
ORIGINAL RESEARCH
published: 03 February 2021

doi: 10.3389/fmolb.2020.607323

Frontiers in Molecular Biosciences | www.frontiersin.org 1 February 2021 | Volume 7 | Article 607323

Edited by:

Hongchun Li,

Shenzhen Institutes of Advanced

Technology (CAS), China

Reviewed by:

Canan Atilgan,

Sabanci University, Turkey

Igor N. Berezovsky,

Bioinformatics Institute

(A∗STAR), Singapore

*Correspondence:

Robert L. Jernigan

jernigan@iastate.edu

Specialty section:

This article was submitted to

Biological Modeling and Simulation,

a section of the journal

Frontiers in Molecular Biosciences

Received: 16 September 2020

Accepted: 08 December 2020

Published: 03 February 2021

Citation:

Jernigan RL, Sankar K, Jia K,

Faraggi E and Kloczkowski A (2021)

Computational Ways to Enhance

Protein Inhibitor Design.

Front. Mol. Biosci. 7:607323.

doi: 10.3389/fmolb.2020.607323

Computational Ways to Enhance
Protein Inhibitor Design

Robert L. Jernigan 1*, Kannan Sankar 1, Kejue Jia 1, Eshel Faraggi 2,3 and

Andrzej Kloczkowski 4,5

1 Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA,

United States, 2 Research and Information Systems, LLC, Indianapolis, IN, United States, 3Department of Physics, Indiana

University Purdue University Indianapolis, Indianapolis, IN, United States, 4 Battelle Center for Mathematical Medicine,

Nationwide Children’s Hospital, Columbus, OH, United States, 5Department of Pediatrics, The Ohio State University,

Columbus, OH, United States

Two new computational approaches are described to aid in the design of new

peptide-based drugs by evaluating ensembles of protein structures from their dynamics

and through the assessing of structures using empirical contact potential. These

approaches build on the concept that conformational variability can aid in the binding

process and, for disordered proteins, can even facilitate the binding of more diverse

ligands. This latter consideration indicates that such a design process should be less

restrictive so that multiple inhibitors might be effective. The example chosen here

focuses on proteins/peptides that bind to hemagglutinin (HA) to block the large-scale

conformational change for activation. Variability in the conformations is considered

from sets of experimental structures, or as an alternative, from their simple computed

dynamics; the set of designe peptides/small proteins from the David Baker lab designed

to bind to hemagglutinin, is the large set considered and is assessed with the new

empirical contact potentials.

Keywords: protein design, peptide design, computational design, protein ensemble, protein potentials

INTRODUCTION

Influenza infection is a widespread cause of major medical concern because of rapid viral evolution,
which causes both occasional pandemics and, more frequently, health problems almost every year.
It has been estimated that the annual outbreaks by influenza A and B viruses over the past 100
years have had an even greater impact than all other past pandemics combined (Wilson et al.,
1981; Bullough et al., 1994; Bizebard et al., 1995). The extremely high mutation rate of the virus
means that any given vaccine soon becomes outdated. Thus, vaccination offers limited protection,
especially when facing the highly virulent nature and rapid evolution of influenza (Chen et al.,
1999). Although some effective anti-influenza drugs have been developed, drug resistance usually
appears rapidly.

Hemagglutinin (HA) is a major surface glycoprotein of this virus that is involved in four of
the most important aspects of influenza infection: (a) it is the target of antibodies that neutralize
infectivity, (b) it undergoes antigenic drift to escape neutralization, (c) it binds to cell-surface
receptors to initiate infection, and (d) it mediates the fusion of viral and host membranes essential
for viral entry. The large-scale conformational changes in HA are critical for the steps in which the
virus inserts itself into the host cells by fusing to the host membrane, and the residues involved in
this process are highly conserved across different types and subtypes during antigenic drift. These
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residues can serve as important targets for developing broad-
reacting antiviral inhibitors (Jiang et al., 1993; Wild et al., 1994;
Chan et al., 1998; Skehel and Wiley, 1998). Based on a set
of crystal structures of the HA-antibody complex showing the
conformational changes to HA during the essential activation
steps, David Baker and his colleagues designed a novel HA
inhibitor for Group 1 of type A virus (Fleishman et al., 2011).

Influenza HA is a homo-trimeric protein where each
monomer contains two disulfide-bonded polypeptides, HA1
and HA2. HA1 is responsible for attaching to host cell-surface
receptors, and HA2mediates the fusion of the influenza envelope
with the endosomal membrane thus allowing the entry of
influenza RNA into the host cell. The pre- (Wilson et al., 1981)
and post-fusion structures (Bizebard et al., 1995) of HA1 are
essentially the same, while those of HA2 (Wilson et al., 1981;
Bullough et al., 1994; Chen et al., 1999) are drastically different
(see Figure 1).

The structural change in HA2 includes a partial unfolding
of the long α-helix into a loop (dark blue) and the folding of
an inter-helix loop (in red) into a part of the long α-helix, thus
delivering both N- (blue) and C-terminal (pink) fragments to
the same end of the molecule upon the fusion of viral and
endosomal membranes.

The protein gp41 of HIV-1 is the membrane fusion protein,
similar to HA2 of HA (Skehel and Wiley, 1998). In that
case, peptides derived from the C-terminal region of gp41
corresponding to the outer-layer helices, referred to as C-
peptides, were found to inhibit HIV-1 infection with IC50 in
the nanomolar range (Jiang et al., 1993; Wild et al., 1994; Chan
et al., 1998). C-peptides are believed to act by binding to the

FIGURE 1 | The HA in the pre- (A), intermediate (B), and post-fusion (C)

states. The termini of HA1 (light blue) and HA2 are labeled as N1, C1, N2, and

C2, respectively, in (A). The dotted lines in (C) indicate unresolved regions. The

structures have all been aligned on the cyan helix, which is the only region in

that domain that does not change during the transition.

exposed surface of the N-terminal central three-helical bundle
in a transient pre-fusion gp41 intermediate, thereby blocking
membrane fusion. One such L-peptide, T-20/Enfuvirtide with
36 residues, was approved previously as a drug by the Food
and Drug Administration (FDA) (FDA Notifications, 2003); it
showed high efficacy in suppressing resistant HIV-1 strains.
Moreover, efforts to target a prominent pocket on the surface of
the central three-helical bundle have led to the discovery of small,
cyclic D-peptides that inhibit HIV-1 infection, thereby validating
the pocket as a potential target for small-molecule HIV-1 fusion
inhibitors (Eckert et al., 1999).

To evade host antibody recognition, the HA protein on the
surface of influenza virus, primarily on the globular domain,
must constantly mutate. This interferes in important ways with
any vaccine and reduces the vaccine’s efficiency and useful
lifetime. However, no matter how much the influenza virus
mutates, it must maintain the ability to induce membrane fusion
to ensure its propagation. Thus, the stem domain that is primarily
responsible for inducingmembrane fusion is the most conserved.
Ian Wilson’s group identified antibodies that broadly neutralize
influenza A virus Group 1 (Ekiert et al., 2009) (Figure 2A),
Group 2 (Murphy and Webster, 2001), Group 1 and 2 (Ekiert
et al., 2012), and influenza type A and B viruses (Dreyfus et al.,
2012) (see Figure 2B). All these antibodies recognize epitopes
located in the stem domain. David Baker’s group designed small
proteins against influenza A virus Group 1 (Fleishman et al.,
2011) (Figure 2A). In addition, they identified a conserved patch
on the surface of the central helical bundle in the low-pH post-
fusion state (Figure 2C). These three interfaces may all serve as
useful targets for developing inhibitors against influenza virus.

Molecular recognition in general and protein-protein
interactions in particular are essential in almost every aspect
of biological function. Moreover, proteins that bind other
proteins with high affinity and high specificity have numerous
applications for diagnostics and therapeutics. Currently,
antibodies are by far the most commonly used proteins for both

FIGURE 2 | Interfaces on HA that could likely be targeted in inhibitor design.

(A) The interface conserved among Group 1 influenza A virus (in colors). (B)

The interface conserved among all influenza A and B viruses. (C) The

conserved patch on the surface of the central helical bundle at low-pH on HA.
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TABLE 1 | The PDB identifiers of the 43 structures of hemagglutinin used here for

extracting dynamics.

1HGD 2HMG 3FKU 4BGZ 4KPQ

1MQL 2IBX 3HMG 4BH1 4KPS

1MQM 2WR7 3LZG 4DJ6 5HMG

1MQN 2WRB 3M5G 4EDB

1RD8 2WRD 3M6S 4F23

1RUY 2WRE 3S11 4F3Z

1RUZ 2WRF 3SM5 4FIU

1RV0 2WRG 3UBE 4GXX

1RVX 2WRH 3VUN 4JTX

2FK0 3EYM 3ZTJ 4KDM

detection and therapeutic intervention. However, antibodies
are large proteins that are expensive to produce and difficult to
deliver. Thus, it would be important progress for biomedicine to
be able to design novel protein-binding modules at will.

The set of 88 proteins that were designed and tested by Baker
et al. provides an excellent test set for use in the present study.
Below we consider the dynamics of the structure in two different
ways, from a set of experimental structures and from computed
dynamics. Then we apply new knowledge-based free energies to
rank the different designs, specifically predicting which designs
are likely to bind. Baker and colleagues were not able to do this
without experimental testing. These are empirical-free energy
contact potentials developed by Jernigan, Kloczkowski, and
Faraggi that have proven to be highly successfully in blind-tests
at past CASP experiments. In the present paper, we aim to make
some suggestions for new ways to sample conformations of a
target protein and how to assess the designed structures.

MULTIPLE EXPERIMENTAL STRUCTURES
CAPTURE THE IMPORTANT FUNCTIONAL
MOTIONS WITHIN A HEMAGGLUTININ
STRUCTURE SET

The 43 structures of hemagglutinin listed in Table 1 were
collected from the PDB with a BLAST search, retaining only
those structures present as trimeric complexes of the HA1 and
HA2 subunits. The individual subunits were extracted separately
and aligned. This yields a total of 129 structures of the HA1
+ HA2 monomers that were superimposed onto the central
structure (PDB: 1 mqm) using the Combinatorial Extension (CE)
algorithm, and these have a continuous distribution of RMSDs
from 0 to 3.3 Å.

After these structures have been superimposed, the
covariances for all pairs of positions were computed. Then
Principal Component Analysis is performed on this dataset.
The input is the set of all of the structures in the set (Teodoro
et al., 2002, 2003). From these data, the average position of each
point in the reference structure is computed as <xi >, and
the covariances for each pair of points, i and j, was computed
according to cij =

〈

(xi − 〈xi〉)
(

xj −
〈

xj
〉)〉

, where brackets < >

indicate averages over the set of structures. The covariancematrix

FIGURE 3 | Principal component contributions to the total motions of

hemagglutinin. Percent of variance explained by each individual PC is shown in

blue and the cumulative contribution of each PC to the total variance/motion in

red. The first 5 PCs account for 90% of the total motions present in the set of

43 structures.

C can be decomposed as C = P∆PT , where the eigenvectors P
represent the principal components (PCs) and the eigenvalues
are the elements of the diagonal matrix ∆. The eigenvalues
are sorted in order. Each eigenvalue is directly proportional
to the amount of the total variance it captures. The results of
this analysis are shown in Figure 3 for the set of coarse-grained
hemagglutinins, which shows how truly limited the characteristic
motions are within the structure set. Clearly, it does not require
many of these characteristic motions to capture nearly all of the
overall motions.

CHARACTERIZATION OF THE GLOBAL
MOTIONS IN HEMAGGLUTININS

Based on their sequences, HAs have been subdivided into two
main groups: Group 1 (H1, H2, H5, H6, H8, H9, H11, H12, H13,
and H16) and Group 2 (H3, H4, H7, H10, H14, and H15) (Air,
1981). Interestingly, the first three PCs separately cluster into
these two major groups, with minor exceptions. The distribution
of the experimental structures over the PCs are shown in Figure 4
for pairs of PCs. This distinctive clustering can be seen clearly.

Different conformations can bind to different partners and
thus include dynamics in the process that will improve the
probability of success in computational protein design. When
the PCs are visualized on the structures, it can be seen that the
first three PCs primarily represent motions in the B-loop (blue)
that are involved in the large-scale transition. PC1, PC2, and PC3
can be interpreted as primarily involving conformations changes
in the C-terminus, the central, and N-terminus parts of the B-
loop (see Figure 5). Interestingly, the B-loop is a region with a
strong tendency to form a coiled-coil and is implicated in the
formation of the pre-hairpin intermediate in the “spring loaded
mechanism” of HA action (Carr and Kim, 1993; Xu and Wilson,
2011). The PC3 motion also clearly demonstrates the shift in the
loop necessary for it to position itself at the top of helix C. In
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FIGURE 4 | Distribution of the 129 HA monomeric structures projected onto the first 3 PCs. (Left) PC2-PC1 space and (Right) PC3-PC1 space. PC1 separates the

Group 1 and Group 2 hemagglutinins into different clusters. Outliers H13 and H16 have been eliminated from the figure for the sake of clarity. PC1 has a major gap

between the two groups of clustered structures. PC3 appears to be populated in two somewhat similar clusters, with Group 1 showing a particularly wide range of

PC3 values.

addition, PC2 captures a hinge motion in the head of HA with
respect to the stem as well as well as amotion at the N-terminus of
HA2 (fusion peptide) that is subsequently exposed for insertion
into the membrane during fusion. These computed structures
show a high level of variability of conformations particularly
for the B-loop, which relate well to the known conformational
transition, even though the full extent of motions is not shown
in Figure 5. As shown in Table 2, these PCs provide a useful
representation of changes present in the ensemble of structures.

ANISOTROPIC NETWORK MODELS (ANM)
CAN SUBSTITUTE, OF INSUFFICIENT
NUMBERS OF EXPERIMENTAL
STRUCTURES ARE AVAILABLE

Elastic Network Models of proteins, such as the Gaussian
Network Model (GNM) and Anisotropic Network Models
(ANM) of proteins as developed by Tirion (1996), Bahar, Erman,
and Jernigan (Bahar and Jernigan, 1994, 1998; Bahar et al., 1997a;
Demirel et al., 1998; Atilgan et al., 2001; Doruker et al., 2002a,b;
Doruker and Jernigan, 2003; Sen et al., 2006), computationally
yield information about protein fluctuation dynamics, the
directions of motions of the residues and atoms around their
equilibrium positions. This information has already been used by
Bahar, Jernigan, Kloczkowski, and many others with significant
success (Bahar and Jernigan, 1994; Keskin et al., 2002a,b; Isin
et al., 2012) to explain functional motions and mechanisms
in proteins, nucleic acids, and large biological assemblies, such
as the ribosome. ANM could be used as an alternative to
calculate the normal modes from a single structure when
insufficient numbers of experimental structures or structures
having sufficient variability are not available to perform PC
analysis, then normal modes from the elastic network models
could also be used to compute entropies (Zimmermann et al.,
2012) (But, as we show below, contact entropies are simpler

and provide significant gains). In ANM, the potential energy
V is a function of the displacement vector D of each point in
the structure V =

γ
2DHDT , where γ is the spring constant

for all closely interacting points in a structure (here we used
a cutoff distance of 13 Å between alpha-carbons for coarse-
grained models retaining only Cα atoms) to establish the spring
connections between residues), and H is the Hessian matrix
containing the second derivatives of the energy, with respect to
each of the coordinates x, y, z. For a structure with n residues,
the Hessian matrix H contains n× n super-elements each of size
3 × 3. The Hessian matrix H can be decomposed (Atilgan et al.,
2001) as H = M3MT , where Λ is a diagonal matrix comprising
the eigenvalues with the eigenvectors forming the columns of
the matrixM. This decomposition generates 3n-6 normal modes
(the first six modes account for the rigid body translations and
rotations of the system) reflecting the vibrational fluctuations, so
singular value decomposition is utilized.

COMPARING DIRECTIONS OF MOTIONS
USING OVERLAPS

The alignment between the directions of a given experimental
PC and a given computed normal mode can be measured by
comparing the directions of motion in their overlap, as defined

by Tama and Sanejouand (2001): Oij =
|Pi·Mj|

‖Pi‖‖Mj‖
, where Pi is the

ith PC for andMj is the jth normal mode. A perfect match yields
an overlap value of 1, meaning these motions are in the same
direction. We also define the cumulative overlap (CO) between

the first k vectorsMj and Pi as CO
(

k
)

=

(

k
∑

j=1
O2
ij

)
1
2

.

The high overlaps between the two methods ensures the
reliability of the computed dynamics. The 1st, 2nd, and 3rd PCs
have good overlaps of 0.57, 0.43, and 0.34 with the 3rd, 2nd, and
1st individual modes, respectively. We compare the first three
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FIGURE 5 | Visualization of the first three PC motions on the structures of HA. The two structures shown in each column are two extreme conformations

representative of the changes indicated in each individual PC. PCs 1, 2, and 3 can be identified as winding and unwinding of the C-terminal, central, and N-terminal

parts of the B-loop (blue) into a helix. PC2 captures the hinge bending of the structure between the head and stem regions as well as movement of the N-terminus of

HA2. The blue highlighted segments indicate the parts of the structure exhibiting a broad range of conformations.

PC’s from the X-ray set with the first 20 normal modes from
the elastic network models, and these are relatively high between
all three PCs of the X-ray hemagglutinin and the set of normal
modes for the computed normal modes (see Table 2).

STRATEGIES FOR GENERATING AND
RANKING AN ENSEMBLE OF
STRUCTURES AND IDENTIFYING A
STRUCTURE MODULE TARGETED FOR
INHIBITOR DESIGN

Identifying the most conformationally variable part of the
structure is the aim here. These are the parts of a structure that
should be the most useful to use for inhibitor design. These parts
can be identified simply by computing the changes in all internal

TABLE 2 | Cumulative overlaps between computed ANM modes and PCs from

the set of experimental hemagglutinin structures.

CO

3 Modes 6 Modes 20 Modes

PC1 0.60 0.66 0.71

PC2 0.50 0.57 0.65

PC3 0.40 0.44 0.60

Values above 0.5 are in bold.

distances over the ensemble. Examples of such potential binding
parts to target have been extracted from the ensemble of sampled
conformations for HA generated by utilizing combinations of the
first several PCs (Figure 6). This highly variable segment should
be susceptible to binding by a broader range of ligands.
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FIGURE 6 | Examples of the diversity of conformations from the first 3 PCs for the B loop (blue) of hemagglutinin. The PCs can be used to generate an ensemble of

conformations. Each of three shows a conformation generated from one PC. The motions showed that this loop is the most flexible part of the structure and

possesses an extremely diverse set of conformations.

ASSESSING PEPTIDE/PROTEIN DESIGNS
WITH NEW EMPIRICAL CONTACT
POTENTIALS

Here we present new strategies for the assessment of bound
ligand structures by taking as our target the designed small
proteins from David Baker and his colleagues that were targeted
to bind hemagglutinin (Fleishman et al., 2011; Fleishman
and Baker, 2012). This provides an interesting relatively large
dataset, which we can use to test our assessment method. The
Baker designs, originating from small, monomeric proteins in
the PDB having between 80 and 250 residues, were targeted
against a hydrophobic region on the “stem” of hemagglutinin.
Of the 88 designs that they tested, only two were reported
to have detectable binding affinity for hemagglutinin (this
affinity was subsequently improved in rounds of randomization
and selection).

Four-Body Coarse-Grained Contact
Potentials (Feng et al., 2007, 2010)
Four-body potentials were developed by Kloczkowski and
Jernigan to account for the cooperative interactions in proteins;
they take into account the coarse-grained contact interactions
together with the extent of solvent exposure, and thus provide
a more detailed and more cooperative representation of protein
interaction energies than do pairwise potentials. Capturing
this cooperativity is considered to be critical for evaluating
densely packed protein structures. These potentials are highly
empirical and are based simply on the observed frequency
of occurrences of different types of amino acids in closely
interacting quartets of amino acid types within a large set of
protein structures. We have found that these four-body contact
potentials can discriminate well between native structures
and partially unfolded or deliberately misfolded structures.
These have also included short-range backbone energies
(Bahar et al., 1997b). We tested these optimized potentials
at CASP9 as the prediction group 4_BODY_POTENTIALS
from Iowa State University. There were 110 other human
prediction groups participating in CASP9 competition, and 140
prediction servers. According to Nick Grishin, the assessor of
free modeling techniques at CASP9, 4_BODY_POTENTIALS

was one of most successful groups in free modeling at
that time, ranking third according to the averaged zscore
both for best models and top models. Free modeling is
the most difficult and most challenge in protein structure
prediction, when the sequence of the protein has only a
low sequence similarity in comparison to any known protein
structures. This success at CASP9 demonstrates clearly that
the cooperative multibody interactions are an appropriate tool
for assessing predicted structures, and we apply them here
to Baker’s hemagglutinin inhibitor structures. Later we added
in electrostatic interactions, and these were tested at the
subsequent CASP10.

Including Entropies in the Inhibitor
Assessments
The Elastic Network Models (ENM) have proven themselves to
be highly useful in representing the global motions for a wide
variety of diverse protein structures (Bahar and Jernigan, 1997,
1998, 1999; Bahar et al., 1997a,b,c; Bahar et al., 1998, 1999;
Demirel et al., 1998; Keskin et al., 1998, 2000, 2002a,b; Jernigan
et al., 1999, 2000, 2008; Atilgan et al., 2001; Bahar and Rader,
2005; Sen et al., 2006; Jernigan and Kloczkowski, 2007; Yang
et al., 2007, 2008, 2009; Zhu and Hummer, 2010; Bakan et al.,
2011; Karaca and Bonvin, 2011; May and Brooks, 2011; Peng and
Head-Gordon, 2011; Uyar et al., 2011; Wieninger et al., 2011;
Zheng, 2011; Zheng and Auerbach, 2011; Zimmermann et al.,
2011a,b; Duttmann et al., 2012; Gniewek et al., 2012; Isin et al.,
2012; Martin et al., 2012; Ruvinsky et al., 2012; Globisch et al.,
2013; Kim et al., 2013; Sanejouand, 2013; Dasgupta et al., 2014).
Since they have proven to be so successful in capturing the most
important motions of protein structures, it is reasonable to expect
that they should also be able to estimate the conformational
entropies of structures. We employ the Elastic Network Model
to compute the motions of protein structures, and then these
motions are then used directly to approximate the entropy of a
conformation (Zimmermann et al., 2011c, 2012). We previously
(Zimmermann et al., 2011c) used vibrational entropies based on
the frequencies of the normal modes, but more recently have
found significant gains by utilizing the mean square fluctuations
computed from the ENM as a direct measure of entropy: 1S ∝
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FIGURE 7 | Ranking by coarse-grained free energies of inhibitor proteins designed against hemagglutinin. Free energies are given on the ordinate axis (arbitrary

scale), and the different structures (from the pdb) are indicated along the abscissa. The eight top-ranked structures with favorable free energies can be seen to be

HB22, HB36, HB51, HB56, HB65, HB68, HB80, and HB88. This demonstrates the utility of the coarse-grained free energies to computationally screen for favorable

structures. The two structures HB36 and HB80 were experimentally shown to be functional.

Ŵ−1 =
N
∑

i=2

1
λi

(

QiQ
T
i

)

, where Q is a normal mode vector, λ the

corresponding square frequency, Γ the system’s Hessian, and
Γ −1 its pseudo-inverse. We obtain the Free Energy changes from
1G = 1E – T1S by simply combining the four-body potential
with the ENM-based entropy (Zimmermann et al., 2012). The
excellent blind-tested performance of our method in CASP
experiments shows that our methodology is an outstanding tool
for assessing protein designs, such as the ones from Baker’s
hemagglutinin inhibitor designs.

THESE NEW FREE ENERGIES
SUCCESSFULLY SELECT NATIVE-LIKE
POSES IN PROTEIN-PROTEIN DOCKING

We have applied this method to the set of 89 inhibitor
proteins designed against hemagglutinin by David Baker’s group,
and we find that it provides a useful screen for that set of
structures. Structures having the lowest energies indicate stable
favorable conformations. However, stable structures are not
always functional. In this case, we tested a set of eight structures at
local minimums of the energy landscape ranked by their energies.
From these, it was reported that two of them were found to be
functional (see Figure 7).

DISCUSSION

We have outlined a simple new way to use protein dynamics
for peptide/protein design studies. This approach serves to
identify those specific regions in the structure having particularly
wide-ranging conformational variability, which could be of
particular importance for targeting computational design efforts.
Specifically, the highly variable segments should be able to

bind to a particularly wide range of diverse ligands. Such
variable conformations are well-known to be important for the
promiscuous binding exhibited by disordered proteins and using
this approach should have some advantage. Using such more
localized protein targets might be an important new approach
for targeted computational design. Another advantage of this
is that more exhaustive computations can be carried out for
smaller targets.

Application of the potentials described above to assess
structural designs would allow ranking of sets of designed
inhibitor proteins. The differences in rankings should allow
to conclude the extent to which the large-scale backbone
fluctuations identified in the dynamics could be utilized in
the design process. This would require a significantly larger
effort than has been presented here. Of course, the potentials
themselves are empirical and could be modified to reflect the
data from the experimental studies on the designed molecules for
the specific class of targeted protein, which is one of the major
advantages of the adaptability of the empirical potentials in any
particular application.

Our approach can be extended by detailed analysis of allosteric
sites that are important for drug design. Most drugs are designed
to bind directly to the primary active sites, called orthosteric sites,
to inhibit or modify the function of the protein. Binding of a drug
to the active site prevents binding to a virus or other disease-
related agent and most drugs are designed to fit into the primary
active sites. However, adverse side effects of a drug may occur
because many enzymes or receptors with related functions may
have similarities in their active sites.

A new approach to drug design is based on secondary binding
site effects. In this approach, small molecule drugs are designed
to bind at secondary binding sites called allosteric sites (Tsai
andNussinov, 2014; Dokholyan, 2016; Guarnera and Berezovsky,
2016, 2020; Schueler-Furman and Wodak, 2016; Wodak et al.,
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2019; Zhang et al., 2020). A potential drug—an allosteric
modulator binds to an allosteric site and remotely modifies
the conformation of the primary binding site of the protein.
Allosteric sites are controlled by intrinsic protein dynamics,
and the approach proposed here could also be applied to these
allosteric sites.
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