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Network theory-based approaches provide valuable insights into the variations in global
structural connectivity between different dynamical states of proteins. Our objective is to
review network-based analyses to elucidate such variations, especially in the context
of subtle conformational changes. We present technical details of the construction
and analyses of protein structure networks, encompassing both the non-covalent
connectivity and dynamics. We examine the selection of optimal criteria for connectivity
based on the physical concept of percolation. We highlight the advantages of using
side-chain-based network metrics in contrast to backbone measurements. As an
illustrative example, we apply the described network approach to investigate the global
conformational changes between the closed and partially open states of the SARS-
CoV-2 spike protein. These conformational changes in the spike protein is crucial for
coronavirus entry and fusion into human cells. Our analysis reveals global structural
reorientations between the two states of the spike protein despite small changes between
the two states at the backbone level. We also observe some differences at strategic
locations in the structures, correlating with their functions, asserting the advantages of the
side-chain network analysis. Finally, we present a view of allostery as a subtle synergistic-
global change between the ligand and the receptor, the incorporation of which would
enhance drug design strategies.

Keywords: protein side-chain network, allostery, network theory, SARS-CoV-2 spike protein, conformational

dynamics, network parameters, molecular dynamics simulations

INTRODUCTION

The concept of allostery has evolved for more than half a century (Monod et al., 1965;
Koshland et al., 1966; Cooper and Dryden, 1984; Cui and Karplus, 2008; Changeux,
2011; Motlagh et al., 2014). This word in simple terms means “action at a distance” and
implies long-distance communication within and across the three-dimensional structures
of proteins. Fundamental understanding of the principles guiding allostery in proteins
came from two classical models, the concerted Monod–Wyman–Changeux (MWC)
(Monod et al., 1965) model and the sequential Koshland–Nemethy–Filmer (KNF) model
(Koshland et al., 1966), with the structural insights coming from one of the earliest crystal
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structures of hemoglobin (Perutz, 1970). An exponential increase
in the availability of protein structures in different functional
states has improved our comprehension of the phenomenon
of allostery (Liu and Nussinov, 2016; Greener and Sternberg,
2018). Studies over the past decades have associated allostery
in proteins with accompanying conformational variations.
Such conformational changes range from dramatic alterations
at the protein backbone level to subtle re-orchestrations
involving protein side chains in the absence of appreciable
backbone variations (Bhattacharyya and Vishveshwara, 2011;
Motlagh et al., 2014; Tsai and Nussinov, 2014; Salamanca
Viloria et al., 2017). It is this latter mode of conformational
fluctuations and long-range signaling that are more challenging
to capture.

Current advances in both experimental and theoretical
techniques have started shedding light into these subtle
conformational variations. In particular, long-range
molecular dynamics (MD) simulations, providing equilibrium
conformational ensembles, have offered extensive computational
characterization of the conformational dynamics in
proteins/protein complexes (Lindorff-Larsen et al., 2010, 2016;
Karandur et al., 2020; Mysore et al., 2020). The goal of these
studies ranges from understanding the fundamental biophysical
principles to understanding more practical applications for drug
design (Borhani and Shaw, 2012; de Vivo et al., 2016). Over the
past decades, this topic has been extensively discussed in many
excellent articles and reviews (Bagler and Sinha, 2005; Ghosh and
Vishveshwara, 2007; Cui and Karplus, 2008; de Ruvo et al., 2012;
Bhattacharyya et al., 2016; Astl et al., 2019; Zhang and Nussinov,
2019; Verkhivker et al., 2020; Zhang et al., 2020).

Network theory-based analyses of protein structure (Bagler
and Sinha, 2005; Atilgan et al., 2012) and dynamics have provided
unprecedented insights into the global structural connectivity
of proteins and its complexes in the context of allostery and
other biological processes (Atilgan et al., 2012; Di Paola et al.,
2013; Bhattacharyya et al., 2016; Gadiyaram et al., 2019; Krieger
et al., 2020; Verkhivker et al., 2020). When combined with
information on conformational variations, as obtained from
molecular dynamics, network approaches have elucidated several
examples of protein structure–function relationships (Doruker
et al., 2000; Sethi et al., 2009; Bhattacharyya et al., 2013; Papaleo,
2015; Tse and Verkhivker, 2015; Doshi et al., 2016).

In essence, it has become possible to obtain a better
perception of biological phenomena at the molecular level, such
as allostery, evolutionary effects, and transport phenomena,
mediated through macromolecules, by employing two major
concepts: (1) viewing macromolecules, such as proteins, as
one single connected entity, where perturbations can affect the
conformations at the local or global level, and (2) considering
the dynamically accessible conformations of proteins, and the
interconversion of their populations under different conditions
as a key to biological functions. Regarding the concept
of viewing proteins as a single unit, the connections at
the non-covalent level play an important role since these
are pliable for minor perturbations that are encountered at
normal physiological conditions, unlike the covalently stitched
polymer chains.

A number of approaches available in the literature (some
of them referenced above) differ in how we view the protein
structure as a single unit, connected through non-covalent
interactions. One can focus on backbone connectivity alone,
or connectivity at the level of side chains (explicit atoms or a
representation through centroids) (Greene, 2012; Bhattacharyya
et al., 2016; Kayikci et al., 2018). There are a number of
ways to define the connectivity criteria and assign strengths of
interactions. Similarly, the dynamical conformational landscape
can be obtained at the explicit atomic level or indirectly achieved
through methods like ENM, which provides cooperative modes
of motion (Krieger et al., 2020; Zhang et al., 2020). The
atomic level description can be obtained experimentally through
biophysical techniques such as X-ray crystallography, cryo-EM,
and NMR, and computationally through molecular dynamics
(MD) simulations.

The identification of specific regions responsible for the
overall perturbation and the reorganization of interactions to
yield a different conformation in the landscape has received great
attention. This is a crucial step in the process of making the
connection between molecular events and protein functions. The
methods range from direct analysis of the structures to ones
developed based on the physical, mathematical, and engineering
principles. Many such concepts are integrated together in
computational programs to obtain critical biological insights
(Greener and Sternberg, 2018; Verkhivker et al., 2020; Zhang
et al., 2020). Network theory is a widely used approach which
provides explicit information on the role of constituent amino
acids on the stability of structure networks at a global level
(Atilgan et al., 2010; Brown et al., 2017; Gadiyaram et al.,
2018). A vast range of experimental and computational studies
have taken up the challenge of correlating biological cellular
functions to the molecular level changes. Understanding protein
connectivity and dynamics can provide molecular mechanistic
insights into the various biological processes, like allostery
(Atilgan et al., 2007; Verkhivker et al., 2020; Wang et al.,
2020a), protein–protein or protein–nucleic acid interactions
(Brinda and Vishveshwara, 2005; Keskin et al., 2005; Sathyapriya
et al., 2008; Sethi et al., 2009), and ligand/perturbation-induced
conformational variations (Csermely et al., 2013; Bandaru et al.,
2017; Creixell et al., 2018). Such calculations may also aid
the identification of epitopes for drug-binding and capture
drug-induced conformational changes in proteins and protein
complexes (Csermely et al., 2013; Krieger et al., 2020).

The focus of this review is to provide a brief account
of the different network theory-based techniques targeted
at (i) characterizing protein structures as a single entity
connected by non-covalent interactions and (ii) integrating
with conformational dynamics, for which several comprehensive
reviews are available (Atilgan et al., 2012; Hu et al., 2017;
Verkhivker et al., 2020). The main emphasis here is on the
development and application of protein side-chain network
approaches (Bhattacharyya et al., 2016; Salamanca Viloria et al.,
2017; Kayikci et al., 2018), which have been shown to capture
subtle conformational differences that are sometimes elusive to
conventional analyses, such as the root mean square deviation
(RMSD) at the backbone level. Here, we have considered
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the SARS-CoV-2 Spike glycoprotein (Zhu et al., 2020) as an
illustrative example to demonstrate the capabilities of side-chain
network studies. Our focus on analyzing SARS-CoV-2 spike
protein, in particular, stems from its critical role in COVID-19
and the immediacy posed by the global pandemic caused by this
highly infectious coronavirus.

In order to appreciate the relevance of side-chain network
studies on the SARS-CoV-2 spike protein, here we provide
an introduction to this protein in the context of its structure
dynamics and function. SARS-CoV-2 belongs to the family of β-
coronaviruses, and is closely related to the earlier pathogens, such
as SARS-CoV and MERS-CoV, which caused severe respiratory
diseases in 2004 and 2013, respectively. To develop promising
therapeutic strategies, we need a clear understanding of the
mechanism of action of the SARS-CoV-2 virus. A succinct
summary of the structures of the SARS-CoV-2 spike protein
and its interactions with the host cell membrane has been
recently provided (Wang et al., 2020b; Xia et al., 2020a; Zhu
et al., 2020). These studies highlight how the recognition of
the human ACE2 receptor by the spike protein mediates viral
entry into the host cell. A simplified version of the interaction
between the human ACE2 receptor and the SARS-CoV-2 spike
protein, with an emphasis on the structure of the spike protein,
shows the steps that lead to viral fusion to the host cell
membrane (Figure 1). Long-timescale MD simulations of the
viral spike protein in different conformations have been recently
made available under the Creative Commons Attribution 4.0
International Public License (D. E. Shaw Research., 2020).
Further, a few computational studies on the SARS-CoV-2 spike
protein, to explore putative allosteric binding sites (Di Paola et al.,
2020) and the role of glycans (Casalino et al., 2020) have also been
recently published.

The SARS-CoV-2 spike protein is a homotrimeric complex
that is pivotal to the coronavirus entry into host cells and
one of the key drug targets for COVID-19 (Hoffmann et al.,
2020; Huang et al., 2020). In this article, we have selected the
closed (PDB_ID: 6VXX) and partially open (PDB_ID: 6VYB)
structures of the spike protein (Walls et al., 2020) as examples
to explicitly elucidate the protein side-chain network concepts.
Each subunit in the spike protein is organized into an S1 and
S2 domain (Figures 2A,B) (Xia et al., 2020a; Zhu et al., 2020).
The S1 domain hosts the receptor-binding domain (RBD) that
recognizes the human ACE2 receptor (Figures 2A,B) and the N-
terminal domain (NTD). In order to engage the ACE2 receptor,
the RBD undergoes a conformational change much like the
opening and closing of a hinge (Figure 2C). It is either in the
receptor-inaccessible state (closed state) or receptor-accessible
state (open state), governing access to the factors that control
ACE2 binding (Figure 2C). The S2 domain hosts the TMPRSS2
cleavage site and the heptad repeat 1 and heptad repeat 2
(HR1/HR2) domains, which are the targets for fusion inhibitors
(Xia et al., 2020a,b).

Backbone alignment of a closed structure (PDB_ID: 6VXX)
and a partially open structure (PDB_ID: 6VYB) reveals small
structural differences except that in the partially opened state
the receptor-binding domain of one subunit swings outward
as compared to the closed state (Figure 2C). This is an

ideal model system to apply protein side-chain-based network
calculations, as the observed backbone changes are small, but
carries important functional information. The availability of
long-scale MD simulation trajectories of the closed and partially
open states of the spike protein (D. E. Shaw Research., 2020)
further emboldened our choice of using the spike protein as our
model system. This data allows us to demonstrate the capabilities
of the dynamically stable protein side-chain network, correlating
structural connectivity with conformational dynamics.

In the section Protein Structure Network (PSN) Perspective
Into Structural Organization, an overview of network theory in
the context of protein side-chain networks, connectivity criteria
for the protein backbone (PBN) and the side-chain (PScN)
networks, the selection of optimal strength of interaction from
percolation theory perspective, and the cluster identification
from graph spectral analysis are presented. In the section
Protein Structure Network (PScN) for Dynamically Accessible
Conformational Ensembles, the method for integrating network
analysis with dynamically stable conformational landscapes is
introduced. Additionally, the differences between the closed
and open trimeric states of the SARS-CoV-2 spike protein are
elucidated through chosen network metrics. This is followed by a
Summary and Outlook section.

PROTEIN STRUCTURE NETWORK (PSN)
PERSPECTIVE INTO STRUCTURAL
ORGANIZATION

Network Theory-Based Representation of
Protein Structures
The overall shape of protein structures at a molecular level
is captured elegantly through secondary structures, such as
helices, beta strands and sheets, and loops, formed by the
backbone atoms of the polypeptide chain. Based on non-
covalent interactions, the Ramachandran map characterized the
allowed regions of the backbone torsion angles (ϕ,ψ) and
demonstrated that the allowed conformational space of the
polypeptide chain mainly consists of compact secondary and
super-secondary structures, stabilized by backbone hydrogen
bonds (Ramachandran et al., 1963). However, there are also
numerous examples where despite insignificant differences at
the protein backbone level, subtle conformational changes at
the protein side-chain level guide a plethora of biological
functions (Ghosh and Vishveshwara, 2007; Sethi et al., 2009).
Such examples have motivated the development of techniques
to completely map structural connectivity of proteins at both
the backbone and side-chain interaction levels, enabling us to
correlate even subtle structural variations that elude backbone-
based alignments with biological functions.

The study based on the mathematical principles of network
theory enables us to view the protein structures with non-
covalent interactions as a single, global network. Numerous
studies have formulated the backbone and the side-chain
structural connectivity in proteins using adjacency matrices and
analyzed them using various network metrics (del Sol et al.,
2006; de Ruvo et al., 2012; Bhattacharyya et al., 2016; Kayikci
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FIGURE 1 | SARS-CoV-2 employs the spike glycoprotein to enter its host cell. The spike protein is composed of two domains, the S1 domain that hosts the
receptor-binding domain (RBD), and the S2 domain. The S2 domain arbitrates the fusion of the viral and host cell membranes. Activation of the spike protein happens
by cleavage at two sites (S1/S2 and S2′) by the Furin TMPRSS2 protease. The spike protein initially binds to the ACE2 receptor on the host cell through its RBD. On
activation, it sheds the S1 domain, enabling S2 to fuse to the host cell membrane. This figure was adapted from Structural and functional mechanism of SARS-CoV-2
| Abcam (https://www.abcam.com/content/structural-and-functional-mechanism-of-sars-cov-2-cell-entry).

et al., 2018; Astl et al., 2019; Krieger et al., 2020; Verkhivker
et al., 2020). While protein backbone networks (PBN) capture
the non-covalent connectivity at the level of the backbone atoms,
protein side-chain networks (PScN/PSN) capture the structural
connectivity at the level of non-covalent interactions between
side-chain atoms. A representation of the global connectivity
across the protein structure in terms of networks can capture
the effect of perturbations at the local level and also across
the entire protein structure network. This property is key to
the understanding of how ligand or mutation-induced local
conformational changes affect the global structure of a protein,
and therefore its function.

An analysis of the network metrics from such a connectivity
matrix allows the identification of allosteric communication
pathways within a protein structure network by affording insights
into the interconnected global architecture of proteins. A variety
of network metrics can be used to analyze these protein structure
networks (both PBN and PScN). The choice of the network
metric being used depends on the question of interest. Briefly,
metrics such as hubs and clustering coefficient indicate the degree
of a residue and its connectivity to neighboring residues. The
percolation behavior of a network can be captured in terms
of clusters and cliques/communities (Palla et al., 2005; Deb
et al., 2009). The molecular details of pathways responsible for
allosteric signaling can be examined using the algorithms to

identify shortest paths of communication (Ghosh et al., 2011; Tse
and Verkhivker, 2015).

Protein Structure Network Based on
Backbone (PBN) and the Side-Chain
(PScN) Connectivity
Protein Structure Network refers to the representation of the
three-dimensional structural connectivity in a protein in terms of
a connectivity or adjacency matrix. In network theory language,
individual amino acid residues are termed as nodes and the
connections between them are defined as edges. In case of
the protein backbone network (PBN), Cα atoms are generally
considered as the representative of nodes and a distance of about
6.5 Å or less (based on the radial distribution of Cα atoms in
protein structures) between any two sequentially non-adjacent
residues are considered as an edge (Miyazawa and Jernigan,
1985; Patra and Vishveshwara, 2000). The construction and
application of PBN have been extensively discussed in earlier
reviews (Greene, 2012; Di Paola et al., 2015). Here, our focus
is on the technical details of construction and the subsequent
application of amino acid side-chain-based protein structure
networks denoted as PScN (or PSN). There are different ways of
measuring side-chain connectivity, such as the distance between
the centroids of the side-chains, or all atom–atom pairwise
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FIGURE 2 | Sequence and structural organization of the SARS-CoV-2 spike protein. (A) Domains of SARS-CoV-2 spike protein are depicted along with the two
critical sites of cleavage. (B) These domains are shown on the structure of the spike protein (PDB_ID: 6VXX, only chain A is shown for clarity). The backbone is
represented as a cartoon, and the domains are color-coded based on (A). The first residue at the two cleavage sites is highlighted as spheres and labeled. (C)
Backbone alignment (chain B only) of the closed and partially open states of the spike protein reveals conformational changes at the RBD (shown by the arrow), with
the rest of the domains showing RMSD <0.5 Å (a low backbone RMSD of <0.5 Å is also observed for chain A/C between the closed and partially open states).

distances. Pairwise distances between all atoms of the side-
chain of residues i and j (nij) and values within a distance of
4.5 Å (related to the sum of atomic radii; Heringa and Argos,
1991) capture explicit atomic-level connectivity. A normalization
value of the total number of interactions (nij) with respect
to the maximum values (Ni and Nj) observed from a large
dataset of high-resolution crystal structures of proteins provides
a uniform basis of evaluation as shown in Equation 1 (Kannan
and Vishveshwara, 1999; Sathyapriya et al., 2008).

Iij =
nij

√

NiNj
× 100 (1)

This expression allows us to weigh the strength of the interactions
(edge weights) in a systematic manner, which can be uniformly
applied to all protein structures. Edge weight (Iij) can range
from a value of zero to one. Values close to zero and one
represent weak and strong side-chain connections, respectively.
In general, strong connections can be related to nucleation
centers formed by the interactions between the residue pairs
such as oppositely charged, stacked aromatic residues, or polar
residues involved in hydrogen bonds. The weak interactions, on
the other hand, usually emerge from a smaller number of non-
covalent interactions (nij) between pairs of hydrophobic amino
acid residues. Generally, these interactions aid in bridging the
strongly connected nucleation centers and in organizing the
overall tertiary structure of the proteins. A PScN is constructed
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based on a user-defined value of Iij (termed Imin), and an edge
is drawn when the calculated Iij between a pair of residues
exceeds Imin.

Percolation Profile for the Largest
Connected Subnetwork as a Function of
Edge Weight
To formalize the effect of the edge weight cutoff (Imin) on the
properties of PScN for protein structures, the concept of the
largest connected subnetwork (cluster or cliques/communities)
transition profile was established and has been applied to a wide
range of biological problems (Deb et al., 2009; Brinda et al.,
2010). The PScN constructed from low values of Imin results
in a dense matrix with a large fraction of the residues in the
protein getting connected, yielding the largest cluster of the size
∼80–90% of the amino acid residues in the protein. The PScN
at higher Imin values consists only of strongly connected edges,
leading to a sparse matrix. The largest cluster in such a case
does not cover a major fraction of the residues in the protein
structure. On the other hand, in the largest cluster from a PScN
of low Imin, although it encompasses a large fraction of residues,
the ratio of signal/noise is low in this network. It is therefore
important to identify an optimal Imin to construct the PScN,
without losing information from a sparse graph or encountering
low signal/noise from a dense graph.

The identification of the optimal Imin to construct the PScN
has been addressed from the concepts of percolation within
a system, as defined by percolation transition point. In these
studies, the PScN is characterized by amacroscopically connected
subnetwork obtained from Imin, around the transition point. The
sizes of the largest cluster (LClu) or the largest clique/community
(LCli) in the protein structure network are measured as a
function of network connectivity at various Imin values. Plotting
the values of LClu or LCli as a function of Imin leads to a
sigmoidal curve. The transition point of this sigmoidal curve
is identified as the percolation transition point at which a
giant connected cluster still permeates the protein structure
network. Interaction strength (Imin) around this transition
point balances the problems of identifying non-specific, weak
interactions at smaller Imin values, and discontinuous, sparse
network connectivity across the structure at high Imin values.
From earlier studies, it is shown that generally the transition
point occurs in the range of Imin values 0.2 to 0.4 (Brinda et al.,
2010). This transition point is noted to be a common feature in
most protein structures.

In this study, we have analyzed the largest cluster percolation
profile for the partially open and closed states of the SARS-
CoV-2 spike protein. The plots of Imin vs. LClu are generated
from the dynamically stable adjacency matrices (the generation
of which is described in the section Protein Structure Network
(PScN) for Dynamically Accessible Conformational Ensembles)
corresponding to the closed (PDB_ID: 6VXX) and partially open
structure (PDB_ID: 6VYB) of the spike protein (Figure 3). A
noteworthy feature is that the profiles of the closed and partially
open states show some differences in the percolation transition
point. These differences are specifically located in the transition

regions of Imin (between 0.2 and 0.3), with the closed state
exhibiting a plateau of the LClu consisting of about 2000 residues,
whereas, in the partially open state, the plateau is around a
1,000-residue cluster. Structurally, this is reminiscent of the
conformational variations between the two states, with more
residues held together as the largest cluster in the closed state,
in comparison with the partially open state in the transition
region. Based on earlier studies, as well as this one, we infer that
the results obtained from the interaction strengths around the
percolation transition point, Imin value of 0.3, are more sensitive
and also provide a global view of the structural connectivity in
proteins. In the analysis described in subsequent sections, we
have used an Imin value of 0.3 to generate the networks.

Network Parameters of the PScN
With an increase in availability of data in various fields, the
advancement in the research area of large-complex network
studies has moved in different directions, such as problem and
data-driven approaches, development of efficient algorithms,
and availability of computational packages (Newman, 2001;
Newman and Girvan, 2004; Palla et al., 2005). As we have
seen above, the crucial input to obtain a solution to the graph
is the connectivity or adjacency matrix in which the nodes
and edges are defined based on the chosen application. The
connectivity matrices (PBN/PScN) can be analyzed using well-
established algorithms and network metrics, which can be
used to describe various structural and functional properties of
the protein. Some of the frequently used network metrics for
analyzing protein/macromolecular structures are hub, clustering
coefficient, cluster, cliques, and communities, and the shortest
paths of communication rely on well-established mathematical
algorithms (Dijkstra, 1959; Newman, 2001, 2004; Palla et al.,
2005). Details of these individual parameters and their physical
significance have been extensively discussed in past reviews.
A brief description of the parameters and their physical
significance follows.

Hubs represent highly connected residues in the protein
structure network, which essentially refer to the degree of a node.
In some general networks, the degree of certain nodes can be
very large (Newman, 2001; Tsai et al., 2009). However, the degree
of any residue in PScN generally does not exceed 10 due to the
steric constraints. The hubs are key in maintaining structural
stability and information flow in the protein structure network
and are often termed as “hot spots” in the structure (Amitai
et al., 2004; del Sol et al., 2006). Clusters, commonly identified
using the depth first search (DFS) algorithm (Cormen et al.,
2001), are a set of residues that are connected in a way that the
number of intra-cluster connections is higher than the number
of intercluster connections, involving these residues. Clusters
evaluated at different Imin values are used to predict the strength
of connectivity within a network as well as to study interfacial
interactions in protein complexes (Brinda and Vishveshwara,
2005).

Cliques are defined as completely connected subgraphs in
a network such that every residue is connected to every other
residue in this subgraph. An assemblage of cliques that share
common edges are termed communities (Palla et al., 2005).
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FIGURE 3 | Percolation profile for the largest connected cluster as a function of edge weight for the closed and partially open structures of the SARS-CoV-2 spike
protein. The differences between these conformational states manifest as deviations in the connectivity profile in the region around the percolation point (0.2–0.3).

Cliques and communities are used to identify regions of rigidity
and higher-order connectivity in protein structures (Ghosh
and Vishveshwara, 2008). Like LClu, described in the section
Percolation Profile for the Largest Connected Subnetwork as a
Function of Edge Weight, the largest identified communities
(LCli) can also provide insights into the percolation behavior of
strongly connected components within a protein as a function of
Imin (Deb et al., 2009). Floyd-Warshall and Dijkstra algorithms
for computing the shortest paths of communication have
been widely used to determine the critical residues involved
in allosteric communication in proteins, and for mapping
ligand-induced conformational changes (Atilgan et al., 2007;
Bhattacharyya and Vishveshwara, 2011; Pandini et al., 2012).
The specific choice of a network metric used for analyzing
a protein structure network is therefore determined by the
structural–biological insight we plan to seek. In the section
Protein Structure Network (PScN) for Dynamically Accessible
Conformational Ensembles, we will demonstrate the application
of some of these parameters, by comparing the hubs and
cliques/communities between the closed and partially open
states of the SARS-CoV-2 spike protein, in their dynamical
equilibrium states.

Graph Spectra of PScN
The graph spectral methods based on analyzing eigenvalues
and eigenvector components of the connectivity matrices are
another approach that has been extensively used to analyze
protein structure networks (Hall, 1970). Graph spectral analysis
on such a network is performed by studying the eigenspace of the
Laplacian matrix associated with it. For a network with n nodes,

the Laplacian L is an n x nmatrix that satisfies equation 2.

XTLX =

∑

u∼v

wuv (x (u) − x (v))2 (2)

where the summation is over every pair of nodes (u, v) connected
by an edge with weight wuv for some vector X in the space of
nodes. It is shown that the Laplacian may be expressed in terms
of the degree matrix D and the adjacency matrix A as equation 3
(Hall, 1970; Chung, 1997).

Luv = Duv − Auv (3)

The eigenvalues and eigenvectors of the Laplacianmatrix contain
information about the connected components or clusters of the
network (Gadiyaram et al., 2016). The eigenvector corresponding
to the lowest non-zero eigenvalue of the Laplacian, called the
Fiedler vector, contains the clustering information. Sorting the
Fiedler vector by value (FVC) (the components range from values
−1 to +1) identifies nodes that are part of the same cluster. In
this manner, all the clusters in the graph, ranging from the largest
cluster with maximum number of residues to isolated edges, can
be obtained as an analytical solution to the Laplacian matrix of
the graph.

We have considered the example of the SARS-CoV-2 spike
protein receptor-binding domain (RBD) (Figures 2A,B) to
demonstrate the capability of the graph spectral analysis from the
Laplacianmatrix. Specifically, we have extracted the clusters from
the sorted Fiedler vector of the receptor-binding domain (RBD)
of the spike protein (PDB_ID: 6LZG), which is complexed with
the target ACE2 receptor (Wang et al., 2020b). The adjacency
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matrix is constructed as a binary matrix with Iij ≥ 0.3, with the
elements taking values one and zero, respectively. A plot of sorted
Fiedler components (FVC) as a function of the nodes (residue
details given in Supplementary Table S1) is shown in Figure 4A.
The slope of the FVC plot is also shown in this figure, which
provides a clearer indication of cluster separation (Sistla et al.,
2005). The clusters with the number of residues four and above
are plotted on the structure of the RBD (Figure 4B). Thus, the
graph spectral analysis is a powerful analytical method to extract
the clustering information in protein structure networks.

It should be noted that there are limitations of performing
graph spectral calculations, such as on large datasets (e.g.,
long MD simulation trajectories), as they are computationally
expensive. However, the method provides unique information
which is difficult to obtain directly from other methods. For
instance, information can be extracted not only for clusters
within a protein but also on the interfaces between domains in a
single protein or across subunits in multimeric proteins (Brinda
et al., 2005; Sistla et al., 2005). Graph spectral studies can also
be performed on weighted networks, improving the accuracy.
Further, it lends itself for quantitative comparison of networks
by providing a score and allows us to identify the regions of the
network which are dissimilar. A brief review of these aspects has
been presented earlier (Gadiyaram et al., 2019).

PROTEIN STRUCTURE NETWORK (PScN)
FOR DYNAMICALLY ACCESSIBLE
CONFORMATIONAL ENSEMBLES

Biological systems exist in a dynamic equilibrium which
alters under different conditions of temperature and ionic
strengths, in complex with endogenous ligands/small
molecules/drugs/interacting proteins, and so on. A glimpse
of the accessible conformational landscape can be obtained by
studying a large number of experimentally solved structures
in different conditions or through long-timescale molecular
dynamics (MD) simulations. The network properties that we
described above for a single structure of proteins can also
be extended to study the dynamically average properties of
conformational ensembles. Depending on the objective, a
judicious choice has to be made as to whether to get the averages
from all the structural snapshots along the MD trajectory or
from selected structures representing various local minima along
the trajectory.

Dynamically Stable Protein Structure
Network (PScN) for Conformational
Ensembles
Analyses of protein conformational ensembles have been
facilitated by the development of multiple open-source program
packages (Eargle and Luthey-Schulten, 2012; Bhattacharyya
et al., 2013; Chakrabarty and Parekh, 2016; Brown et al., 2017;
Felline et al., 2020) that analyze multiple structural snapshots in
dynamically accessed conformational states. The critical element
in many of these open-source software is the ability to implement
network theory-based calculations to analyze MD simulation

trajectories. Some of these packages (PSN-Ensemble, webPSN
v2.0, and NetworkView) also enable the use of residue pairwise
interaction energies to weigh the connectivity matrix.

In this review, we discuss the general concepts of network
theory-based analysis of protein conformational ensembles,
specifically using PSN-Ensemble as an example software package.
The basic principles and capabilities of PSN-Ensemble have
been described before (Bhattacharyya et al., 2013). Briefly,
PSN-Ensemble provides a consolidated and automated analysis
platform, bridging network studies with protein conformational
dynamics. Taking the coordinates of structural snapshots from
conformational ensembles (MD simulations, NMR studies, or
multiple crystal structures) as input, the program computes
protein side-chain connectivity matrices (PScN). The individual
matrices can be averaged by imposing a user-defined cutoff
for dynamic stability (say X%). This “dynamically stable” PScN
retains any interaction that appears in greater than X% of the
structural ensemble, highlighting interactions that persist in a
user-defined fraction of the ensemble.

Network parameters and metrics, as described in the section
Protein Structure Network (PSN) Perspective Into Structural
Organization, can be used to analyze the dynamically stable PScN.
Using the dynamically stablematrix, PSN-Ensemble can compute
structural hotspots (e.g., hubs/cliques) and analyze structural
rigidity or flexibility (e.g., cliques/communities) (Ghosh and
Vishveshwara, 2008; Bhattacharyya and Vishveshwara, 2011),
percolation properties of the network (e.g., clusters and largest
cluster transition profile) (Deb et al., 2009; Brinda et al., 2010),
molecular determinants of allosteric signaling (e.g., shortest
paths of communication) (Ghosh and Vishveshwara, 2007),
and ligand/perturbation-induced conformational variations (e.g.,
hubs/cliques/communities) (Sukhwal et al., 2011; Creixell et al.,
2018).

Here we provide an example of the application of network
theory to analyze MD simulation trajectories. Using PSN-
Ensemble, we analyze the long-timescale MD simulation
trajectories (10 µs each) of SARS-CoV-2 spike protein in the
closed and partially open states (D. E. Shaw Research., 2020).
Based on the fact that the interaction strength around the
percolation transition point is most sensitive while providing
a global view of the structural connectivity (Figure 3), an Imin

value of 0.3 is chosen to construct the PScN for the two states
of the spike protein. Further, the dynamically stable PScN for
the MD conformational ensemble is computed at a cutoff of
50%. We compared the hubs and cliques/communities from
the dynamically stable PScN for the closed and partially open
states of the spike protein. The results of these analyses on
the spike protein are summarized in the subsequent sections
as an example of network theory-based comparison of different
conformational states.

Analysis of Dynamically Stable Metrics of
PScN for the Closed and Partially Open
States of the SARS-CoV-2 Spike Protein
In this section, we compare the side chain network properties
related to rigidity/flexibility (hubs, cliques/communities) from
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FIGURE 4 | Graph spectral analysis of RBD from SARS-CoV-2 spike protein. (A) Side-chain cluster plot of the RBD obtained from the sorted Feidler vector
components (FVC-at Iij = 0.3). Y-axis: sorted FVC; x-axis: nodes corresponding to FVC (node details in Supplementary Table S1). Nodes with identical FVC belong
to a cluster. The red dotted line represents the slope of the FVC plot. The constant zero values of slope correspond to clusters, and spikes in the slope indicate the
separation between clusters. (B) Representation of the side-chain clusters identified through FVC on the structure of RBD. The clusters are color-coded green
(largest), blue (2nd largest), yellow (6 residue cluster), orange (5 residue cluster), and cyan (4 residue cluster).

the long-timescale MD trajectories on the closed and partially
open states of the SARS-CoV-2 spike protein (10 µs each)
(D. E. Shaw Research., 2020). In order to engage the host cell
receptor (ACE2), the receptor-binding domain (RBD) of the
spike protein undergoes conformational changes, much like the
opening of a hinge (Walls et al., 2020). The closed state of
the spike protein (PDB_ID: 6VXX) is receptor inaccessible. A
partially open structure, with one of the subunits exhibiting
RBD opening (PDB_ID: 6VYB), is representative of the receptor
accessible states of the protein. Using PSN-Ensemble on the MD
simulation trajectories, we analyzed the global conformational
changes between these closed and partially open states.

The root mean square deviation resulting from a backbone
alignment of the closed (PDB_ID: 6VXX) and partially open
(PDB_ID:6VYB) structures of the spike protein is ∼0.5 Å. In
addition, each subunit in the trimeric spike protein shows <

∼0.5 Å root mean square deviation when compared to each
other, either within or between the two conformational states
(closed and partially open). This indicates highly symmetric
trimeric organization in the starting structures used for the
long MD simulations, in terms of backbone superposition. The
two states mainly differ in the conformations of the RBD in
one subunit, with the rest of the domains relatively unchanged
at the backbone level (Figure 2C) (Walls et al., 2020). Subtle
conformational changes that differentiate these two states elude
backbone-based structural comparisons, which cannot efficiently
capture re-orientations at the protein side-chain level. These
factors make the SARS-CoV-2 spike protein conformational
states an ideal model system to highlight the benefits of side-
chain-based network (PScN) analysis.

To compute the dynamically stable PScN, we extracted
conformational snapshots every 100 ns from the two MD
simulation trajectories of the spike protein in its closed
and partially open states (D. E. Shaw Research., 2020).
About 100 snapshots from each trajectory are used as an
input to the software package PSN-Ensemble to calculate
network metrics that persist in at least 50% of the structural
ensemble. A comparison of the dynamically stable hub and
cliques/communities between the closed and partially open states
of the spike protein shows how the conformational change
in the RBD leads to global structural rearrangements, which
percolates into the membrane-binding domains of the spike
protein. Through this highly relevant example, we reaffirm
the advantages of using protein side-chain network-based
calculations in capturing the changes in structural connectivity
and conformational dynamics in proteins under different
conditions of activity, ligand binding, environmental stimulus,
and allosteric communication.

Comparison of Dynamically Stable Hubs Between the

Closed and Partially Open States of Spike Protein
As mentioned in the section Network Parameters of the PScN,
the residues that form four or more connections with other
residues are defined as hubs and these are considered as
dynamically stable, if they appear as hubs in at least 50%
of the MD simulation snapshots. These hubs are considered
structural hotspots. A change in the number and location of
the dynamically stable hub residues in the closed and partially
open states of spike protein captures the differences in structural
connectivity between these two states. The three subunits in the
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closed and partially open states of the trimeric SARS-CoV-2 spike
protein show a total of 187 common dynamically stable hubs
(Supplementary Table S2). The common hubs between the two
states represent the structural connectivity in the PScN which
remains unchanged between the two conformational states. The
three subunits exhibit mostly symmetrical distribution of these
common hubs, in terms of both number of hubs and the
participating residues (Supplementary Table S2).

The distinctive structural features of the closed and partially
open states are shown by the hubs that are unique to each
conformational state. A comparison of these unique hubs
reveals striking differences between the closed (64 unique hubs)
and partially open states (74 unique hubs). The number and
distribution of these dynamically stable unique hubs show large
variations between corresponding subunits of the trimeric spike
protein, in going from the closed to the partially open state
(Figure 5, Supplementary Table S2). Strikingly, the number and
distribution of the unique hubs among the three subunits within a
particular conformational state also show significant differences.
This indicates asymmetry between the three subunits of the spike
protein, in both closed and partially open states. This asymmetry
is exhibited at the side-chain network level, despite the highly
symmetric nature of the spike protein structure in terms of
backbone alignment of every subunit with every other subunit
(RMSD < 0.5 Å).

Depiction of these unique hubs on each subunit of the
respective conformational states reveals structural rewiring in
the entire SARS-CoV-2 spike protein as the RBD goes from the
closed to the open conformation. Here, we discuss the differences
observed in chain A (detailed differences for all the three subunits
are summarized in Figure 5). In chain A, the partially open
state of the spike protein shows an increased number of hubs
in the NTD as well as in the region connecting the HR1 and
HR2 domains (Figure 5). The increased number of dynamically
stable hubs suggests enhanced connectivity in these regions as
the spike protein transitions into a partially open state. Our
results also suggest that the conformational changes in RBD
between the two states induce significant reorganization in the
dynamically stable PScN. These global side-chain conformational
changes are reflected as differences in the distribution of hubs
(Figure 5), especially at sites distant from the RBD, despite
minimal backbone reorganization between the two states.

Comparison of Dynamically Stable Cliques and

Communities Between the Closed and Partially Open

States of Spike Protein
Cliques represent a subset of residues within a protein structure
network where each residue is connected to every other residue
(Palla et al., 2005). Cliques represent higher-order connectivity
in a network, highlighting regions of structural rigidity in the
context of protein structures. An assemblage of cliques through
shared edges/interactions is defined as communities (details in
the section Network Parameters of the PScN). Communities
capture the percolation of structural rigidity through the protein
structure network. Together, comparison of cliques/communities
reflects subtle conformational changes that alter regions of
rigidity/flexibility in protein structural organization.

We compared the dynamically stable cliques and
communities obtained from the SARS-CoV-2 trimeric spike
protein in the closed and partially open states (Figure 6,
Supplementary Tables S3A–C). The conformational changes
that accompany the transition between the two states of
the spike protein are reflected by the cliques/communities
that are unique to each state. For clarity, we will only focus
on the dynamically stable cliques/communities formed
at the trimeric interface between the three subunits (also
see Supplementary Tables S3A–C for a comparison of all
cliques/communities between partially open and closed states of
the spike protein).

Interfacial cliques/communities are an excellent metric to
measure changes in connectivity or interaction between subunits
for multimeric proteins. In the closed state of the spike protein,
a large number of unique interfacial cliques are seen within the
RBD of the three subunits (Figure 6, Supplementary Table S4).
A total of 32 unique interfacial cliques are identified in the closed
state, involving residues in the RBD, NTD, SD1, S2, and HR1
domains in the spike protein. This suggests a tightly packed
trimeric interface in the closed state with rigid connections
between the residues across the three subunits. In contrast, only
21 unique interfacial cliques are observed in the partially open
state, with marked alterations in the domains participating in
the cliques. Only eight common interfacial cliques are shared
between the two conformational states, indicating significant
variations in the trimeric interface packing.

Interestingly, most interfacial cliques formed by the RBD
residues are lost in the partially open state. This, as expected, may
be due to opening of the RBD in one of the subunits in the spike
protein, which leads to a weakening of the interfacial connections
involving the RBD residues across the trimer. Interestingly, this
conformational change percolates to domains that are distant
from the RBD, with cliques altering across the entire spike protein
(Figure 6, Supplementary Table S4). A slight increase in the
number of interfacial cliques is noted near the HR1/HR2 domain,
especially in the region connection the cores of HR1 and HR2.

In this section, we have demonstrated the utility of side-chain
network metrics like hubs, clusters, and cliques/communities
by correlating the function of partial RBD opening to global
conformational changes at the side-chain interaction level. We
have shown that the local conformational changes at the RBD
lead to extensive re-orchestration of the entire spike protein
side-chain network.

SUMMARY AND OUTLOOK

The term “allostery” was coined more than half a century ago,
to characterize the action of proteins away from the classically
identified binding site (Monod et al., 1965; Koshland et al.,
1966; Changeux, 2011). The mechanism of action was described
through lock-and-key or induced fit models. Our understanding
of the protein structure–function relationship has increased
with advancement in structural biology. Today, there is an
exponential increase of structural data from experiments such
as X-ray crystallography, NMR, and Cryo Electron Microscopy
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FIGURE 5 | Depiction of dynamically stable unique hub residues in the three subunits (Chain A/B/C) for the (A) closed and (B) partially open conformational states of
the trimeric SARS-CoV-2 spike protein. The protein backbone is shown in cartoon representation, and each subunit is color coded. The unique hub residues in each
subunit for the two conformational states are represented as spheres and these residues are labeled.

(Structural Biology Shapes Up | Science | AAAS., 2016; Nitta
et al., 2018). In parallel, computational biology has reached the
maturity to explore the conformational space of large protein
assemblies through long timescale MD simulations (Lindorff-
Larsen et al., 2016; Wang et al., 2019; Mysore et al., 2020).

The data from experimental structural biology and
the MD simulations have become a rich source of
information to investigate macromolecular systems in
atomic details. Mining such valuable data for protein
conformation and dynamics, in order to unravel biological
function at a molecular level and provide meaningful and
reliable predictions for experimental biologists, has been

a challenge. This has led to multidisciplinary approaches
and adaptation of different domain expertise to investigate
the importance of specific amino acids toward the stability
and functions of proteins from various perspectives. Some
of the computational concepts and methods that have
made their way to address biological systems are network
theory, accessible modes, machine learning, and percolation
phenomenon, in combination with highly valuable chemical and
biological inputs.

Here we have presented a focused review of the protein
structures from a network perspective. Specifically, we have
focused on the networks of side-chain connectivity to highlight
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FIGURE 6 | Depiction of dynamically stable unique cliques at the interface between the three subunits (Chain A/B/C) for the (A) closed and (B) partially open
conformational states of the trimeric SARS-CoV-2 spike protein. The protein backbone is shown as cartoon, and each subunit is color coded. The interfacial cliques
are highlighted as spheres. A zoomed-in view of each interfacial clique is provided with the participating residues labeled.

the unique benefits of this approach. We have described the
method of quantifying connectivity and identifying the optimal
connectivity criteria by employing concepts from percolation
theory. We have also discussed the global connectivity of
the protein side-chains and clustering of interacting residues
from the graph spectral perspective. We have pointed out
that the highly similar backbone conformations of proteins
can host a repertoire of conformational landscapes, which
subtly differ in their side-chain interactions. Thus, mild
perturbations to proteins can lead to side-chain reorganizations
that elude backbone-based structural studies and drive allosteric
communication. We have briefly touched upon a variety of
approaches to investigate allostery, on which excellent recent
reviews are available.

Molecular dynamics simulations can yield an ensemble of
protein conformations, which can capture both the backbone
and the side-chain level differences in interactions. Analysis of
MD simulation trajectories using side-chain network formalism
provides a global view of protein structural connectivity from
a dynamic perspective. We have reviewed the methodology
for such integration of MD simulation with network theory-
based analyses.

Due to the global pandemic caused by the highly infectious
COVID-19, we have chosen the SARS-CoV-2 spike protein as
an example to illustrate the dynamic PScN perspective. We
have investigated the molecular dynamics trajectories of the
closed and partially open states of the trimeric spike protein
that have been made available by D.E. Shaw Research (D. E.
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Shaw Research., 2020). Backbone-based structural comparison
between the closed and partially open states reveals minimal
structural changes. Highlighting the importance of side-chain
network analyses, a dynamic PScN-based comparison reveals
key differences between the two conformational states. The
present investigation highlights the differences at the side-
chain interaction level, between the two states such as (1) the
differences in the size of the largest connected clusters (LClu) in
the percolation transition region, with the closed state beingmore
stable than the open state, and (2) the differences in the network
parameters such as hubs, cliques, and communities.

A comparison of the network properties of the partially open
and closed forms of the SARS-CoV-2 spike protein reaffirms
that different functional states of proteins can adopt very
close backbone topology. While substantial side-chain network
parameters like hubs, cliques, and communities are also common
to both the forms, the unique ones are strategically located
in various parts of this multimeric protein. For example, the
local conformational changes during the RBD opening lead to
extensive re-orchestration of the entire spike protein network,
more pronounced in the interfacial region of the trimeric
contacts. The different functional states are carefully balanced
through the re-organization of side-chain connectivity tomediate
interactions with the ACE2 receptor, and ultimately viral fusion
to host cell membrane. A detailed study of these interactions
between the SARS-CoV-2 spike protein and ACE2 receptor or
relevant antibodies/drugs from a side-chain network perspective
will be the subject of future investigations.

In addition to offering insights into the structure–function
correlation in proteins at the side-chain connectivity level, the
dynamic network-based studies also provide a new perspective
of allostery. The flexibility of the protein involved in interactions
with ligand/drug or other proteins is as important as their
interacting partners, to have a productive signaling output.
Allostery should be viewed as a synergistic–global interaction
between the ligand (or the environment) and the receptor. The
mechanism of long-distance communication involves specific
routes and subtle changes in the communication paths, in
order to signal at a distance. Analysis of PScN reveals allosteric
communication paths via side-chain interactions even without
substantial backbone reorganization. A stimulus at the ligand-
binding pocket may be transmitted to the desired destination
through subtle reorganization of the side-chain interactions that

are allowed in the equilibrium dynamical state. Comparison
between the two states of the SARS-CoV-2 spike protein
reveals significant changes in the hubs and cliques/communities
in regions distant from the RBD. The global reorganization
of the side-chain connectivity between the two states of
the spike protein could also influence the communication
paths within and across proteins. Thus, one can consider the
conformational landscape as being made up of various side-chain
network paths.

Finally, in the context of treatment of infections, the
antibodies and vaccines are produced in response to the global
topology of the host protein or receptor. They complement the
naturally evolved receptor more globally around the binding
sites. The drugs, on the other hand, which are designed based
mainly on the binding site information, may not be highly
effective. As we have seen here, the binding site residues are held
loosely or tightly by the residue clusters, firmly anchoring some
of the interacting residues deep within the pocket. The drug-
development strategies would benefit by incorporating the side-
chain network connectivity information into their design, thus
providing a rationale for incorporating the effects of variations in
global structural connectivity in proteins.
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