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What is the architectural “basis set” of the observed universe of protein structures? Using
information-theoretic inference, we answer this question with a dictionary of 1,493
substructures—called concepts—typically at a subdomain level, based on an unbiased
subset of known protein structures. Each concept represents a topologically conserved
assembly of helices and strands that make contact. Any protein structure can be dissected
into instances of concepts from this dictionary. We dissected the Protein Data Bank and
completely inventoried all the concept instances. This yields many insights, including correlations
between concepts and catalytic activities or binding sites, useful for rational drug design; local
amino-acid sequence–structure correlations, useful for ab initio structure predictionmethods; and
information supporting the recognition and exploration of evolutionary relationships, useful for
structural studies. An interactive site, PROÇODIC, at http://lcb.infotech.monash.edu.au/prosodic
(click), provides access to and navigation of the entire dictionary of concepts and their usages,
and all associated information. This report is part of a continuing programme with the goal of
elucidating fundamental principlesof protein architecture, in the spirit of thework ofCyrusChothia.
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theory, folding pattern

1 INTRODUCTION

The polypeptide chains of amino acids (primary structure) contain, in most proteins, regions that
fold into helices and strands of sheets (secondary structure), which in turn assemble to give proteins
their intricate three-dimensional shapes and folding patterns (tertiary and quaternary structures). As
of April 2021, experimental methods have already provided more than 167,000 entries in the Protein
Data Bank (PDB) (Berman et al., 2003), containing the three-dimensional coordinates of proteins
and protein–nucleic acid complexes from a wide range of species.

Unraveling protein architecture and discovering the relationship among these major levels of
structural description provide the key to understanding how proteins function, how their 3D folding
patterns form, and how they evolve (Lesk, 2016). Investigations of protein folding patterns have
revealed recurrent themes (Pauling and Corey, 1951; Pauling et al., 1951; Levitt and Chothia, 1976;
Lesk and Rose, 1981; Chothia and Lesk, 1986; Richards and Kundrot, 1988), which form the basis for
widely used hierarchical classifications of protein structures (Murzin et al., 1995; Orengo et al., 1997;
Andreeva et al., 2013; Schaeffer et al., 2016). Nevertheless, many aspects of the relationships across
structural levels remain unresolved. Further, François Jacob observed that proteins evolve by
“bricolage,” that is, through evolutionary tinkering by reusing “pieces” from other proteins
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(Jacob, 1977; Duboule and Wilkins, 1998). Despite much
previous work to unravel these “pieces,” the problem of
precisely characterizing them has remained open.

Chothia and Lesk (1986) introduced the idea of a core of the
folding patterns of homologous proteins. This core comprises a
maximal set of secondary structural elements (SSEs) that
assemble in a common 3D topology, while withstanding a
certain amount of distortion. The parts outside the core are
structurally more variable.

Many related proteins share some but not all of the
substructures that form their cores. Therefore, it is of great
interest to discover the nature of the substructures that
contribute to the cores of protein families. Some of these are
supersecondary structures—small recurrent combinations of
successive elements of secondary structure, such as the β-α-β
subunit. Supersecondary structures recur within many protein
folds and can be shared even by unrelated proteins. For example,
the β-α-β subunit appears in NAD-binding domains, in TIM
barrels, and in many other proteins.

Early definitions of supersecondary structures relied strongly
on experts’ spotting and naming them (Rao and Rossmann, 1973;
Kister, 2013). With the steady growth of the PDB, several
methods have been developed to identify automatically, with
varying operational definitions, a library of substructures that
form what can be considered as the 3D building blocks of protein
structures (Unger et al., 1989; Rooman et al., 1990; Unger and
Sussman, 1993; Camproux et al., 1999; Micheletti et al., 2000;
Kolodny et al., 2002; Friedberg and Godzik, 2005; Joseph et al.,
2010; Chitturi et al., 2016; Dybas and Fiser, 2016;Mackenzie et al.,
2016; Nepomnyachiy et al., 2017; de Oliveira et al., 2018; Joshi,
2018). However, these approaches have yielded limited libraries
containing mostly short oligopeptide fragments, or assemblies of
typically 2–4 secondary structural elements. It has been a
challenge so far to go further than that and dissect protein
structures into a more complete set that includes larger
conserved substructures. (A more detailed exploration of key
prior work on this topic is provided under “Comparison with
previous work” within the “Results” section.) Apart from the
enormous computational challenge this problem poses, the
attempts made so far have lacked a rigorous framework in
which to describe, compute, identify, and resolve a dictionary
of conserved assemblies of secondary structures.

Thus, the key focus of this work is to go beyond definitions of
recurring substructural patterns that are identified using ad hoc
formulations and adjustments. This work utilizes new statistical
models to describe all observed protein folding patterns in terms of
their substructural constituents. It provides an attempt toward a
systematic description of recurrent substructures of protein folding
patterns usingmethodological devices never previously explored in
the literature on this topic. Finally, this work is broadly analogous
(in scope and application) to finding a formalized description of
“syntactic structures” that now underpins linguistic analyses of
natural languages (Chomsky, 1957).

Specifically, this work unravels observed protein folding
patterns into a dictionary of architectural building blocks
(concepts) containing topologically conserved assemblies of
helices and strands that make contact. We note that several

databases such as SCOP (Murzin et al., 1995; Andreeva et al.,
2013; Chandonia et al., 2017), CATH (Orengo et al., 1997), and
ECOD (Schaeffer et al., 2016) classify protein structures at the
level of domains, and include multiple instances of domains with
very similar structures. Concepts, in contrast, provide a dictionary
of independent structural patterns, into which full domains can
be dissected.

We distinguish concepts both from motifs and from domains
as follows:

•We understand the term motifs to mean recurrent structural
patterns in proteins that can—in their entirety or
partially—be superposed with low root-mean-square
deviation of the backbone (or at least of the Cα) atoms.
The idea of a concept focuses instead on conservation of the
topology of secondary structure assembly, but instances of the
same concept in different proteins can less-rigidly preserve
structure and have varying lengths.

• Domains in proteins are individual compact units. Although
some concepts do correspond to domains, some are not in
themselves entirely compact, some are subdomains, and
others comprise portions or even all of multiple domains.

The determination of the dictionary was completely automatic
(i.e., unsupervised), and unbiased by any previously known
sequence or structural patterns. Our framework to infer this
dictionary can be best understood as an imaginary
communication between a transmitter and receiver pair over a
communication (Shannon) channel. The transmitter has a
collection of protein shapes she wants to share with the
receiver. The transmitter has two possible methods of
communication. The first involves communicating the collection
as is—this constitutes the null or baseline model. But another
approach is to communicate the whole collection more efficiently
using a dictionary of concepts, followed by the details of the
collection specified with the aid of that stated dictionary. Here,
the role of the dictionary is to illuminate common patterns
observed in the collection and is stated one-off over all shapes
in the collection. It is intuitive to observe that the better a
dictionary, in terms of its ability to describe (i.e., fit) the shapes
in the collection, the more economical will be the description of the
source collection. An optimal dictionary in this framework is the
one that yields the most economical one-off statement of the
dictionary and the collection using that dictionary.

Our approach relies on an information-theoretic framework
that allows the inference of a dictionary that a) avoids overfitting
(i.e., avoiding inferring a dictionary that is more complex than
necessary to explain the observed folding patterns) and b)
achieves an objective trade-off between the descriptive
complexity of concepts in the dictionary and their fidelity
(i.e., the amount of compression) gained when explaining the
observed protein folding patterns. This dictionary of concepts
advances the current knowledge of conserved subdomain
structural patterns significantly beyond the classical
supersecondary structures and other known patterns. Thus,
this work presents a “basis set” of substructural concepts
underlying all observed protein folding patterns, and allows
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any protein chain to be decomposed optimally into parts
corresponding to substructures from this set. It thereby
contributes a plethora of useful biological insights, such as the
following:

1. Understanding the fundamental components of protein
folding patterns. Our dictionary of concepts will support
innovative projects aimed at the analysis of protein
structures.

2. Correlation, in many cases, of concepts with functions
directly, or indirectly via ligand-binding sites. This
provides useful predictions in the case of proteins with
known structure but unknown function.

3. Many concepts show amino-acid sequence correlation;
that is, some conservation of sequence patterns. These
results are applicable to protein structure prediction by
suggesting conformations of local regions.

The results of dissecting all the structures in the current PDB,
or of dissecting a user-supplied set of protein coordinates, are
accessible from the PROÇODIC website: http://lcb.infotech.monash.
edu.au/prosodic (click). This site supports the interactive
exploration of protein structures and their relationships.

2 RESULTS

2.1 Automatic Inference of a Dictionary of
Substructural Concepts
This work uses the concise tableau representation of protein
folding patterns introduced by Lesk (1995), which is based on the

idea that the essence of a protein folding topology is captured by
the order, patterns of contacts, and geometry of the assembly of
secondary structural elements along the amino-acid chain. A
tableau corresponds to the 3D structure of a single-protein
domain (or sometimes chain), and has the form of a
symmetric matrix (Figures 1A,C). Importantly, in this
representation supersecondary structures can be defined in a
compact and computable way as subtableaux containing two or
more successive secondary structure elements in contact
(Figures 1D,E).

We have constructed the dictionary reported here using our
recently developed method to infer, automatically, conserved
assemblies of secondary structural elements within any given
source collection of tableaux (Subramanian et al., 2017). We call
these substructures concepts. This idea of a concept is constrained
by the requirement that every secondary structural element in the
concept must be in contact with at least one other secondary-
structure element in that concept. Our concept inference
approach (Subramanian et al., 2017) is based on the minimum
message length criterion for statistical inference (Wallace and
Boulton, 1968; Wallace, 2005; Allison, 2018) and lossless data
compression. We have applied this method to compress the
source collection of tableaux corresponding to ASTRAL SCOP

domains (Murzin et al., 1995; Andreeva et al., 2013;
Chandonia et al., 2017). This has allowed us to infer a
dictionary of 1,493 substructural concepts that most concisely
and losslessly describes the entire source collection, and does so
without any prior knowledge or preconceived notions regarding
these recurrent substructures.

The total computational effort required to identify this
dictionary is equivalent to about 7 years of runtime on a

FIGURE 1 | Example dissection of an actin-binding protein into “concepts” from the inferred dictionary. (A) Secondary-structural cartoon representation of the
crystal structure of the actin-binding protein actophorin from Acanthamoeba (1AHQ) (Leonard et al., 1997). (B) Secondary structural assignment [using SST (Konagurthu
et al., 2012); H � helix, E � strand of sheet] and the optimal dissection of the protein chain into nonoverlapping regions, using the inferred concept dictionary. This
information is shown with reference to the amino-acid sequence information in a marked-up format: the dissection of 1AHQ uses concepts (see the text) c_0823
(highlighted in yellow) and c_1021 (highlighted in blue). (C) Tableau representation of the folding pattern of 1AHQ. The highlighted subtableaux corresponds to concepts
c_0823 and c_1021. Here, only the lower-triangle part of the tableau information is shown because the full tableau is a symmetric matrix. The rows and columns are
indexed by secondary structure elements in order of appearance in the polypeptide chain. Off-diagonal elements record the angles between the pairs of secondary
structural elements; boldface indicates that there is a contact between the corresponding pair of secondary structural elements. (D, E) The concepts c_0823 and
c_1021 are shown, together with their archetypal tableaux and corresponding secondary structural representation.
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modern computer. Therefore, we parallelized our method and
ran it on a high-performance computing cluster using 240 cores
to identify the PROÇODIC dictionary in 14 days (see Section 4).

2.2 PROÇODIC: The Dictionary of Inferred
Concepts
Each of the 1,493 concepts in the dictionary is designated by an
identifier of the form “c_” followed by 4 digits: c_0001—c_1493.
This order follows 1) the decreasing length in the number of
secondary structural elements (nSSEs) defining each concept, and
2) for concepts containing the same number of SSEs, the
lexicographic order of their secondary structural strings, where
we represent any helix by “H” and any strand by “E.”

Figure 2 shows the top 100 concepts in the dictionary, ordered
by number of SSEs included. The largest concept (c_0001)
contains 28 secondary structural elements. The smallest
concepts (c_1441—c_1493)—not shown in Figure 2—contain
only two elements. (Note that a single-helix or a single-strand/
extended region is not considered here as a concept.) The
distribution of inferred concept sizes is shown in Figure 3A: 9

concepts (c_0001—c_0009) are composed of an assembly of ≥ 20
secondary structural elements, 48 concepts (c_0010—c_0057)
have between 15 and 19 SSEs, 217 concepts (c_0058—c_0274)
contain between 10 and 14 SSEs, 217 concepts (c_0058—c_0274)
contain between 10 and 14 SSEs, and 368 concepts
(c_0275—c_0642) contain between 9 and 6 SSEs. The
remaining concepts contain between 5 and 2 SSEs. The
median concept size is 5 SSEs.

On average, a concept archetype is significantly smaller (with
47.6% of the number of SSEs) than its source protein domain. Yet,
there are several concepts inferred in our dictionary that describe
conserved folding patterns at the level of domains. These include:
NAD-binding domain (c_0173), β-grasp fold (e.g., c_729),
β-propeller (c_0382), Swiss/Jelly roll fold (c_0406), Ferredoxin
(plait) fold (c_0581), TIM barrel (c_0008), Immunoglobulin fold
(c_0118, c_0121), Ubiquitin roll (c_0737), and large β-barrel
(c_0061). This shows that our dictionary encompasses a broader
set of substructural invariants than previous studies (see Section
2.5). This advantage is due to our use of tableaux to capture
concisely the essence of protein folding patterns, together with
the information-theoretic criterion of minimum message length

FIGURE 2 | Top 100 concepts from the inferred dictionary. The representative structural cartoons of the top 100 concepts from the inferred dictionary containing
1,493 concepts, ranked in a decreasing order of number of secondary-structure elements (row-wise top-left to bottom-right: c_0001 to c_0100). Strands of sheet are
shown in Red; helices in Blue. (See the website for the full interactive listing.) The inference of the whole dictionary was automatic without any prior knowledge or
preconceived notions of these recurrent themes. The inferred concepts subsume known patterns; for example, shown in the figure are: “α-β Barrel” (c_0005),
“Armadillo repeat” (c_0083), “β Barrel” (c_0061), “β Propeller” (c_0004), “Icosahedral virus coat protein” (c_0067), Immunoglobulin (c_0062), “Jellyroll architecture”
(c_0084), “Left-handed β-Helix” (c_0001), “Leucine-rich repeat” (c_0076), “Right-handed quadrilateral β-Helix” (c_0058) “NAD-binding domain” (c_0002), “TIM barrel”
(c_0008), etc. Other classical supersecondary structures not shown in this figure such as β-hairpin (c_1442), α-hairpin (c_1484), β-α-β unit (c_1240) appear lower down
in the dictionary of concepts, ordered from largest to smallest.
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to yield an objective dictionary complexity-versus-fidelity
trade-off.

The null model encoding length of our source collection is
33,352,380 bits. The encoding length after compressing the same
collection using the inferred dictionary is 31,927,340 bits. The
resultant compression is 1,425,040 bits (or 4.3%) over the null
model. We emphasize that this compression gain is over the null
model encodings of the tableaux representations which are
themselves compact 2D representations of 3D structural
information.

The complete inferred dictionary is available via the
interactive website PROÇODIC (for Protein Concept
dictionary—the cedilla allows the pronunciation as “prosodic”)
at http://lcb.infotech.monash.edu.au/prosodic. As discussed later,
this site allows the exploration of any structure that the user
provides as input, or of specific concepts that are of motivating
focus for the user, including: the usages of concepts in other
structures, both homologous and nonhomologous; or the
inspection of frequently occurring keywords within the
“KEYWDS” records and the ligand-binding information from
the “HETATM” records extracted from the source PDB
coordinate files (see Section 3).

2.3 Our Dictionary Subsumes Known
Supersecondary Structural Motifs
Our dictionary includes many concepts that match the known
repertoire of supersecondary structural motifs (Efimov, 2013).
Matched motifs involving assemblies of a small number of helices
and strands include: antiparallel (c_1442) and parallel (c_1443)
β-β assemblies, α-α hairpin (c_1484) α-β/β-α assembly, (c_1459/
c_1472), basic helix–loop–helix (c_1351), β-α-β motif (c_1240),
EF-Hand (c_1342, c_1491), ϕ-motif (c_1178), helix–turn–helix
motifs (c_0826 –winged type I, c_0870 –winged type II, c_1373 –
plain), four-helix bundle (c_1101 – type I, c_1117 – type II),

β-meander (c_1187), Greek key (c_0964), Zinc finger (c_1230),
helix–hairpin–helix motif (c_1068), β-sandwich (c_0390), and
αβ-sandwich (c_0603), among others.

Our dictionary also includes larger assemblies of helices and
strands that match known repeating structural motifs. These
include three-sided left-handed β-helix (c_0001, c_0380),
three-sided right-handed β-helix (c_0388), right-handed
quadrilateral β-helix (c_0058), ankyrin repeat (c_0370,
c_0632), armadillo repeat (c_0083, c_0888), kelch repeat
(c_0395), α-solenoid (c_0270, c_0271), and leucine-rich repeat
(c_0076), among others.

PROÇODIC yields a flat (nonhierarchical) dictionary of 1,493
concepts. The inference of these concepts is unsupervised, driven
by information-theoretic trade-off between the dictionary
complexity and its fidelity to explain the source collection of
tableaux. Visual inspection reveals shared topological
relationships between certain subsets of concepts (e.g., c_0001
and c_0006; see Figure 2). Therefore, to explore the topological
relationships between the inferred concepts, we undertake an
agglomerative clustering exercise to construct a hierarchy from
that otherwise flat dictionary of concepts. We emphasize that this
exercise is not meant to suggest any structural pathways [cf.
Efimov structural trees (Efimov, 2013)] or evolutionary
relationships between concepts, but merely provides a device
to explore their topological relationships. (We also emphasize
that a systematic approach to finding hierarchical relationships
and structural pathways requires the unsupervised Bayesian
inference of a hierarchical dictionary of concepts, which is
beyond the scope of the current work.)

To undertake this agglomerative clustering, since each concept
archetype defines a (sub)tableau derived from a tableau of the
domain in the source collection, we can infer the dictionary of
meta-concepts (i.e., concepts of “concepts”) that best explains all
the PROÇODIC concept tableaux. This is achieved by using exactly
the same unsupervised (flat dictionary) inference methodology

FIGURE 3 | Distributions of concept length and amino-acid coverage. (A) Distribution of concept lengths in terms of the number of secondary structural elements
(nSSEs) they contain. The smallest concepts have 2 secondary structural elements; the largest has 28. (B) Individual concept amino-acid coverage (as a percentage of
the total 74,246,836 residues) in the serial order of concept identifiers (with some concepts highlighted).
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that was used to infer PROÇODIC concepts. That is, we now treat the
tableaux representing 1,493 archetypes from our inferred
PROÇODIC concept dictionary as the source collection, and
rerun our inference method (see Section 4). This in turn
yielded 34 meta-concepts that dissect (i.e., best explain) the
inferred 1,493 concepts. The text file containing these meta-
concepts, along with the corresponding list of PROÇODIC

concepts that use each meta-concept within their dissections,
is available in the supporting data file:
metaConceptsAndUsageList.txt (click).

This permits the decomposition of each PROÇODIC concept in
terms of these 34 meta-concepts. Thus, each PROÇODIC concept
can be represented as a 34-dimensional feature vector in the
meta-concept space, where each vector component denotes the
number of times the corresponding meta-concept is used in that
concept dissection. We note that this representation is similar to
the bag-of-words model (Harris, 1954) used in information
retrieval and natural language processing. Using this feature
vector representation, the 1,493 PROÇODIC concepts are
clustered hierarchically using the following method:

1. A 1, 493 × 1, 493 similarity matrix between PROÇODIC

concepts is constructed using the cosine similarity measure
(Singhal, 2001) between all the pairs of these 34-
dimensional vectors.

2. Using the resultant similarity matrix, we cluster all the
PROÇODIC concepts hierarchically, based on the unweighted
pair-groups method using arithmetic averages (Sokal,
1958).

This procedure yields a hierarchical tree of concept
relationships, available in an interactive format from:
prosodicConceptClustering.html (click). This tree reveals
similarities that are also detectable by comparing the concept
archetypes, their usages, and keywords. For example, c_0009
and c_0018 are both helical bundles related to the architecture
of Annexin proteins, with c_0009 having one extra helix compared
to c_0018. Another example is the cluster containing c_0001, c_
0006, c_0113, and c_0380, where all represent left-handed β-helical
motifs composed of 28, 20, 12, and 7 β-strands, respectively.

2.4 Dissection of PDB and Coverage of
Concepts Across the Protein Folding Space
The methods used for this work also permit the optimal
dissection, within seconds (on a single processor), of any
protein chain into nonoverlapping regions that are explained
(compressed) using the concepts from the inferred dictionary.
Figure 1 shows an example of the dissection of the crystal
structure of the actin-binding protein actophorin from
Acanthamoeba (1AHQ) (see the PROÇODIC website to dissect any
protein structure of interest; either a PDB entry or a user-supplied
coordinate set). We note that regions not assigned to any
dictionary concept (notionally designated to the null concept,
c_0000) remain uncompressed. These include the small set of
proteins that have no secondary structure, for instance wheat-
germ agglutinin (9WGA).

We have dissected the entire PDB, which at the time of
calculation resulted in tableaux corresponding to 275,014
protein chains containing 74,246,839 amino-acid residues
overall. (Note that the dictionary was constructed using an
unbiased set of domains from ASTRAL, but the subsequent
dissection of the entire PDB reflects the biases in the
distribution of protein folding patterns in the full database.)
The usages of the resulting concepts cover regions within
proteins that account for 66.35% (49,262,577) of the total
(74,246,839) amino acids in the PDB protein chains we
dissected (Supplementary Figure S3A). The remaining 33.65%
is dominated by single secondary structural elements, plus loops
between successive concept assignments along a dissected chain.
Figure 3B shows the distributions of amino-acid coverage of
concept usages within the PDB. Concept c_0060 has the largest
coverage in terms of the number of amino acids its usages cover.
This concept is composed of 14 secondary structural elements
(SSE string: EEEEHHEEEEHHEE) assembling into a four-layer
architecture, with its core containing two layers of closely packed
five-stranded β-sheets (Chothia et al., 1977) that are sandwiched
between two outer layers, containing two α-helices each (see
Figure 2, the rightmost structure on the sixth row). In total, this
concept was used within 3,892 protein chains, with a median
value of amino-acid coverage equal to 194 residues
(Supplementary Figures S3A,B). Examination of these
usages reveals that they all come from the protein chains of
285 proteasome complexes. At the other extreme is concept
c_0568, which has the smallest amino-acid coverage: 561
residues over 13 protein chains related to plant and bacterial
Ferredoxins (Tagawa and Arnon, 1962). This concept is
composed of 6 secondary structural elements (SSE string:
EEHEEE).

Insights about the concepts can be gained from their usage
information. For example, consider the concepts c_0060 and
c_0568 mentioned earlier: the concept c_0060 covers the β5
subunit of a recently solved structure of the native human 20S
proteasome at 1.8 Å resolution (5LE5) (Schrader et al., 2016). This
landmark study revealed a number of functionally important
differences with respect to what was known from the previously
published 20S proteasome structures. In particular, it identified
chloride ions within all active sites, thus significantly revising the
description of the proteasome active site, and providing new
insights into peptide hydrolysis that underpin the “development
of next-generation proteasome-based cancer therapeutics”
(Schrader et al., 2016). The examination of the usages of
c_0060 within the dissection of 5LE5 (chain Y – β5 subunit)
reveals that this concept is directly linked to proteolytic active
sites (Figure 4A). Analyses of the human-annotated keywords
used in the PDB coordinate files from these usages showed among
its top 10 frequently used phrases terms such as “Cancer
(therapy),” “Drug resistance,” and “Bortezomib”—an
anticancer drug and the first therapeutic proteasome inhibitor
to be used in humans. This is strong evidence of the concept’s link
to a proteolytic active site. A similar examination of the usage
instances of the concept c_0568 directly links it to the
Fe2S2-cluster binding ferredoxins (see Figure 4B), which
mediate electron transfer (Nechushtai et al., 2011).
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As another example, consider the dissection of the main
protease 5R84 (Figure 5) of the SARS-CoV-2 virus. This virus
is the cause of the coronavirus disease (COVID-19). 5R84 is a
cysteine protease that is responsible for cleaving the SARS-CoV-2
polyprotein chain that prepares the molecular machinery

responsible for viral replication and infection. The dissection
involves, among others, the following two concepts: c_0818 and
c_0904. (For a full list of concepts in the dissection, see Figure 5.)
Studying the usages of these concepts, it becomes clear that they
are composed of highly conserved substructures that are specific

FIGURE 4 | Usages of concepts c_0060 and c_0568. (A) Transparent surface rendering of the native human 20S proteasome at 1.8 Å (5LE5), with the usage of
concept c_0060 in the β5 subunit (chain Y in the amino-acid region THR1 to ASN191) shown in cartoon. The closeup of this region reveals a chloride ion in all active sites.
Chloride ions are known to facilitate a proton shuttle catalytic mechanism (Schrader et al., 2016). (B) Similar rendering as above for the usage of concept c_0568 in the
2.3 Å Ferredoxin structure from Mastigocladus laminosus (3P63 chain A in the amino acid region THR48 to GLU90). The closeup shows the region linked to the
Fe2S2-cluster binding.

FIGURE 5 | Dissection of the main protease of SARS-CoV-2 virus. The left frame shows the 1.8 Å crystal structure of the main protease of SARS-CoV-2 (5R84). The
right frame gives the dissection of this protein as markup under 5R84’s amino-acid sequence (chain A). The successive regions of 5R84 chain A are explained using the
following concepts (in that order): c_0818, c_0667, c_0904, c_1173, c_1429, and c_1435, respectively. Their corresponding substructural regions of the protease are
shown with varying colors (left frame). Cysteine 145 (CYS145) and Histidine 41 (HIS41) residues form the catalytic dyad of this protease, and are associated with
concepts c_0904 and c_0818, respectively.
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to viral proteases, mainly coronaviruses (SARS and MERS).
Concept c_0904 explains the region of 5R84 containing the
catalytic cysteine-145 residue (CYS145) of this main protease,
whereas c_0814 explains the other residue in the catalytic-dyad,
histidine-41 (HIS41). Therefore, these concepts are directly
linked to the catalytic function of the protease.

2.5 Comparison With Previous Work
Many previous studies have attempted to identify a canonical
set of recurrent patterns that encompass the structures of
proteins.

Dissection of protein folding patterns into substructures began
with the recognition of recurrent patterns. The first of these were
the canonical secondary structures (α-helix and β-sheet) followed
by descriptions of supersecondary structures (α-hairpin,
β-hairpin, and β-α-β unit). At this point the approach was
observation and intuition-based rather than systematic, and
the field lacked attempts to determine a set of substructures
from which complete domain structures could be assembled. The
earliest attempts to generate a roster of supersecondary structures
automatically, with varying motivations, include those of Lesk
and Rose (1981), Jones and Thirup (1986), and Richards and
Kundrot (1988).

To identify a set of building blocks that cover protein
structures, Unger et al. (1989) analyzed protein main chain
conformations in terms of hexamers (oligopeptides of six
amino-acid residues). Their analysis involved a refined set of
82 proteins in the (then) known structures, which contributed to
a total of 12,973 hexamers. Using a normalized root-mean-
square-deviation (RMSD)–based membership function (with
an RMSD threshold of 1 Å) and a variant of K-nearest-
neighbor clustering, they demonstrated that most hexamers
grouped into 55 disjoint clusters.

Much subsequent work followed along similar lines of
clustering short oligopeptide fragments using variations of
clustering heuristics and membership-deciding thresholds to
produce different local fragment libraries (Tramontano et al.
1989; Rooman et al., 1990; Hutchinson and Thornton, 1996;
Micheletti et al., 2000; Kolodny et al., 2002; Kihara and Skolnick,
2003; Friedberg and Godzik, 2005; Joseph et al., 2010). For
instance, Micheletti et al. (2000) sought a minimal set of
“oligons” that can represent protein structures, by clustering
oligopeptide conformations extracted from known structures.
They considered oligopeptide lengths from 4 to 7 and created
libraries containing 8, 202, 932, and 2561 elements—within
which they recognized redundancies. They were able to fit a
set of test structures to within an RMSD of approximately 1 Å.

The main limitations of these approaches are at least two-fold:
1) The nature of the covering substructures is imposed—in these
cases, short oligopeptide fragments—rather than allowing their
method to identify more general possibilities, and 2) the
definition of cluster membership of various oligopeptide
fragments remains extremely sensitive to the chosen RMSD
threshold values and clustering heuristic.

Complementing the above strategies that rely on clustering
local 3D fragments, Bystroff et al. (1996) and Bystroff and Baker
(1998) proposed a fully automated method to cluster short 1D

sequence segments into a library (I-sites) of amino-acid patterns
that correlate strongly with their 3D (local) structure. These
sequence segments were clustered using a weighted amino-
acid frequency profile (Vingron and Argos, 1989) over a
K-means clustering approach. Subsequently, over an iterative
procedure, pairs of peptide segments within each cluster are
evaluated based on their structural characteristics (Cα–Cα

distance profiles and backbone torsion angles) to select a
“paradigm” local structure for their sequence cluster. Latest
I-sites library (v5.3) reports 128 clusters containing motifs of
length ranging from 3 to 15 amino acids. This popular library,
together with the inferred local sequence–structure relationships,
now underpins successful and popular ab initio structure
prediction methods (Rohl et al., 2004). Despite being a
noteworthy milestone in the literature, this library is not
geared toward identifying topologically conserved assemblies
of SSEs, which is the main focus of the work presented here.

Camproux et al. (1999) used an a priori method based on
hidden Markov models (HMM) to identify a recurrent 3D
structural alphabet. In their work, proteins are described using
a sequence of overlapping tetrapeptide states on which a HMM is
used to infer libraries of fragments together with their local
conformational dependencies. This work mainly yielded 12
distinct tetrapeptide states derived from a data set of about
100 proteins. These states correspond predominantly to
conformations of classical helices, strands, and turns, plus a
few others. Further extension of this work (Camproux et al.,
2004) gathered 27 tetrapeptide states. This work also examined
the restrictions on the sequences of such states that appear in
proteins. The inferred 27 tetrapeptide states correspond to α, 310,
and π helices, extended strands, turns of various descriptions and
coil, respectively. Using different models, Pandini et al. (2010)
also clustered tetrapeptide fragments (using the internal angles
between the Cα coordinates) from known proteins to determine
another structural alphabet. Nevertheless, similar to the other
libraries, these structural alphabets remain extremely short and
limited in scope.

Going beyond the clustering of oligopeptide fragments, some
key studies have iteratively assembled SSEs under specific rules to
explore structural “pathways” of observed protein folds.
Specifically, Efimov (1997) used a constructive approach to
introduce the notion of “structural trees.” These trees reveal
how folding patterns can be constructed from root structural
motifs via addition of helices and strands in a stepwise fashion,
subject to a restricted set of growth-rules. Efimov examined five
types of structural trees corresponding to five protein
superfamilies. The key outcome of this work was the
demonstration that the structural trees give pathways of
growth that lead to known protein folding patterns. Murzin
and Finkelstein (1988) presented a model for the possible
arrangements of α-helices in globular proteins. Subsequently,
Taylor (2002) also explored a similar idea. Taylor’s work
constructed idealized topologies of protein structures by
applying SSE packing rules that build on a set of basic
“forms.” These forms are represented using stick models of
SSEs in different layered arrangements, where the spacing
between idealized helices (of arbitrary lengths) within a layer
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is fixed to 10 Å, whereas that between idealized strands is set to
5 Å. To match any protein to the sets of idealized forms, a protein
structure is converted to a stick representation and then a fast
filtering step is applied to find potential matches (using a bipartite
matching algorithm), followed by a more exhaustive pairwise
comparison between the filtered stick forms and the proteins
(based on a double-dynamic programming algorithm and RMSD
threshold for match set to 6 Å.)

By demonstrating the limitation on the number of realizable
folding patterns, arising due to the restrictions imposed by the
growth rules on feasible spatial assemblies of SSEs, the studies by
Efimov (1997) and Taylor (2002) confirm the observations of
Finkelstein and Ptitsyn (1987) and Chothia (1992). Moreover,
these works inform new schemes to classify the observed protein
folds (Gordeev et al., 2010).

Grishin and colleagues (Chitturi et al., 2016) recently proposed
a method to enumerate constructively all idealized parallel/
antiparallel arrangements of up to 5 SSEs. This work proposed
a systematic enumeration of all possible parallel/antiparallel
arrangements using a 3D lattice model. This allowed them to
model theoretical arrangements of SSEs and use them to search
for observed occurrences of each arrangement within the PDB.
However, their idealized models are limited to parallel/
antiparallel orientations, which poses a severe restriction in
exploring the full set of SSE arrangements observed in the PDB.

Alva et al. (2015) sought regions of proteins that might
comprise a set of ancestral fragments, conceivably vestiges of a
pre-cellular “RNA-peptide world.” They identify 40 fragments,
typically containing few secondary structure elements, that recur
in many protein structures, including in sets of proteins not
recognized as homologous. Some of these are similar to certain of
our concepts; for instance, their set includes the standard
supersecondary structures α-α hairpin, β-hairpin, and β–α–β
unit. However, comprehensive coverage of observed protein
folding patterns was not a goal of that work.

Other motif libraries have also been recently proposed: the
Smotif library of Dybas and Fiser (2016) and the TERMs library
of Mackenzie et al. (2016). An Smotif is designated by the
arrangement of a pair of SSEs (of one of the following types:
EE, EH, HE, and HH). A library of Smotifs is a collection of such
SSE-pairs with different geometries. Their work utilizes an RMSD
threshold of 2.5Å to cluster 11,068 observed pairs of SSEs from a
collection of 1,200 protein structures (i.e., one randomly chosen
protein domain per SCOP fold). These fragments serve in their
work as the representatives of the protein structural space. Thus,
any consecutive pair of secondary structures within a protein
chain is assigned to the closest (based on RMSD) representative
Smotif.

The tertiary motif (TERMs) library (Mackenzie et al., 2016)
was able to find bigger assemblies of short oligopeptide fragments
using the following approach. For each amino-acid residue i in
the nonredundant collection of 29,000 residues, a candidate
TERM is defined using one or more oligopeptide fragments
formed by the union of the residues i − 2, . . . , i + 2 together
with all penta-peptide regions around residues that form a
“potential contact” with the residue i. For each candidate
TERM, the method finds matching tertiary fragments using an

RMSD-based search method. A subset of candidate TERMs is
realized by posing it as the classical set cover problem and
realizing the minimal cover using a greedy approximation
method that iteratively identifies the TERMs (based on their
coverage) that match proteins in the considered set. This iterative
procedure yields about half a million (458,251) TERMs. The
minimum TERM has 1 oligopeptide fragment containing 5 amino
acids, whereas the maximum TERM has 10 fragments with 52
amino acids. Importantly, an average TERM in their library is
composed of 3 oligopeptide fragments covering 19 amino acids
(i.e., 6 amino acids per fragment). Furthermore, inspecting the
TERMs that cover 50% of their proteins in their considered
collection of 29,000 protein structures, we find that each TERM
averages 2 fragments with 12 amino acids. Moreover, inspecting
the top 24 TERMs [see Figure 2A of Mackenzie et al. (2016)], we
find many repetitions of short helices and antiparallel strands.

Nepomnyachiy et al. (2017) recently proposed a pipeline to
explore “reuse” of regions in proteins based on their amino acid
sequence relationships. This work reported repeated occurrences
of sequence segments between 35 and 200 amino acids in length.
However, relying on amino-acid sequence relationships is rather
limiting because sequences diverge more drastically than
structures in evolution.

In comparison, our work results in only 1,493 architectural
concepts (two orders of magnitude more concise than TERMs),
where our smallest concepts contain 2 SSEs covering, on average,
19 amino acids—this is the median length of the regions where
concepts with 2 SSEs are used, in the dissections of the structures
from the PDB. The biggest concept is composed of 28 SSEs
covering 171 amino acids. An average PROÇODIC concept in our
dictionary is composed of 6 SSEs covering 75 amino acids.
Considering the PROÇODIC concepts that cover 50% of the
PDB, an average concept has 5 SSEs covering 66 amino acids.
Thus, using this framework, our dictionary yields concepts that
are a substantially larger than TERMs, and define a significantly
more economical dictionary that explains the entire PDB.
Moreover, the methodology we use defines a direct and
efficient (dynamic-programming based) way to dissect any
given protein structure using the inferred PROÇODIC dictionary.

These results are achieved due to the expressive power of
tableaux to represent compactly the essence of protein folding
patterns. This tableau representation, together with the minimum
message length inference methodology, provides a reliable
framework to compress without loss and identify relationships
in the protein folding space.

3 DISCUSSION

3.1 Many Concepts Are Linked to
Ligand-Binding Sites
The molecular function of proteins is often mediated via
interactions with chemical components such as metal ions,
coenzymes, metabolic substrates, and nucleic acids, amongst
others. Knowledge of such interactions is central to annotate
protein function (Whisstock and Lesk, 2003; Goldstein, 2008),
engineer new proteins (Gutteridge and Thornton, 2005), and
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design drugs (Rognan, 2007; Kinjo and Nakamura, 2009). These
functionally critical interactions impose structural constraints on
protein structures, as their domains evolve from a common
ancestor. As noted by Lesk and Chothia (1980), in many cases
active sites are the best-conserved regions within a family of
protein structures (as seen in Figures 4, 5).

We have analyzed our dictionary and systematically identified
concepts directly related to protein–ligand interactions. To
achieve this, we mined and catalogued frequent ligand
information (from “HETATM” records) derived from the
source PDB entries of each concept usage (i.e., each instance
in the PDB where the concept appears in the dissection of that
protein’s tableau). Our definition of a ligand comes from the
inventory of 23,258 chemical components specified by the
LigandExpo (Feng et al., 2004) database. We note that this
inventory does not exclude simple monovalent ions (such as
Na+, K+, and Cl−) or those that are often not biologically
functional (such as sulfate SO2−

4 ions). To complement this
information, we also mined and cataloged keywords (from
“KEYWDS” records) derived again from the source PDB
entries of these concept usages. We used the observed
frequencies of the bound ligands within the regions of concept
usages, to narrow the initial set down to the 463 (31%) concepts
that stand out in terms of recurrent patterns of interactions with
the same set of ligand(s). These encompass interactions with

monovalent ions, di-/tri-/tetra-valent ionic species, small
molecules (including nucleotides), and macromolecular
compounds, among others.

The fully annotated list of concepts with observed interactions
with ligands/chemical components is available in the supporting
data file: conceptsWithLigandInteractions.txt (click).

Figures 6A–G show examples of concept usages for a random
selection of 8 concepts associated with metal-binding activity.
Table 1 shows a partial list of concepts for which all (100%) of
their usages show binding to the specified ligand/chemical
components. Also shown are the extracted high-frequency
keywords associated with usages of that concept, providing
useful insights to impute functional roles. Among the
shortlisted set of 463 concepts are those that demonstrably
show binding specificity linked with target recognition,
reception, and signaling (see Table 2).

The full list of inferred concepts putatively linked to molecular
reception, recognition, and signaling is available in the supporting
data file: receptorConcepts.pdf (click).

3.2 Inferring Biological Function From
Concept Usage Information
Many proteins are deposited into the PDB with unspecified
functional annotation, especially those coming from structural

FIGURE 6 | Metal-binding activity examples. Exemplars of usages of eight concepts linked to metal-binding activity. The region of concept usage is shown in
cartoon in the context of the surface rendering of the source protein chain. (A) Usage of concept c_1099 within the calcium-bound calmodulin [1CDL (Meador et al.,
1992)]. (B) Usage of concept c_432 within the copper-bound electron transfer protein [1A4B (Messerschmidt et al., 1998)]. (C) Usage of concept c_885 within the iron-
bound oxidoreductase (2VUX). (D) Usage of concept c_139 within the magnesium-bound lyase (3TTE). (E) Usage of concept c_186 within the manganese-bound
hydrolase [1K23 (Ahn et al., 2001)]. (F) Usage of concept c_133 within the sodium-bound Kainate and AMPA receptors [3G3G (Chaudhry et al., 2009)]. (G) Usage of
concept c_280 within the nickel-bound peptide deformylase (2AIA). (H) Usage of concept c_624 within the zinc-bound melanoma-inhibiting anti-apoptotic protein [1OY7
(Franklin et al., 2003)].
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genomic initiatives. Functional characterization of such proteins
is of crucial importance to the structural biology community. Its
importance can be evidenced by the community-wide Critical
Assessment of protein Function Annotation program (CAFA,
biofunctionprediction.org/cafa/), which assesses methods
dedicated to predicting protein function from an amino-acid
sequence.

As previously shown (Figure 4A), the rich source of
information within this concept dictionary is useful to
investigate and impute biological function. More evidence of
this is shown by another case study involving the haze-
forming thaumatin-like protein in white wines made from
Vitis vinifera (4JRU containing 201 residues). Figure 7 gives the
dissection of 4JRU composed of two concepts c_0111 and c_1442.

Concept c_1442 is of less functional interest as it defines a
common β-hairpin unit consisting of two antiparallel β-strands.
On the other hand, c_0111 contains 12 strands that assemble to
formmainly two face-to-face packed antiparallel β-sheets with an
extended β-ribbon connected by an Ω-loop (Leszczynski and

Rose, 1986). This multistranded motif is characteristic of
thaumatin-like proteins (Ogata et al., 1992). Examining the
usages of this concept within the PDB via our PROÇODIC web
site, we find it is used at 15 other loci, most of them thaumatin/
osmatin-like proteins, with their top two keywords displaying
“antifungal protein (53.3%)” and “plant protein (46.7%),”
respectively. Figures 7B,C show the structural alignment of
4JRU with the usage in the pathogenesis-related PR-5D protein
of tobacco (Nicotiana tabacum; 1AUN with 208 residues) that
results in a superposition with 1.47 Å root-mean-square deviation
over 201 amino-acid residues between the Cα coordinates of the
two structures. This specific PR-5D protein is classified
functionally as an antifungal protein, and, in general, proteins
of this class have known pathogenesis-related antifungal activity.
This suggests that the haze-forming protein might exhibit the
same biological function.

In some cases, the information provided by this dictionary can
lead to a reliable but less-specific functional classification
prediction, for example putatively identifying a general type of

TABLE 1 | A partial list of concepts for which all (100% of) their usages show interactions with ligands or chemical components. This is derived by inspecting the ligand
(“HETATM”) records within the source coordinate files of each concept usage. The bound ligands are shown (in the second column) using their standardized
abbreviations, along with their observed frequency within the usages in parentheses. Also shown (in the third column) are the top keyword terms (from “KEYWDS” records
specified by the structures’ authors) recurring within the usage coordinate files with their associated frequencies. (Note: CA � calcium ion).

Concept ID Ligand/chemical component (freq) Keyword (freq)

c_0011 PQQ (100%), CA (100%) OXIDOREDUCTASE (90%), QUINOPROTEIN (27%)
c_0036 ZN (100%) HYDROLASE (85%), EXOPEPTIDASE (46%), CARBOXYPEPTIDASE B (46%)
c_0065 FES (100%) OXIDOREDUCTASE (96%), XANTHINE OXIDASE (32%), IRON SULFUR (30%)
c_0096 FMN (100%) OXIDOREDUCTASE (100%), ROSSMANN FOLD (55%)
c_0108 HEM (100%), CA (100%) OXIDOREDUCTASE (85%), PEROXIDASE (63%)
c_0110 HEM (100%) OXIDOREDUCTASE (82%), MONOOXYGENASE (43%), CYTOCHROME P450 (34%)
c_0124 SF4 (100%), MG (100%) OXIDOREDUCTASE (91%), [NIFE]HYDROGENASE (26%)
c_0144 CA (100%) TRANSFERASE (81%), CGTASE (36%), ACARBOSE (33%)
c_0156 ZN (100%) TRANSFERASE (90%), SET DOMAIN (39%), EPIGENETICS (28%)
c_0159 SF4 (100%) OXIDOREDUCTASE (96%), NIFE HYDROGENASE (17%)
c_0208 CU (100%) OXIDOREDUCTASE (97%), BETA BARREL (34%), LACCASE (32%)
c_0374 HEM (100%) OXYGEN TRANSPORT (56%), HEMOGLOBIN (26%)
c_0397 ZN (100%) OXIDOREDUCTASE (94%), SUPEROXIDE DISMUTASE (27%)
c_0424 PCA (100%) HYDROLASE (95%), GLYCOSIDASE (35%), CELLULOSE DEGRADATION (32%)
c_0546 ZN (100%) HYDROLASE (88%), PHOSPHODIESTERASE (32%), PDE (28%)
c_0568 FES (100%) ELECTRON TRANSPORT (77%), FERREDOXIN (38%)
c_0604 HEM (100%) ELECTRON TRANSPORT (100%), HEME (57%), CYTOCHROME B5 (40%)
c_0624 ZN (100%) APOPTOSIS (47%), ZINC FINGER (44%), METAL BINDING (30%)
c_0714 NAG (100%) VIRAL PROTEIN (84%), HEMAGGLUTININ (39%), GLYCOPROTEIN (22%)

TABLE 2 | A partial list of concepts putatively linked to molecular reception, recognition, and signaling.

Concept ID Ligand/chemical component (freq) Frequent keywords (freq)

c_0062 NAG (96%), BMA (70%) IMMUNE RECOGNITION (21%)
c_0133 ZN (35%) AMPA RECEPTOR (26%), NEUROTRANSMITTER RECEPTOR (20%)
c_0205 GAL (36%) CARBOHYDRATE RECOGNITION (11%)
c_0252 MYR (40%) RHINOVIRUS COAT PROTEIN (20%), RECEPTOR (17%), ANTIVIRAL COMPOUND (10%)
c_0304 CA (60%) ANTIBODY RECEPTOR (18%), CARBOHYDRATE RECOGNITION DOMAIN (15%)
c_0335 NAG (34%) CELL ADHESION (29%), RECEPTOR (16%), GLYCOPROTEIN (11%)
c_0352 GOL (67%) PEPTIDOGLYCAN RECOGNITION PROTEIN (10%)
c_0423 NAG (63%) IMMUNE SYSTEM (87%), ANTIGEN PRESENTATION (26%), T CELL RECEPTOR (12%)
c_0572 FMN (67%) PHOTORECEPTOR (36%), LIGHT-INDUCED SIGNAL TRANSDUCTION (13%)
c_0819 ZN (58%) SIGNALING PROTEIN (19%), PHOTORECEPTOR (13%)

Frontiers in Molecular Biosciences | www.frontiersin.org April 2021 | Volume 7 | Article 61292011

Konagurthu et al. Universal Architectural Concepts Underlying Proteins

http://biofunctionprediction.org/cafa/
https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


function such as “oxidoreductase” or “lyase.” Such generic
functional classification can be useful, as it may provide
guidance for laboratory experiments aimed at defining the
function more precisely, especially if clues about a ligand-
binding site are available. For example, consider the crystal
structure of dihydrodipicolinate synthase (DapA) from
Agrobacterium tumefaciens (2HMC). The dissection of this
DapA structure shows the usage of concept c_0008 covering
its entire chain A. About 90% of c_0008’s 118 usages show the
functional classification as “lyase.” DapA belong to the family of
amine-lyases that catalyze the cleaving of carbon–nitrogen bonds,
playing an important role in lysine biosynthesis in prokaryotes,
phycomycetes, and plants (Mirwaldt et al., 1995).

3.3 Local Sequence–Structure Correlation
Within Concept Usages
The identification of structural features that have strong amino-
acid sequence preferences is central to structure prediction
(Bystroff and Baker, 1998). Therefore, we studied the concept
usages within the PDB to explore the conformational preferences
of local sequences. To achieve this, for each concept, the amino-
acid sequences in the regions of concept usages within the PDB
were extracted, and the sequences in each set were aligned and
clustered (Sievers and Higgins, 2014).

Almost 20% of the concepts in our dictionary (288 out of
1,493) have associated amino-acid sequence patterns that cluster
into a single group (Supplementary Figure S4A). When

considering the (normalized) ratio of clusters over the number
of nonidentical amino-acid sequences of concept usages
(Supplementary Figure S4B), almost 30% of the concepts
(441) have a ratio smaller than 0.05, whereas almost 50%
(738) have a ratio between 0.05 and 0.1. Together, this
indicates that for almost 80% of the concepts in our
dictionary, their usages of amino-acid sequences cluster into a
small number of groups (<10% of their total unique amino-acid
sequences).

This strong sequence dependence is expected, particularly
for concepts linked to ligand binding or other functional
units. For example, Figure 8 shows the sequence logo
obtained from the multiple sequence alignment of the
usage sequences of the concept c_0397. This concept is
related to the Cu-Zn type I (SODI) superoxide dismutase,
which has a β−barrel-like subunit with copper and zinc ions
bound at the active site. This is common in many Gram-
negative bacterial pathogens (amongst others) to counteract a
burst of toxic superoxide radicals under oxidative stress
(Forest et al., 2000).

There is a potential application of the observed
sequence–structure correlations to structure prediction. We
downloaded the coordinate files of 33 PDB structures specified
in the description field of the CASP12 target list available at
http://predictioncenter.org/casp12/targetlist.cgi. Each chain from
these 33 structures was independently dissected using the
PROÇODIC dictionary of concepts. The dissection of protein
chains defines nonoverlapping regions assigned either to one

FIGURE 7 | Dissection case-study on the haze-forming thaumatin-like protein, 4JRU. (A) Dissection output from PROÇODIC of the haze-forming thaumatin-like protein
in white wines from Vitis vinifera (4JRU). (B) Superposition of this haze-forming protein and the pathogenesis-related PR-5d protein of tobacco (Nicotiana tabacum; 1AUN).
4JRU is shown in blue; 1AUN is shown in red. This superposition was based on the structural alignment produced by MMLigner (Collier et al., 2017), which is shown in (C).
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of the dictionary concepts (c_0001 – c_1493), or a null concept
(c_0000). For each region assigned to a dictionary concept, we
extracted the associated target amino-acid sequence and
performed a pairwise sequence alignment with each of the
local amino-acid sequences defined by the concept usages.
This exercise identified a subset of concept usages in the PDB
whose local amino-acid sequences have a detectable similarity
with the target. Table 3 quantifies the extent of coverage of these
regions for each of the 33 CASP12 targets. This table shows that in
26 of 33 cases, more than 50% of the target amino-acid chain has
detectable sequence similarity that can be derived from the usage
information.

It should be noted that we used the structural information
of CASP12 targets to dissect the protein chains, before
identifying the sequence relationships of the target
sequence and those within the concept usages. However,
for the proper application to structure prediction, the
identification of sequence hits with concept usages should
be carried out using only the target sequence. In principle,
this can be done by sliding along the target sequence with
varying window sizes, and exploring the sequence similarity
with the sequences across all usages of every concept in the
dictionary. Nevertheless, this preliminary analysis can be
used to hypothesize reasonably that these local
sequence–structure relationships provide a strong potential
to support structure prediction efforts, especially since an
average concept usage spans significantly longer stretches
along the protein chain than the currently considered
oligopeptide-fragment libraries used by fragment-based ab
initio protein modeling approaches. Thus, this information
can be potentially utilized to model several nonoverlapping

regions in the target protein chains by the structure-
prediction servers (Kim et al., 2004; Källberg et al., 2012;
Waterhouse et al., 2018; Zheng et al., 2019; Senior et al.,
2020).

As a note on the latest breakthrough in the field of structure
prediction, convolutional neural network-based prediction
architectures [especially AlphaFold (Senior et al., 2020)] have
seen groundbreaking success in the CASP13 and CASP14 rounds.
These neural network methods train on multiple sequence
alignments as inputs, involving either whole or part of the
target sequence whose structure is being predicted. At the time
of writing this article, the technical details of the AlphaFold
system used in CASP14 remain unpublished. When these
details become open, it would be useful to explore whether
sequence–structure correlations at the level of concepts can be
incorporated into training the neural networks more
efficiently—as per the information disclosed by Google
Deepmind the current architecture requires in the order of
128 Tensor Processing Units and over a few weeks to predict
structure from sequence, but with groundbreaking accuracy.

The amino-acid subsequences of nonoverlapping regions
dissected using the PROÇODIC dictionary of concepts are
available at: casp12_prosodic_dissections.tgz (click). The
information of dissected target region followed by other
subsequences in the usages of the corresponding (assigned)
concept with demonstrable sequence similarity (under pairwise
sequence alignment with the target subsequence) is available at:
casp12_concept_usage_hits.tgz (click). The multiple sequence
alignments [using MUSCLE (Edgar, 2004) with default
options] of the identified sequence hits are available at:
casp12_concept_usage_hits_msa.tgz (click).

FIGURE 8 | Sequence consensus across the usages of concept c_0397. amino-acid sequence logo (in two parts: columns 1-55 and 56-111) showing the
sequence consensus across the usages of a randomly chosen concept c_0397 directly related to the Cu-Zn binding superoxide dismutase. Of the 111 columns in the
multiple sequence alignment (of the c_0397’s 33 usage sequences) corresponding to this logo, 46 aligned columns show a consensus of 100%.
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3.4 Exploration of Substructures and
Structural Relationships
In addition to the applications explored above, the dictionary can
be used to complement standard protein structural studies.
Researchers can approach the dictionary with a particular
structure or family of structures in mind. For example,
dissecting the human hemoglobin (1HHO, chain A) at the
PROÇODIC website identifies the concepts c_0375, c_0894, and
c_1410. Choosing one of the concepts, for example, c_0894, its
archetype is found in d1x9fd, a globin from the annelid
Lumbricus terrestris. Note that related proteins can present
dissections into different concepts. However, these concepts
may still be related (see Section 3 on hierarchical clustering of
concepts). Our dictionary subsumes known supersecondary
structural motifs. For example, c_0375 and c_0894 are related

concepts linked to globins, with the former being more elaborate
(with three extra helices) than the latter. Examining the
corresponding concept “usages” link on the PROÇODIC website
reveals that many usages of these related concepts appear in other
globins. SupplementaryMaterial S1 contains several examples of
use of PROÇODIC to explore protein substructural similarities.

4 MATERIALS AND METHODS

4.1 Tableau Representation
Tableaux are concise two-dimensional representations of protein
folding patterns (Lesk, 1995). A tableau represents a protein
folding pattern in terms of a) the order of secondary structural
elements that appear along the polypeptide chain, and b) the
geometry of interactions of pairs of SSEs in contact. This provides
a computable definition for protein folding patterns, useful to
study many aspects of protein architecture (Kamat and Lesk,
2007; Konagurthu et al., 2008; Konagurthu and Lesk, 2010).

For a protein of known 3D structure, the construction of a
tableau involves first assigning the SSEs from the set of
coordinates. In this work, we assign the secondary structure
using the program SST (Konagurthu et al., 2012). This
identifies the order in which helices (H) and strands of sheet
(E) appear along the polypeptide chain. The succession of SSEs in
any protein therefore appears as a string of characters H or E. The
relative orientation of each pair of SSEs is computed as a dihedral
angle between two planes formed by the least-squares vectors
fitting the Cα coordinates of each SSE (directed from N- to
C-terminus) and their mutual perpendicular.

The geometry of pairs of SSEs is represented as a square-
symmetric matrix of orientation angles, with rows and columns
indexed by successive SSEs. A corresponding contact matrix
stores the contact patterns between pairs of SSEs. Two SSEs
are said to be in contact if there exists at least a pair of residues
(one from each SSE) that are in contact. Two residues are in
contact if there is at least one pair of atoms (one from each
residue) the distance between which is less than the sum of their
Van der Waals radii plus a small constant (1 Å).

The idea is that the essence of a protein folding pattern is
contained in the SSEs, their contact patterns, and the relative
orientations of pairs of SSEs in contact.

4.2 Source Collection Used for the Inference
of PROÇODIC Dictionary of Concepts
A source collection is a collection of (source) tableaux T . Since the
full PDB has redundancy and bias in terms of entries with similar
structures, to infer the dictionary of concepts we use the ASTRAL

SCOP-95 (Murzin et al., 1995; Andreeva et al., 2013; Chandonia
et al., 2017) (v2.05) dataset that has been produced to remove bias
due to over-represented structures, while explicitly incorporating
structure quality at each step of the domain selection (Brenner
et al., 2000). This data set is composed of 26,949 domains,
representing only 12% of the full SCOPe (v2.05) domain
dataset. Of these, 13,365 domains have < 40% sequence
similarity to its closest neighbor. Although the maximum

TABLE 3 | Statistics showing the extent of detectable sequence similarity on each
of the 33 CASP12 targets with their PDBIDs specified at http://
predictioncenter.org/casp12/targetlist.cgi. First column: PDBID of the 3D
experimental structure of each CASP12 target. Second column: The coverage
statistics in terms of the total number of amino acids (#a.a.) within the amino
acid (sub-)sequences defined by the dissected regions of the target protein
with detectable sequence similarity with amino acid (sub-)sequences of their
corresponding concept usage instances (see the main text). Third column:
The total number of amino acids in the target protein, cumulative over all
chains. Fourth column: Percentage coverage � Second column*100/Third
column.

Target’s #a.a.’s in regions Total #a.a.’s

PDBID with usage seq hits in all chains %Covered

3JB5 1046 2076 50.4
4YMP 202 215 94.0
5A7D 4468 5065 88.2
5AOT 91 102 89.2
5AOZ 125 141 88.7
5D9G 154 502 30.7
5ERE 417 540 77.2
5FHY 155 458 33.8
5FJL 88 136 64.7
5G3Q 100 168 59.5
5G5N 580 1022 56.8
5HKQ 160 263 60.8
5IDJ 63 242 26.0
5J4A 339 440 77.0
5J5V 815 1065 76.5
5JMB 103 182 56.6
5JMU 172 219 78.5
5JO9 215 239 90.0
5JZR 203 262 77.5
5KKP 166 509 32.6
5KO9 73 253 28.9
5LEV 323 375 86.1
5M2O 171 211 81.0
5MQP 2674 4801 55.7
5NSJ 150 284 52.8
5NV4 713 1377 51.8
5SY1 786 1458 53.9
5T87 444 745 59.6
5TF2 331 338 97.9
5TJ4 2640 5462 48.3
5UNB 378 681 55.5
5UVN 954 2496 38.2
5UW2 211 332 63.6
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sequence similarity two proteins can share is 95%, the average
sequence similarity is significantly lower (< 53%). The full list of
ASTRAL SCOP-95 domains used to infer the reported dictionary is
available in the supporting data file: prosodicInferenceList.txt
(click). Further, the inferred PROÇODIC dictionary was used to
dissect the PDB (Berman et al., 2003). Analysis presented here
includes the dissections of 113,724 protein coordinates files:
prosodicDissectedWWPDBList.txt (click). In addition to these
dissections, the PROÇODIC website allows users interactively to
dissect any protein structure on demand.

4.3 Definitions of a Concept and a
Dictionary of Concepts
Any subtableau comprising ≥ 2 consecutive rows and columns is
potentially a concept, provided that the graph defined by the
corresponding contact matrix is connected. (An undirected
graph is said to be connected if there exists a path between
any pair of vertices.) The rationale for this definition is
supported by the analysis by Kamat and Lesk (2007) who
demonstrated that almost all the information required to
identify a folding pattern is inherent in the local structure,
which can be captured using successive diagonals of a tableau.
We also note that relaxing the concept definition to general
subtableaux with nonconsecutive SSEs would render the
problem of finding an optimal set of concepts
computationally intractable.

A candidate dictionary C is a set of concepts. Any possible
dictionary is a set of substructures, each satisfying the definition
of a concept, that appear in the source collection. Our goal is to
determine the optimal concept dictionary to explain the entire
source collection as efficiently as possible. Technically, this is the
dictionary that gives the most (lossless) compression of the source
collection.

Associated with each concept c ∈ C is a concentration
parameter, κ, corresponding to a von Mises circular (angular)
probability distribution (Mardia and Jupp, 2009). This parameter
controls the assignment of probabilities used to estimate the
encoding length of entries in Ω when compressing regions of the
source tableaux. That is, κ controls the flexibility of an inferred
concept. A smaller/larger κy yields greater/lesser flexibility of the
concept’s usages for compressing source tableaux regions. These
values are inferred as a part of the dictionary search (see
Algorithm 1).

4.4 Inference of Dictionary of Concepts
We recently described a lossless compression-based methodology
to infer recurrent subtableaux on any source collection of
tableaux using the Minimum Message Length (MML) criterion
(Subramanian et al., 2017). The dictionary we report here has
been subsequently inferred using the methodology described in
that work. For convenience of the reader, the overview of our
methodology is summarized later, and we refer the reader to our
published methodology (Subramanian et al., 2017) for formal
details.

The main goal here is to learn a flat (nonhierarchical)
dictionary of concepts C that yields the best lossless

compression of the source collection of tableaux T . The
inference of C was undertaken using the Bayesian criterion of
minimum message length (MML) (Wallace, 2005). MML
provides a statistical inference framework to learn propositions
from any observed data set. A proposition can be made as a
hypothesis, model, explanation, or theory (Allison, 2018). The
MML framework combines ideas from the field of information
theory developed by Shannon (Shannon, 1948) and Bayesian
inference. Using MML, the descriptive complexity of any stated
hypothesis (model, theory, etc.) and its fidelity to explain the
observed data can be accurately quantified in terms of Shannon
information content (measured in bits). This allows the MML
framework to provide a reliable complexity-versus-fidelity trade-
off, and overcome the well-known problem of over-fitting that is
observed in many statistical inference problems. Thus, the best
hypothesis is chosen to be the one that yields the most succinct
two-part encoding, where the first part encodes the hypothesis,
whereas the second encodes the observed data given the stated
hypothesis. From the Bayesian standpoint (Bayes and Price,
1763), this translates to finding the hypothesis on the data
that maximizes their joint probability. Applying MML to this
work, the best concept-dictionary C that explains a source
collection of tableaux T is the one that minimizes the length
of the two-part encoding of the form: I(C&T ) � I(C) + I(T |C),
where I(·) � −log2(Pr(·)) measures the Shannon information
content (Shannon, 1948) of each of the two parts.

The MML framework provides a natural null-hypothesis test.
A dictionary C explaining T is accepted if and only if its two-part
lossless encoding length is shorter than the encoding length of the
observed data communicated independently (without the
support of any dictionary). The latter is termed the null model
message length and denoted as Inull(·). Further, the quality of an
inferred dictionary can be measured by the amount of lossless
compression gained with respect to the null model:
Inull(T ) − I(C&T ). Thus, using MML, the best dictionary can
be equivalently chosen using the following objective:
arg max

C
Inull(T ) − I(C&T ). Formal details of the search

methodology for the best dictionary and MML methods to
estimate the lossless encoding lengths given by the terms
Inull(T ) and I(C&T ) appear in (Subramanian et al., 2017).

Broadly speaking, central to the inference of the dictionary is
the procedure to generate the optimal encoding of any single
tableau using a given concept-dictionary C. This involves: 1) the
optimal partitioning of the tableau into subtableaux, 2) the
optimal assignment of those regions to concepts in the
dictionary (or to a null concept), and 3) the encoding of
information within the whole tableau using the assignment of
regions to their respective concepts. This optimal partitioning
and encoding is chosen as the one that yields the minimum
encoding length, and can be derived using an efficient dynamic
programming algorithm. Therefore, using MML, the best
dictionary for any source collection of tableaux is defined as
the one that yields the shortest overall encoding of stating the
dictionary, plus the optimal encodings for each tableau in the
collection given that dictionary.

Finally, the search for the best dictionary is carried out using
simulated annealing (see Algorithm 1). Starting from the initial
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state of an empty dictionary, the search involves iterative and
stochastic explorations of local neighborhood of the solution-
space using the following perturbation primitives: 1) Add
concept: randomly choose a subtableau (candidate concept)
from the source collection and add it to the current
dictionary. 2) Remove concept: randomly choose and delete an
existing concept from the current dictionary. 3) Perturb concept
length: randomly choose an existing concept from the dictionary
and extend/shorten it by one SSE, with reference to the concept’s
original source (in the source collection). 4) Perturb kappa:
randomly choose a concept and perturb its statistical

parameter (κ) that controls its flexibility. 5) Swap concept with
usage: randomly choose a concept from the current dictionary,
and swap it with a region in the collection that is currently
encoded by it.
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