 mg/dl (Blunt et al.,
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1991; Bortheiry et al., 1994; Engelgau et al., 2000). Another, more
logical approach for the screening of T2D considering that it is
due to insulin resistance, is to measure post-prandial glycemia
(PPG). The major drawback of this method is the considerable
inter-individual and intra-individual variability of PPG (Venn
and Green, 2007; Rohling et al., 2019) due to high interpersonal
variability in post-prandial glycemic responses to the same food
(Zeevi et al., 2015). It is thus obvious now that these tests
cannot be used for screening for T2D and even less so for PD
(Bansal, 2015).

Another parameter whose measurement has been proposed
for screening of T2D, is HbA1c. The rationale behind it is that
HbA1c should reflect an integrated measurement of glycemia
over a period of∼3months as compared to the real time punctual
information represented by FPG and PPG. Unfortunately,
HbA1c levels are also strongly determined by genetic factors
(Cohen et al., 2006; Bloomgarden et al., 2008; Cavagnolli et al.,
2017) and do therefore show important interindividual variability
independently of glycemia. In agreement with this, a lack of
correlation with FPG and PPG have been consistently reported
(Bonora et al., 2001; E. van ’t et al., 2010; Cavagnolli et al., 2011;
Nathan et al., 2014), as well as other discrepancies (Gomez-
Perez et al., 1998; Bonora and Tuomilehto, 2011; Tucker,
2020).

Therefore, whereas it is a useful marker for the follow-up of
glycemia in T2D patients, each patient acting as his own control,
it obviously cannot be used as a diagnostic neither as a screening
assay (Gomez-Perez, 2015).

Considering the lack of sensitivity and specificity of these
static markers, dynamic tests have been and are currently being
used. The most widely used is the oral glucose tolerance test
(OGTT) first described by JW Conn in 1940, in which patients
are challenged with glucose after which their glycemia and
insulinemia are monitored for 2 h or more (Matthews et al., 1985;
American Diabetes Association, 2020). Based on the glycemia
and insulinemia values during the 2-h duration of OGTT,
Matsuda has proposed an equation which fits better with the
data obtained using the euglycemic hyperinsulinemic clamp,
considered to be the gold standard (Matsuda and DeFronzo,
1999). This index has further been improved using the AUCs
for both parameters (Abdul-Ghani et al., 2007). Nevertheless,
the intrinsic problem of this dynamic test is the important
intra- and interindividual variability of glycemia and insulinemia,
even if this issue is somewhat alleviated by integrating the
values measured at several time points. Thus, whereas OGTT
may represent an improvement for the diagnosis of T2D, the
immobilization of the patients for more than 2 h it requires,
precludes it from being used for screening purposes. This is even
more so for the euglycemic hyperinsulinemic clamp which can
only be used in research settings.

In an attempt to find a solution to this issue, an index based
on the mathematical modeling of the steady-state basal plasma
glucose and insulin concentrations feedback loop has been
developed. It has been proposed by the authors that comparison
of a patient’s fasting values with the model’s predictions allows a
quantitative assessment of the contributions of insulin resistance
and deficient beta-cell function to the fasting hyperglycaemia

(homeostasis model assessment, HOMA) (Matthews et al., 1985).
However, as indicated by the authors, “The low precision of
the estimates from the model (coefficients of variation: 31% for
insulin resistance and 32% for beta-cell deficit) limits its use
(Matthews et al., 1985).” Most important are, as stated by the
authors, the facts that 1◦ The HOMA model is a model of the
glucose-insulin feedback system in the homeostatic (overnight-
fasted) state and 2◦ it has been designed to predict pancreatic β-
cell function (%β) and insulin sensitivity (IS) in the fasting steady
state. Its initial aim was to provide an accurate representation of
physiology and successfully predict the homeostatic responses to
an intravenous glucose infusion (Levy et al., 1998).

Thismodel has been extrapolated to a clinical use to determine
IS and %β and from there to diagnose diabetes despite the caveats
and inappropriate uses pointed out by the authors (Wallace
et al., 2004). Obviously, the value of the HOMA index essentially
depends on the quality of the sample measurements (Matthews
et al., 1985) which brings us back to the issue of FPG with its high
degree of intra-and interindividual variability which also holds
for insulinemia.

Many other indices have been proposed based on direct,
i.e., insulin infusion-based tests, and indirect, i.e., insulinemia
measurements, methods. The advantages and caveats of the
major indices for clinical purposes has been reviewed in
detail by Matsuda in 2010 (Matsuda, 2010). The correlations
of 35 indices with IS and 1/IS obtained from IVGTT and
standard hyperglycemic breakfast test have been reported and
are indicative of the important discrepancies between most
of them (Aloulou et al., 2006). More interesting even is the
comparison of several of these indices in similar settings between
diabetics and healthy subjects (Brun et al., 2013). The data
reported unambiguously show that whereas there is a good
correlation of some indices in healthy subjects, this is not the
case in patients with diabetes. This thus once more raises the
issue of extrapolating indices which reflect physiological glucose
homeostasis to clinical settings.

In summary, all available methods used so far for the
diagnosis of T2D suffer from more or less serious drawbacks and
particularly the tests based on single time point determinations.
This is obviously even more true for PD where increases in
glycemia and insulinemia are less pronounced than in T2D.

The most reliable diagnostic test being OGTT based, there is
thus as yet no reliable method available allowing for the screening
of T2D and PD.

Recent work aimed at finding novel biomarkers of PD and
T2D has resulted in the identification of copeptin, which is the C-
terminal fragment of pre-provasopressin (Enhorning et al., 2011;
Wannamethee et al., 2015; Roussel et al., 2016; Jensen et al., 2019).
The mechanisms which link the secretion of copeptin to insulin-
resistance are however still unclear. It is possible that increased
copeptin levels in T2D are due to decreased translocation of
IRAP which has been reported to degrade vasopressin, thereby
triggering the secretion of its precursor pre-pro-vasopressin.
Interestingly however copeptin appears to be an interesting
independentmarker of renal and cardiovascular complications in
T2D (Riphagen et al., 2013; Velho et al., 2013; Bar-Shalom et al.,
2014; Zhu et al., 2016; Potier et al., 2019).
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FIGURE 1 | Insulin-mediated glucose uptake through GLUT4. (A) In the absence of insulin, glucose cannot enter the cell. (B) Secreted insulin binds to its receptors

and triggers multiple signaling pathways. (C,D) Among these pathways, insulin triggers the translocation of part of the GLUT4 containing vesicles (GSV) to the plasma

membrane. (E) Upon fusion with the plasma membrane (PM), GLUT4 molecules are inserted in the PM and allow glucose to enter the cell. Glucose is rapidly

phosphorylated to glucose-6-phosphate (G-6-P) as an intermediate metabolite in glycolysis, pentose pathway and glycogen synthesis. (F) In the fused GSVs, IRAP is

inserted the PM together with GLUT4 and its C-terminal extracellular domain is cleaved and secreted in the bloodstream. Subsequently, GSV proteins will be recycled

and incorporated in newly formed cytoplasmic GSVs. (G) Part of the GSVs stay in the cytoplasm and are available for future translocation. IRAP molecules are intact.

A NOVEL DIAGNOSTIC APPROACH

Our approach has therefore been to shift from an integrative
parameter, glycemia, to a specific and exclusively insulin-
dependent parameter, glucose uptake. Indeed, insulin resistance
which is the defect underlying prediabetes, T2D and gestational
diabetes, always involves altered insulin-mediated glucose uptake
(Kahn, 1996).

The mechanism through which insulin stimulates cellular
glucose uptake, is by inducing the translocation of the vesicles
which contain the glucose transporter GLUT4, from the
cytoplasm to the plasma membrane (Bryant et al., 2002).
As a result, these vesicles fuse with the plasma membrane
and the GLUT4 proteins become inserted there. Since there
is an important concentration gradient of glucose from the
extracellular fluid to the cytosol, glucose will enter the cell by
passive diffusion and will be instantaneously phosphorylated
to enter the metabolic pathways. Thus, cytosolic glucose
concentrations always remain extremely low, maintaining the
concentration gradient.

Apart from this pathway, there is no other additional or
alternative way for glucose to enter cells in an insulin-dependent
fashion. Certain cells and organs like the brain and the liver

do not rely on insulin for glucose uptake and express other
glucose transporter isoforms which are located constitutively in
the plasma membrane.

Themajor issue with this approach was to find the appropriate
biomarker. Indeed, determining plasma membrane vs. vesicular
GLUT4, is not only complex but also invasive as it requires
muscle or adipose tissue biopsies. Such an approach is obviously
not suitable for routine and large-scale screening or diagnosis of
insulin resistance.

The challenge was thus to find a plasmatic or serum biomarker
of GLUT4 vesicle translocation.

GLUT4 vesicles contain a series of other proteins, most of
which are essentially involved in the translocation process (Bogan
and Kandror, 2010).

Interestingly, among these vesicular proteins, there is an
aminopeptidase which appears to be closely associated with
GLUT4 in a stoechiometric fashion. A peculiarity of this protein
called Insulin-Regulated AminoPeptidase (IRAP) which was
identified and cloned in 1994 (Mastick et al., 1994; Keller et al.,
1995; Ross et al., 1996), is that its large 160 kDa extracellular
domain is cleaved by metalloproteases, ADAM 9 and 12 and thus
secreted in the bloodstream (Figure 1) (Ito et al., 2004), similar to
angiotensin-converting enzyme (ACE) (Costerousse et al., 1992).
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FIGURE 2 | Structure of the cleaved extracellular domain of IRAP: 3-dimensional model of the cleaved extracellular domain of IRAP. Epitopes recognized by the

monoclonal antibodies used in the ELISA are in red.
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Since insulin triggers the translocation of the GLUT4 vesicles
to the plasma membrane, the circulating levels of IRAP should
reflect the amount of IRAP and GLUT4 which are translocated to
the plasma membrane (Figure 1)and hence reflect the degree of
insulin sensitivity.

In agreement with this hypothesis, data from the literature
indicate a decrease of IRAP translocation in response to insulin
in adipocytes and skeletal muscle in diabetic rats (Takeuchi
et al., 2006) and in patients with type 2 diabetes (Garvey et al.,
1998; Maianu et al., 2001). It is therefore reasonable to assume
that circulating IRAP (IRAPs) levels will be decreased in people
having prediabetes or diabetes.

IRAPs may therefore be a direct marker of insulin response
and sensitivity. Accordingly, its quantitative determination
by a simple and robust method could allow the screening
of populations at risk for prediabetes, type 2 diabetes and
gestational diabetes.

Similar to what had been done previously by other
investigators for measuring circulating angiotensin-converting
enzyme (ACE) (Danilov et al., 1996), we attempted to
develop an assay for the quantitative determination of IRAPs
in serum.

After having investigated and tried different techniques,
we chose to further develop a sandwich ELISA using two
monoclonal antibodies directed against two epitopes of the
globular extracellular domain of IRAP (Figure 2) identified by 3-
D modeling (Mpakali et al., 2015). The ELISA is calibrated with
recombinant human IRAPs obtained through (over)expression
in mammalian cells.

The assay is highly specific for IRAP and does not display
any cross-reactivity with other related aminopeptidases under
the analytical conditions. Its sensitivity is 10 ng/ml for reference
values around 100µg/ml in healthy volunteers under fasting
conditions. This assay and the diagnostic applications of IRAP

FIGURE 3 | Immunoblots of the secreted domain of IRAP. (A,B) Samples were submitted to SDS PAGE on 4–15% gradient gels under non-reducing conditions and

transferred to PVDF membranes by semidry blotting. Blots were probed resp. with 4G6 mAb (A) and 40C10 mAb (B) and revealed using an anti-mouse-HRP

antibody (preadsorbed to human IgG) and luminol. Lanes: 1: molecular weight markers, 2: -, 3: 150 ng recombinant human IRAP secreted domain (rhuIRAP sd), 4: -,

5: 1.5 µL human serum spiked with 150 ng rhuIRAPsd, 6: 1,5 µL fetal bovine serum, 7: 1.5 µL human serum, 8: 0.75 µL human serum. (C) Sera obtained during an

insulin-induced hypoglycemia test were submitted to native PAGE on a 4–15% gradient gel under non-reducing conditions and transferred to PVDF membranes by

semidry blotting. The blot was probed with 4G6 mAb and revealed using an anti-mouse-HRP antibody (preadsorbed to human IgG) and luminol. Indicated times are in

minutes following insulin injection.
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have been patented under the reference PCT/FR2009/05133 and
published as WO 2010/001079.

Clinical trials to validate the diagnostic interest of this assay
are currently under way. Preliminary data from pilot studies
indicated that IRAPs is cleared from the circulation within 1
hr and that (Figure 3), in healthy individuals, its levels appear
to follow glycemia and insulinemia (Figure 4). Interestingly, the
dispersion of the IRAP concentrations determined in healthy
volunteers under fasting conditions using this assay is low (101.4
± 15.9µg/ml) as compared to glycemia, insulinemia (21–181
pmol/l) or C-peptide (0.4–1.7 nmol/l), adding to its potential
clinical value as a biomarker.

PRELIMINARY RESULTS

As shown in Figures 3A,B, immunolabeling of serum IRAP
after SDS-PAGE with either of both monoclonal antibodies used
in the ELISA, i.e., 4G6 for capture and 40C10 for detection,
reveals a major band with an apparent molecular weight (Mr)
of approximately 160 kDa. Another band with a higher Mr

between 300 and 400 kDa seen in the recombinant human
IRAP secreted domain preparation probably corresponds to
dimerization. Conversely, bovine serum does not show any
detectable IRAP, in agreement with the absence of a proteolytic
cleavage site required for its shedding. Interestingly, the mAb

40C10 also detects a minor band with an Mr of∼100 kDA which
may correspond to a proteolytic fragment.

Figure 3C shows that in serum samples obtained during
an insulin-induced hypoglycemia test, IRAP reaches a peak
concentration within 20min after insulin injection and is cleared
within 60min. The mechanisms involved in IRAP clearance
are not elucidated yet but probably involves proteolysis as we
observed a proteolytic fragment with one of the monoclonal
antibodies (Figure 3B). The PAGE performed under “native”
conditions shown in this figure also indicates that IRAP forms
oligomers. These dissociate in the presence of SDS, yielding a
single band with an apparent molecular weight of approximately
160 kDa as shown in Figures 3A,B. Effective dissociation of the
oligomers is obviously a key feature of the ELISA.

As expected, IRAP levels do not follow insulinemia in severe
insulin resistance. Figure 4 shows typical glycemia, insulinemia
and serum IRAP concentration profiles during OGTT in two
euglycemic and two severely insulin-resistant diabetic patients.
Whereas, serum IRAP levels correlate with glycemia and
insulinemia in the two euglycemic patients, IRAP levels do not
increase in response to increased insulinemia be it at 60 or
120min after glucose intake.

These observations are in agreement with the hypothesis that
IRAP translocation and shedding are strongly dependent upon
insulin sensitivity.

FIGURE 4 | Glycemic, insulinemic, and serum IRAP concentration profiles during OGTT. Representative three-time points OGTT profiles in two euglycemic (MB and

TD) and two severely insulin-resistant diabetic (KJ and SZ) patients. Glycemia, blue; insulinemia, green; IRAP, red.
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CONCLUSIONS

Type 2 diabetes and its preceding condition, prediabetes, are
two major health issues worldwide, considering the dramatically
increasing number of people having these conditions and
the associated growing socioeconomic burden (Herman and
Zimmet, 2012).

Interestingly and as opposed to other important health issues
like cancer and infectious diseases, the major issue with T2D and
PD is not so much their treatment, which is very cost-effective if
started at an early stage and in constant progress with the advent
of novel drugs, but timely diagnosis. The use of glycemia to screen
for T2D and even more so for PD, has proven delusive probably
due to its complex regulation and so are HbA1c and insulinemia.

IRAP, a protein associated with GLUT4 and directly involved
in insulin-mediated glucose uptake, appears to be an interesting
candidate biomarker for insulin-resistance.

We developed a highly specific and sensitive ELISA allowing
the quantitave measurement of the circulating domain of IRAP
in plasma and serum. The currently ongoing clinical trials will tell
whether this test is a valuable tool for the screening and diagnosis
of the insulin-resistance dependent diseases: prediabetes, type 2
diabetes and gestational diabetes.
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