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Radiology historically has been a leader of digital transformation in healthcare. The
introduction of digital imaging systems, picture archiving and communication systems
(PACS), and teleradiology transformed radiology services over the past 30 years.
Radiology is again at the crossroad for the next generation of transformation, possibly
evolving as a one-stop integrated diagnostic service. Artificial intelligence and machine
learning promise to offer radiology new powerful new digital tools to facilitate the next
transformation. The radiology community has been developing computer-aided diagnosis
(CAD) tools based on machine learning (ML) over the past 20 years. Among various AI
techniques, deep-learning convolutional neural networks (CNN) and its variants have been
widely used in medical image pattern recognition. Since the 1990s, many CAD tools and
products have been developed. However, clinical adoption has been slow due to a lack of
substantial clinical advantages, difficulties integrating into existing workflow, and uncertain
business models. This paper proposes three pathways for AI’s role in radiology beyond
current CNN based capabilities 1) improve the performance of CAD, 2) improve the
productivity of radiology service by AI-assisted workflow, and 3) develop radiomics that
integrate the data from radiology, pathology, and genomics to facilitate the emergence of a
new integrated diagnostic service.
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INTRODUCTION

Radiology was one of the first specialty in healthcare to adopt digital technology. Since the 1970s,
radiology has adopted many new digital imaging modalities such as Computed Tomography (CT),
Magnetic Resonance Imaging (MRI), Positron Emission Tomography (PET), Computed
Radiography (CR), Single Photon Emission Computed Tomography (SPECT), Digital
Ultrasound, Digital Mammography and many others. These digital images were initially
printed on films for interpretation, sharing, and archiving. As digital technologies for data
capture, data storage, image display, and transmission improved, radiology operations began
to convert to a filmless digital environment in the late ’90s (Mun et al., 1993; Mun et al., 2007).
Today, x-ray films are gone, and the PACS manages all radiological images (Alhajeri et al., 2017).
This massive investment in digital technology transformed the radiology service and made
radiology images ubiquitous throughout all aspects of healthcare (Hricak, 2018). Digital
radiological images enabled the development of many new image-guided surgeries and
radiation oncology. Radiology became global as teleradiology was the first successful
telemedicine application globally (Mun et al., 1998; Mun and Turner, 1999). Teleradiology,
often globally, is a significant portion of radiology operations in the US. Radiology services
accumulate massive digital images in their archives, some in the cloud, that laid a technological and
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human infrastructure for the next digital transformation based
on machine learning (ML) and artificial intelligence (AI).

During the mid-’80s, the radiology community began to
explore computer aided diagnosis (CAD) as a possible to aid
radiologists (Doi, 2007). Since the mid-2010s, there has an
overwhelming interest in machine learning techniques in
almost all fields involving data classification or analysis. The
number of publications using ML has been exponentially
increasing from a few thousand per year in the early 2000s to
about 35,000 per year in 2018; and nearly 85% were in neural
networks, based on Scopus data (Perrault et al., 2019). Several
versions of the neural network technique also were used for drug
discovery, computational biology, quantum chemistry,
autonomous cars, geology, astronomy, and many others.

Many CAD tools were developed in radiology community,
with good performance in terms of sensitivity and specificity.
However, most of them remained in research labs, and they did
not become an integral part of the radiology service. An earlier
success in the use of CAD in digital mammography for breast
cancer screening generated much excitement in the community
for wider clinical adoption of CAD tools. Some speculated that
these intelligent systems would soon replace radiologists.

The National Science and Technology Council of the US
published a research and development roadmap for medical
imaging (Interagency Working Group on Medical Imaging,
Committee on Science, and National Science and Technology
Council, 2017). The report envisions changes in medical imaging
in 4 general areas; 1) patient referral to imaging service, 2)
development and use of high-value imaging capability, 3) use
of advanced computation and machine learning, and 4)
promoting best practice in medical imaging including
reorganizing workflows to improve productivity.

In the article, we discuss AI research in medical imaging from
a clinical adoption perspective for patient care and suggest several
pathways through which AI will be demanded by radiology as it
undergoes the next generation digital transformation toward
integrated diagnostic service.

Operational Description of Radiology
Service
Radiology service is a very complex operation that includes many
inefficiencies. There is a great need to improve overall workflow
and productivity. The radiology department provides clinical
services to referring physicians and patients by managing a
complex workflow involving many layers of people, various
technology, many types of time-sensitive information. On any
given day, a typical radiology department will conduct more than
50 different types of imaging studies covering all body parts using
dozens of imaging modalities, including CT, MRI, ultrasound,
nuclear medicine, positron emission tomography, and various
conventional radiography systems. The acquired images are
managed by a picture archiving and communication system
(PACS) and radiology information system (RIS) (Boochever,
2004). Orders for imaging studies from the referring
physicians are placed by referring physicians based on the
patient’s medical history and symptoms. A radiologist

determines imaging protocol suitable to address the clinical
question. When an imaging study is completed at the imaging
system, the PACS will collect all images and generate a worklist
for each radiologist based on departmental policies/procedures
and the radiologist’s specialization (Hricak, 2018).

The radiologist’s work has three parts: interpreting and
analyzing images, generating reports, and providing further
consultation for referring physicians and patients (Halsted and
Froehle, 2008). In academic departments, training residents and
fellows is also a significant responsibility. The interpretation
(reading) time varies greatly depending on the types of study.
The radiologists are highly skilled and very fast at detecting
abnormalities in the image (Forsberg et al., 2017). The reading
times in radiology has been steadily increasing. The imaging
devices have improved, and they generate increasingly more
images per study. For example, the average number of images
for a CT exam increased from 82 images in 1999 to 679 images in
2010. For MRI, the numbers increased from 164 images to 570
images, respectively (McDonald et al., 2015). The image
interpretation often requires examining previous studies and
comparing them to the current study to determine if the
patient has gotten better or worse. These comparison analyses
are carried out manually by a radiologist, which can be very time-
consuming (Schemmel et al., 2016; Doshi et al., 2018).

Once the radiologist has completed their interpretation of the
study, the results are generally recorded on a voice recognition
system (a component of the PACS/RIS) to generate written
reports that become part of the patient record (Boochever,
2004). In some cases, the report is sufficient by itself. In other
cases, the report becomes part of a more complex analysis (Kahn
et al., 2009). For example, a patient might have multiple radiology
exams, blood chemistry analysis, and tissue sampling, all of which
need to be combined to create a comprehensive diagnosis.

Most of the previous efforts to apply AI to radiology in terms
of CAD so far have focused exclusively on the interpretation of
single images or a single series of images. In comparison, this is an
important task, only a fraction of how a typical radiologist spends
their time. When the image’s reading/analysis can become a part
of subsequent decision-making, radiologists would participate in
the decision making beyond the reports (Brady, 2017). In essence,
AI in radiology has historically tackled challenging yet narrow
problems (Schemmel et al., 2016; Hosny et al., 2018). We argue
that a refocusing of AI onto different aspects of the radiology
workflow and medical error reduction will generated more
demand and adoption by radiology community. (Dikici et al.,
2020; Montagnon et al., 2020).

Clinical Adoption Case Study: Breast
Cancer Screening and Diabetic Retinopathy
One has to distinguish between CAD, CADx, and CADe, a family
of AI tools based on convolution neural network (CNN). The
concept of computed diagnosis (CAD) research in medical
imaging has evolved into two distinct clinical applications;
computer aided diagnosis (CADx) and computer aided
detection (CADe). CADx means the computer provides a
diagnosis for physician review. On the other hand, CADe
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means the computer highlights the area of concern (i.e., cancer)
for further diagnostic evaluation without providing a diagnosis.
The CADe is used to screen cancers such as lung cancer or breast
cancer for the asymptomatic but higher risk population. If cancer
is suspected from the screening study, the patients will undergo a
higher precision diagnostic study. The CADe is a much more
challenging problem compared with CADx.

We will review the clinical adoption experience of two
different use of AI, breast cancer screening and diabetic
retinopathy screening to highlight that clinical adoption is a
multifaceted issue beyond technical success in laboratories.

CADe in Screening Mammography for
Cancer Detection
Screening mammography is an ideal application for CADe
because it has to review many cases by a limited number of
radiologists trained in mammography. It is a single type of exam,
and the most basic output is a simple yes (disease present) or no
(disease absent). FDA approved the first CADe for
mammography in 1998, but its adoption rate was initially less
than 5% (Lehman et al., 2015). However, as breast cancer
screening became more popular as part of a government
policy to promote women’s health, there was a shortage of
skilled radiologists for mammography. To address the
shortage, which resulted from low reimbursement rates for
reading mammograms, the Center for Medicare and Medicaid
Services (CMS) allowed higher reimbursement rates for using
CADe in screening mammography (Gold et al., 2012). This
financial incentive has dramatically increased the adoption of
CADe for mammography. In fact, in the US today, most breast
cancer screening mammograms are interpreted by radiologists
with CADe assistance. It is highly unlikely that additional
reimbursements would be allowed to use AI tools in radiology
in the future.

The widespread use of mammography CADe and the large
number of exams performed each year allowed assessment of
CADe’s impact on mammographic interpretations’ accuracy.
One of the largest, a study involving 271 radiologists and
323,973 women between Jan 2003 and Dec 2009, compared
reading mammograms with and without CADe. The study
concluded that CADe does not improve mammography’s
diagnostic accuracy (Lehman et al., 2015).

A more recent study by Schaffter and colleagues conducted a
crowd-sourced trial on the use of deep learning in digital
mammography involving 300,000 mammograms from the US
and Sweden. The project had 126 teams from 44 countries to see if
they could meet or beat the radiologist’s performances. They
concluded that AI tools again did not perform better than
radiologists (Schaffter et al., 2020).

CADe Use to Screen Diabetic Retinopathy
to Prevent Blindness
Diabetic retinopathy is an eye disease when high blood sugar
levels of a diabetic patient can cause damage to blood vessels in
the retina. Undetected and untreated the patient can become

blind. Screening for diabetic retinopathy is an effective way to
prevent the blindness. A special camera takes images of the blood
vessels in retina. Interpretation of these images requires special
expertise, thus it has been a interests of AI community to develop
CAD systems.

Recently Google Corporation deployed its AI tool to detect
diabetic retinopathy in Thailand. Initial development and testing
involved 3,049 patients. In 2018, they deployed the system at 11
clinics in Thailand, involving 7,600 patients (Beede et al., 2020).
This large-scale prospective study was halted mainly because of
persistent image quality problems. The system performed poorly,
mainly due to the variability of retinal scan images obtained at
different nurses’ different settings (Beede et al., 2020). The success
in the lab did not translate well in real-life situations. Initial
deployment of an AI system for lung cancer screening
experienced a similar situation in dealing with a considerable
variability of image quality of real-life clinical cases (Worrell,
2020). Pre-processing of image normalizing before AI application
may be an essential step for scalable clinical deployment.

Currently, 46 AI algorithms have approvals from Food and
Drug Administrations and Conformité Européenne (CE)
(Tadavarthi et al., 2020). The approval process consists of
clinical trial demonstration clinical safety and efficacy, often
involving receiver operating curve analysis of sensitivity and
specificity. The approval, however, does not guarantee
successful clinical adoption. Global adoption of these tools is
still a few years away. Since there are no insurance
reimbursements, except digital mammography in the US, for
the use of AI software, return on investment must be assessed
based on significant quality improvement or efficiency
improvements. AI tools have not shown significant
improvements in the quality of diagnosis and operational
efficiency for cost savings. Such improvement may require
significant changes in the radiology department functions and
possible re-configurations of PACS often owned by vendors other
than current AI vendors.

The Technology of CNN and
Computer-Aided Diagnosis
Artificial intelligence (AI) is the capability of the machine to
imitate intelligent human behavior. In contrast, machine learning
(ML) is a subfield of AI that allows the machine to learn from data
without being explicitly programmed (Soffer et al., 2019). The
concept of neural networks emerged from the biologic neuron
system. A neural network in the visual cortex can detect the edges
of an object seen by the retina. When the receptors’ inner parts
are activated simultaneously, the cell neutron integrates the
signals and transmits an edge detection signal. An artificial
neural network (ANN) is composed of interconnected artificial
neurons. Each artificial neuron implements a simple classifier
model, which outputs a decision signal based on a weighted sum
of evidence, and an activation function integrates signals from the
neurons. An ANN system can be built with thousands of these
basic computing units. The system can be trained by computing
these weights using a learning algorithm where pairs of input
signals and desired output decisions are presented, mimicking
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brain functions. An individual artificial neuron is a simple neural
network; however, multilayer perceptron can model complex
nonlinear functions. The deep learning (DL) concept is based
on the use of multilayer architecture of multilayer perceptron. In
medical imaging, the number of layers tends to be in the range
of dozen.

The convolution neural network (CNN) consists of a series of
convolution layers equivalent to compositional convolution
layers with a set of large kernels. In effect, a CNN acts as a
feature learning based on spatial features with multiple channels
(Lo et al., 1995; Lo et al., 2018b; Lo et al., 2018c). However,
common difficulties in traditional CNN approaches for medical
imaging can be grouped into three categories; 1) inability to
separate normal from ill-defined abnormal structures, 2) inability
to differentiate disease patterns, particularly in subtle cases from a
broad spectrum of normal structures, and 3) inability to establish
an integrated system between compositional and divide-and-
conquer models.

Limitation of Current Generic CNN
Many ML open-source packages such as Tensorflow, Keras,
Caffe, and others featuring CNN have been widely used. The
core algorithms of CNN in all these packages were designed for
general image pattern recognition. They were initially developed
for the recognition of alphanumerical handwriting. General
image pattern recognition relied on essential graphic pattern
features (e.g., edges) and orientation-dependent but size-
independent in many situations. On the other hand, medical
image pattern recognition should rely more on gray intensity
distribution and is orientation independent but size-dependent.
Also, some users have experienced inconsistent results from the
current CNNs and have tried to use many versions converted
from the same input as a part of the augmentation strategy to
increase the training samples and stability (Lo et al., 1998).

Improving CNN for Medical Imaging
An ordinary CNN using unconstrained kernel weights entirely
based on the backpropagation training (Lo et al., 2018d). The use
of rotational and translational versions of each input vector as
data augmentation was developed by the authors (Lo et al., 1993).
However, many investigators reported that the current method
requires a long training time and produces unstable results (Lo
et al., 2018b; Lo et al., 2018c).

The current CNN software should be redesigned for medical
imaging pattern recognition by (i) the use of an activation
function without suppression of the composed signal and (ii)
the use of symmetric kernels. This is because current activation
functions (Relu, Leaky Relu, sigmoid, and Tanh) used in general
CNN tools are signal suppression functions (i.e., df/dx < 1).
When using them multiple times through multiple convolutional
layers, only edge patterns with very few gray value features
remained in the feature maps at the end of convolution/
activation processing for final classification. These are not
acceptable intermediate outcomes for many medical images
where subtle gray value differences are used for discerning
possible disease characteristics (Lo et al., 1995; Lo et al., 1998).

The symmetric kernels within CNN should be used to stabilize
the CNN output consistency. The use of kernels with dihedral
symmetry of order 8 (Dih4) is an example with a minimum
number of free parameters as element coefficients are symmetric
with respect to each corner wedges. In other words, elements on
other wedges corresponding to the Dih4 symmetric element
positions in the wedge would share the same value. The use of
symmetric kernels can be expanded to wavelet decomposition.
Though it is different from an ordinary convolution process, each
compartment’s biorthogonal kernels may be different. However, t
the absolute value in each element of the kernel is the same. The
multi-dimensional wavelet decomposition is made by a one-
dimensional convolution process and down sampling one half
at a time. The total number of free parameters is much less (the
number of elements in 1D kernel plus 1, divided by 2). In effect,
kernels to produce low-low (LL) and high-high (HH)
compartments are Dih4 transformation-identical (TI) kernels.
Kernels to produce low-high (LH) and high-low (HL)
compartments are Dih4 TI with an odd number of elements
but are anti-symmetric (i.e., 180o rotation TI) with an even
number of elements. Since each compartment is processed
through an independent pipeline in the neural network
process, for the latter situation, there is still room to make
signals from LH and HL be Dih4 TI, if desired. This can be
done by inserting a reflective symmetry kernel in each of these
two compartment pipelines (Lo et al., 2018d).

With symmetric kernels, such as the dihedral symmetry of
order 8, the intermediate results throughout all convolutional
layers would be equivariant for original input and 90o rotation
increment as the flipping version. With this equivariant property
on all convolutional layers, the CNN would produce identical
output for all eight input image versions. In summary, the CNN
can be treated as a whole function of an input vector Vi (i.e., a 2D
image or 3D volume), and the output vector can be expressed as
Vo � CNN(T[Vi]) � CNN(Vi) as long as T[K] � K within each of
the CNN convolutional processes, where Vi and Vo are input and
output vectors, respectively. K denotes the convolution kernel
and T[.] is a transformation function. This equivariant property
at all convolutional layers can be extended for the CNN to
produce identical output results for any arbitrarily rotated
images by merging the convolution processing before the
classification section in the CNN. The use of symmetric
kernels in the convolutional layers in the CNN would be a
more appropriate tool to systematically produce highly stable
results (Lo et al., 2018d).

Open Source CNN
There have been increasing concerns about the ethics, ability to
explain and transparency of AI technology (Tang et al., 2018;
ESR, 2019), especially in healthcare. These concerns are partly
due to difficulties in understanding underlying theories, methods,
and assumptions used to generate systematic bias results. In this
scenario, the use of open-source software (OSS) strategy could
help address some of these concerns because, by definition, OSS
offers greater transparency of the technology and opportunities
for community-based collaboration.
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The OSS concept started in the 1980s as a social movement
and a philosophy for software development and distribution
(Levine and Prietula, 2014). OSS is defined as a software code
made available under a legal license in which the copyright holder
provides (depending upon the specific terms) various rights to the
licensees to study, change, improve and re-distribute the code
without any fees. Today there are many different types of OSS
licenses depending on the copyright holders’ interests and
intentions (Fosfuri et al., 2008; Opensource.org, 2020). These
licenses range from permissive licenses such as Apache-2.0 to
strongly protective licenses such as general public license (GPL).
OSS is typically available as-is; however, it can be made into
commercial products with additional services such as warranty,
training, documentation, and maintenance under various
commercial contracts.

Some of the more popular packages include TensorFlow,
Keras, PyTorch, Caffe2, and many others. They all have
varying strengths and weaknesses, depending on users’ needs.
Keras and TensorFlow have a common or similar core, but Keras
is much easier to use with limited options than TensorFlow.
PyTorch is fast and flexible for experimentation, and it is tightly
integrated with the Python language. An extensive table of
available software with detail comparison can be found at
Wikipedia (Multiple-Editor, 2020).

These OSS packages are developed and sponsored by various
organizations and individuals for their use cases and applications
other than medical imaging. However, the packages are initial
starting platforms for imaging research. These open source
packages should be optimized to be suitable for meaningful
medical imaging research as discussed in the earlier section.
Additionally, these open source codes’ users should form or
join collaborative communities based on shared medical
imaging interests.

Application of CNN in Medical Imaging:
For research in supervised learning such as CNN, the success
depends on three technical factors: 1) underlying science and
technology of the code, 2) learning supervised by subject matter
experts, and 3) the quantity/quality of data.

Another crucially important factor in CNN research is
imaging expertise, both clinical and physic of imaging (Giger
et al., 2008). Unlike common everyday objects in AI research, the
research team in medical imaging AI has to understand the
clinical significance of images and imaging physic.

Availability of Data and Realistic Mix of Data
There are two data issues: access to a sufficient volume of data and
enough data diversity representing a realistic case mix of the
clinical operational environment (Yamashita et al., 2018).

The imaging data requirement in radiology is relatively
modest, less than 10,000 cases per disease category. In the case
of the recent AI tool development for lung cancer screening with
CT images, approximately 2,000 cases consisting of 300,000 CT
images were sufficient for training, and approximately 300 cases
of 45,000 images with about 20% subtle cases tested by more than
10 radiologists were sufficient for an FDA specified clinical trial
(Lo et al., 2018a). For different disease types and imaging

modalities, these numbers would be different. If the clinical
problem to be addressed has many subtle features, the data
volume required would be much higher.

For an AI algorithm to be clinically useful, it must be trained
on data that appropriately represent the patient population’s
variance and diseases’ presentation. In a routine data
collection effort, the majority of available cases show disease
patterns, which are considered relatively easy cases. The cases of
subtle disease patterns are relatively rare and thus challenging to
collect. It is essential to have a mix of subtle cases in the image
archive. If one has a disproportionately large number of similar or
easy cases, the system will show bias (Lo et al., 1995; Hosny et al.,
2018). In supervised learning, algorithms such as CNN learn from
labeled data. When the number of categories and/or patterns to
be differentiated increases, the required data volumes would
increase. The problem of having more dimensions, yet small
data volume, can result in overfitting contributing to low
generalizability and scalability (Yamashita et al., 2018; Mutasa
et al., 2020).

Quality of Data: Image Quality
The performance of current CNN is fragile, dealing with varying
image quality. In fact, in any data science project, one can spend a
significant amount of effort to "clean" the data. The same is true in
imaging. The data must be of sufficient quality and acquired with
uniform parameters to make certain that conclusions can be
validated. The image quality can vary depending on the time and
day of imaging, image protocol, imaging system set up, patient
conditions, and clinical practice standards in different
departments (Worrell, 2020). While human vision is good at
reading through the images of varying qualities, AI tools are
generally not (Tang et al., 2018). One important task to produce a
systematic image AI performance is image pre-processing,
including optimization of image quality, noise reduction,
clutter removal, and enhancement of essential features for
differentiation. Various AI tools are used to standardize image
quality (Zhu et al., 2017; Mazurowski et al., 2019).

A radiology AI tool for screening or diagnosis of a disease is
usually comprised of several components: 1) pre-processing such
as image normalization, 2) image segmentation or region of
interest (ROI) extraction, and 3) potential disease pattern
identification and classification. Various algorithms have been
applied to each of these AI sub-components. However, there is a
trend to use a fully CNN-based algorithm such as U-net for image
segmentation and use a classification CNN- based algorithm for
identification and classification of the disease aiming at the ROI.
Alternatively, radiomics based classification can be employed on
the ROI.

Data Labeling
In radiological imaging, the supervised learning approach is the
most popular tool, and it requires labeled data for training and
validation. The labeling of images must be done manually by
expert radiologists. This process is very labor-intensive and very
costly. The truth panel for images is established by having 2 out of
3 radiologists agreeing on the diagnoses and clinical
determinations (Lo et al., 2018a).
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Research Environment - Access to
Research Resources
The role of AI will be different in different parts of the world. The
AI tools developed for one region of the world using data from
that region may not be useful in other regions with different
disease prevalence, limited infrastructure, and different
healthcare systems.

Collection and curation of images and related data could face
several obstacles such as management of privacy, confidentiality,
and the question of ownership. In recent years, the realization of
clinical images’ possible commercial values makes access more
costly and difficult. When images need to be collected from
multiple organizations, the data sharing process can become
more complicated. International collaboration can be difficult
when certain countries do not allow clinical data movement
beyond their national borders (Prior et al., 2020). One technical
solution for such a situation can be a federated learning system
where data remains in place while processing code and processed
results can move around (Konečný et al., 2016)

Government agencies and various consortia have established a
growing number of open access data repositories to facilitate
better access to clinical image data for research. One of the best-
known such repositories is the Cancer Imaging Archive (TCIA)
(Prior et al., 2013; The Cancer Imaging Archive (TCIA), 2020). It
is a publicly available information repository for data about
cancer, mostly radiology and pathology data acquired by the
lung cancer screening project involving 26,722 participants from
2002 through 2004. It contains 22.3 TB of data. The types and
volume of data in the archive are increasing rapidly.

Research and Development Environment in
Resource-Limited Regions
The research and development and eventual adoption of AI for
medical decision making in global health and low-resource
settings are hampered by insufficient infrastructure (Mollura
et al., 2020).However, it is essential that local radiology and
clinical community, resource-poor or not, have to develop and
validate AI tools suitable for their environment. In the resource-
poor regions with limited infrastructure, technical and human,
such participation could be difficult. However, the research
communities in the world’s resource-limited regions can access
many global imaging AI research resources. The Radiological
Society of North America website has a vast amount of
information. Many of the AI software is freely available as
open-source at no cost to the users. The cancer imaging
archive (TCIA) of the National Cancer Institute of the US has
many curated radiological images to support imaging research.
Most of the CADe products for lung cancer screen started using
the openly available images in TCIA, which holds the CT images
from the national lung cancer screening trial.

Future of Radiology Service and Radiomics
The digital transformation of radiology services will continue and
accelerate. Analog film is gone, and modern imaging systems
have evolved far beyond the slow and primitive early MRI and CT

systems. PET was only a research tool at a few centers but is now
becoming available at small community hospitals. Hybrid
scanners that combine multiple modalities and can operate in
different healthcare settings will become readily available. The
whole-body scanner that could do MRI or CT or PET will be
available where the patients receive care (Pichler et al., 2008;
Nensa et al., 2018). PACS, teleradiology, and Radiology
Information Systems all changed the radiology practice.

Nevertheless, the radiology department structure has not
fundamentally changed in 30 years (Kim and Mansfield,
2014). The radiology department continues to operate as a
centralized resource to which patients come to complete the
study, and radiologists dictate and distribute the reports
(Ondategui-Parra et al., 2004). This operational model may
soon see some changes.

For the next 30 years of radiology in the future, the pace of
change will accelerate. The cost of computing will continue to
decrease, and connectivity will be fast and ubiquitous. Radiology
and the field of diagnosis will evolve together with pathology.
Diagnostic imaging, clinical pathology, and genomics could
merge as an integrated diagnostic service that can integrate the
various reports from these subspecialty sections and synthesize a
coherent diagnosis that is communicated to the appropriate
physicians with more actionable specifics. Such an integrated
system will allow a rapid on-site point of care diagnosis, rather
than the serial process of today involving multiple appointments
over many days and weeks.

Some expect that a new profession of clinical diagnosticians, who
integrate the work of radiologists and pathologists with other
specialists with increasing reliance on AI assistance, will begin to
grow (Lundström et al., 2017). Pathologists are already doing
biopsies under image guidance. There are movements toward the
integration of professional service. Simultaneously, there are parallel
significant scientific and technical developments underway in
radiomics and pathomics that can facilitate this historical evolution.

Radiomics and pathomics are part of quantitative imaging that
attempts to extract additional information from radiology and
pathology images that may not be visible via visual inspection
(Saltz et al., 2017). Radiomics attempts to extract features from
radiological images that quantify its phenotype characteristics in
an automated high-throughput manner (Fan et al., 2020).
Pathomics attempts to extract similar information from
pathology images. These two approaches will meet at a shared
space to support personalized medicine. It has been hypothesized
that such analysis may help prognosticate, predict treatment
outcomes, and assess cancer tissue malignancy.

The value of AI in radiomics is two-fold. First, AI can be used for
automated image analysis at scale, enabling rapid evaluation of
hypothetical radiomic features. Whereas comparison studies
involving human radiologists should take into account for a
wide range of ergonomic and perception factors (such as the
required number of readers or the need to provide time between
different readings of the same image), a comparison of radiomics
algorithms is only limited by computational speed and power.
Similarly, new features can easily be tested against existing data
sets. Secondly, unsupervised learningmethods can be used to search
for new radiomic features that might be very different from what
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would be noticed by a human observer. The AI can take on the
discovery and find new and useful patterns within the existing
imaging data (Miles, 2020; Prior et al., 2020).

One fundamental issue in radiomics has to address is the
standardization of the factors and processing involved in the
quantitative analysis. The Image Biomarker Standardization
Initiative (IBSI) is a new organization to address many
challenges in 4 different specific areas, 1) standard
nomenclature and common radiomic features, 2) radiomics
image processing schemes, 3) provide data sets for validation
and calibration, and 4) set of reporting guidelines (Zwanenburg
et al., 2020). This group defined 174 radiomics features commonly
used to quantify the morphologic characteristics and numerous
others needed to define the quantitative information. The group
tries to standardize the image processing steps of data conversion,
post-acquisition processing, segmentation, interpolation, masking,
and others (Zwanenburg et al., 2020)(Zwanenburg et al., 2020).
Such standardization is expected tomake radiomics and pathomics
clinically useful and scalable for the integrated diagnosis service
(Kuhl and Truhn, 2020).

CONCLUSION

The clinical adoption of AI can be driven by either technology push
or market pull (Chidamber and Kon, 1994; Di Stefano et al., 2012).

Technology push arises when a new idea or new tool creates a
capability that did not previously exist. The market pull is defined
by the need to address pain points, inefficiencies, and problems
with the current way of doing business. Ideally, these two forces
synergistically combine to accelerate technology development and
deployment. Over the last 30 years, radiology has benefited from
this combination to develop teleradiology, PACS/RIS, and
advanced imaging modalities. However, much of CAD’s early
development has been a technology push; it was usually not
well aligned with clinical needs. We have proposed that a better
alignment could arise from focusing on the radiology workflow –
which includes many tasks beyond image interpretation – and the
need to create an integrated diagnostics service combining
radiological images, pathological data, and genomics (Santos
et al., 2019).

We envision three AI trajectories in radiology, as shown
in Figure 1. First, AI will undergo advances in CADe and
CADx to make image interpretation better and faster.
Despite the significant progress in developing CNN
algorithms, there are still many areas for improvement as
proposed in this paper. Second, a variety of AI tools,
supervised learning and unsupervised learning, will be
needed to improve workflow and increase productivity,
and, at the same time, reduce the cost of operation. This
operationally focused research will require a holistic
understanding of radiology operations. Third, quantitative
imaging, including radiomics, pathomics, and genomics, will
emerge and become a standardized approach for integrated
diagnostics. In summary, we predict that AIs will facilitate
the merging of disparate medical and scientific domains into
an integrated diagnostic service for personalized precision
medicine.
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